File: t_CopulaInferenceAnalysis_std.expout

package info (click to toggle)
persalys 13.1.1%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 71,916 kB
  • sloc: xml: 496,859; cpp: 53,848; python: 3,435; sh: 332; makefile: 131; ansic: 14
file content (25 lines) | stat: -rw-r--r-- 1,542 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class=DataModel name=myDataModel fileName=data2.csv inputColumns=[0,2,3] outputColumns=[] inputNames=[X0,X2,X3] outputNames=[]
class=CopulaInferenceAnalysis name=analysis designOfExperiment=myDataModel interestVariables=[] setOfVariables [X0,X3] distributionFactories=[NormalCopulaFactory,GumbelCopulaFactory]
result= class=CopulaInferenceResult copulaInferenceSetResultCollection=[class=CopulaInferenceSetResult setOfVariablesNames=[X0,X3] testedDistributions=[NormalCopula(R = [[ 1         0.0580361 ]
 [ 0.0580361 1         ]]),GumbelCopula(theta = 1.03839)] BIC results=class=Point name=Unnamed dimension=2 values=[0.0177483,0.0207956] error messages=[,]]
class=CopulaInferenceSetResult setOfVariablesNames=[X0,X3] testedDistributions=[NormalCopula(R = [[ 1         0.0580361 ]
 [ 0.0580361 1         ]]),GumbelCopula(theta = 1.03839)] BIC results=class=Point name=Unnamed dimension=2 values=[0.0177483,0.0207956] error messages=[,]
#!/usr/bin/env python

import openturns as ot
import persalys

myStudy = persalys.Study('myStudy')
persalys.Study.Add(myStudy)
inputColumns = [0, 2, 3]
outputColumns = []
inputNames = ['X0', 'X2', 'X3']
outputNames = []
myDataModel = persalys.DataModel('myDataModel', 'data2.csv', inputColumns, outputColumns, inputNames, outputNames)
myStudy.add(myDataModel)
analysis = persalys.CopulaInferenceAnalysis('analysis', myDataModel)
variablesSet = ['X0', 'X3']
factories = [ot.NormalCopulaFactory(), ot.GumbelCopulaFactory()]
analysis.setDistributionsFactories(variablesSet, factories)
myStudy.add(analysis)