1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
|
#! /usr/bin/env python
import openturns as ot
import persalys
import os
anOTStudy = persalys.Study("anOTStudy")
# Model
X0 = persalys.Input("X0", 1, ot.Normal())
X1 = persalys.Input("X1", 2, ot.Normal())
Y0 = persalys.Output("Y0")
model = persalys.SymbolicPhysicalModel("aModelPhys", [X0, X1], [Y0], ["sin(X0)+8*X1"])
anOTStudy.add(model)
# Design of Experiment ##
aDesign = persalys.GridDesignOfExperiment("aDesign_1", model, [[0.9, 1.1], [1.8, 2.2]])
anOTStudy.add(aDesign)
aDesign.run()
print("outs=", aDesign.getResult().getDesignOfExperiment().getOutputSample())
# Design of Experiment ##
filename = "normal.csv"
ot.Normal(3).getSample(10).exportToCSVFile(filename)
aDesign2 = persalys.ImportedDesignOfExperiment("aDesign_2", model, filename, [0, 2])
anOTStudy.add(aDesign2)
aDesign2.run()
print("outs=", aDesign2.getResult().getDesignOfExperiment().getOutputSample())
# Design of Experiment ##
aDesign3 = persalys.ProbabilisticDesignOfExperiment(
"aDesign_3", model, 10, "QUASI_MONTE_CARLO"
)
anOTStudy.add(aDesign3)
aDesign3.run()
print("outs=", aDesign3.getResult().getDesignOfExperiment().getOutputSample())
# Design of Experiment ##
aDesign4 = persalys.FixedDesignOfExperiment("aDesign_4", model)
inputSample = ot.LHSExperiment(model.getDistribution(), 10).generate()
# inputSample.stack(ot.Sample(10, [0.5, 1.3]))
aDesign4.setOriginalInputSample(inputSample)
anOTStudy.add(aDesign4)
aDesign4.run()
print("outs=", aDesign4.getResult().getDesignOfExperiment().getOutputSample())
# 3D Model to test Space filling algos
X0 = persalys.Input("X0", 1, ot.Normal())
X1 = persalys.Input("X1", 2, ot.Normal())
X2 = persalys.Input("X2", 3, ot.Normal())
Y0 = persalys.Output("Y0")
model = persalys.SymbolicPhysicalModel(
"aModelPhys", [X0, X1, X2], [Y0], ["sin(X0)+8*X1*X2"]
)
anOTStudy2 = persalys.Study("anOTStudy2")
anOTStudy2.add(model)
# Design of Experiment SALHS-PhiP#
aDesign5 = persalys.ProbabilisticDesignOfExperiment(
"aDesign_5", model, 10, "SALHS", "PhiP"
)
anOTStudy2.add(aDesign5)
aDesign5.run()
print("outs=", aDesign5.getResult().getDesignOfExperiment().getOutputSample())
# Design of Experiment SALHS-minDist#
aDesign6 = persalys.ProbabilisticDesignOfExperiment(
"aDesign_6", model, 10, "SALHS", "minDist"
)
aDesign6.run()
print("outs=", aDesign6.getResult().getDesignOfExperiment().getOutputSample())
# Design of Experiment SALHS-C2#
aDesign7 = persalys.ProbabilisticDesignOfExperiment(
"aDesign_7", model, 10, "SALHS", "C2", 1000
)
anOTStudy2.add(aDesign7)
aDesign7.run()
print("outs=", aDesign7.getResult().getDesignOfExperiment().getOutputSample())
# Design of Experiment MCLHS-PhiP#
aDesign8 = persalys.ProbabilisticDesignOfExperiment(
"aDesign_8", model, 10, "MCLHS", "PhiP", 1000
)
anOTStudy2.add(aDesign8)
aDesign8.run()
print("outs=", aDesign8.getResult().getDesignOfExperiment().getOutputSample())
# Design of Experiment MCLHS-minDist#
aDesign9 = persalys.ProbabilisticDesignOfExperiment(
"aDesign_9", model, 10, "MCLHS", "minDist", 1000
)
anOTStudy2.add(aDesign9)
aDesign9.run()
print("outs=", aDesign9.getResult().getDesignOfExperiment().getOutputSample())
# Design of Experiment MCLHS-C2#
aDesign10 = persalys.ProbabilisticDesignOfExperiment(
"aDesign_10", model, 10, "MCLHS", "C2", 1000
)
anOTStudy2.add(aDesign10)
aDesign10.run()
print("outs=", aDesign10.getResult().getDesignOfExperiment().getOutputSample())
# script
script = anOTStudy.getPythonScript()
print(script)
exec(script)
script = anOTStudy2.getPythonScript()
print(script)
exec(script)
os.remove(filename)
|