File: t_CopulaInferenceAnalysis_std.py

package info (click to toggle)
persalys 13.1.1%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 71,916 kB
  • sloc: xml: 496,859; cpp: 53,848; python: 3,435; sh: 332; makefile: 131; ansic: 14
file content (42 lines) | stat: -rwxr-xr-x 982 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#! /usr/bin/env python

import openturns as ot
import openturns.testing
import persalys
import os

myStudy = persalys.Study("myStudy")

# Model
filename = "data2.csv"
ot.RandomGenerator.SetSeed(0)
sample = ot.Normal(3).getSample(300)
sample.stack(ot.Gumbel().getSample(300))
sample.setDescription(["X0", "X1", "X2", "X3"])
sample.exportToCSVFile(filename, ",")
columns = [0, 2, 3]

model = persalys.DataModel("myDataModel", "data2.csv", columns)
myStudy.add(model)
print(model)

# Dependencies inference analysis ##
analysis = persalys.CopulaInferenceAnalysis("analysis", model)
variables = ["X0", "X3"]
factories = [ot.NormalCopulaFactory(), ot.GumbelCopulaFactory()]
analysis.setDistributionsFactories(variables, factories)
myStudy.add(analysis)
print(analysis)

analysis.run()

result = analysis.getResult()
print("result=", result)
print(result.getCopulaInferenceSetResult(variables))

# script
script = myStudy.getPythonScript()
print(script)
exec(script)

os.remove(filename)