File: t_CopulaInferenceAnalysis_std.expout

package info (click to toggle)
persalys 19.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 46,900 kB
  • sloc: xml: 97,263; cpp: 61,701; python: 4,109; sh: 397; makefile: 84
file content (22 lines) | stat: -rw-r--r-- 1,101 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class=DataModel name=myDataModel fileName=data2.csv inputColumns=[0,2,3] outputColumns=[] inputNames=[X0,X2,X3] outputNames=[]
class=CopulaInferenceAnalysis name=analysis designOfExperiment=myDataModel interestVariables=[] setOfVariables [X0,X3] distributionFactories=[ClaytonCopulaFactory,FrankCopulaFactory,GumbelCopulaFactory,NormalCopulaFactory,StudentCopulaFactory]
[-1.1243,-1.51731,-1.52743,-1.68148,-1.66472]
#!/usr/bin/env python

import openturns as ot
import persalys

myStudy = persalys.Study('myStudy')
persalys.Study.Add(myStudy)
inputColumns = [0, 2, 3]
outputColumns = []
inputNames = ['X0', 'X2', 'X3']
outputNames = []
myDataModel = persalys.DataModel('myDataModel', 'data2.csv', inputColumns, outputColumns, inputNames, outputNames)
myStudy.add(myDataModel)
analysis = persalys.CopulaInferenceAnalysis('analysis', myDataModel)
variablesSet = ['X0', 'X3']
factories = [ot.ClaytonCopulaFactory(), ot.FrankCopulaFactory(), ot.GumbelCopulaFactory(), ot.NormalCopulaFactory(), ot.StudentCopulaFactory()]
analysis.setDistributionsFactories(variablesSet, factories)
myStudy.add(analysis)