File: t_DataFieldModel_std.expout

package info (click to toggle)
persalys 19.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 46,900 kB
  • sloc: xml: 97,263; cpp: 61,701; python: 4,109; sh: 397; makefile: 84
file content (195 lines) | stat: -rw-r--r-- 32,245 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
     [ t  ]
 0 : [  1 ]
 1 : [  2 ]
 2 : [  3 ]
 3 : [  4 ]
 4 : [  5 ]
 5 : [  6 ]
 6 : [  7 ]
 7 : [  8 ]
 8 : [  9 ]
 9 : [ 10 ]
10 : [ 11 ]
11 : [ 12 ]
 0 : [ 21.7  20.74 20.52 19.82 20.19 20.46 21.92 25.13 25.44 25.9  25.29 24.9  ]
 1 : [ 24.56 24.04 22.43 21.52 22.2  22.9  23.01 24.47 26.42 26.51 24.54 23.69 ]
 2 : [ 22.35 20.74 19.95 20.12 20.45 20.72 22.53 24.19 26.33 27.21 26.85 25.24 ]
 3 : [ 23.74 22.45 21.68 21.49 21.08 22.07 22.47 23.06 25.22 25.83 23.05 21.79 ]
 4 : [ 21.02 19.89 19.78 19.23 19.2  20.47 21.25 23.7  24.64 25.51 24.34 22.53 ]
 5 : [ 21.12 20.56 19.75 19.47 19.35 20    21.1  23.67 24.78 25.76 25.06 23.3  ]
 6 : [ 22.29 21.62 20.66 19.98 19.84 20.86 21.6  23.25 26.32 27.47 26.86 26.29 ]
 7 : [ 24.92 23.82 22.33 21.88 21.76 22.4  23.75 24.96 26.74 27.07 26.45 25.08 ]
 8 : [ 23.04 22.38 20.56 20.72 20.96 21.64 22.47 24.09 25.68 27.07 25.89 24.26 ]
 9 : [ 22.63 21.45 20.34 20.41 20.91 21.99 22.69 24.57 25.72 26.15 24.72 23.76 ]
10 : [ 22.15 21.01 20.37 20.54 20.22 20.91 22.74 24.45 26.55 25.91 24.97 23.71 ]
11 : [ 22.39 20.55 19.96 19.75 20    21.07 22.06 24.11 25.55 24.63 23.57 23.48 ]
12 : [ 21.85 20.57 20.37 20.16 19.92 20.88 21.83 24.11 25.36 25.88 24.54 24.17 ]
13 : [ 22.6  22.01 21.45 21.15 21    21.92 22.83 24.17 24.98 25.04 24.53 21.96 ]
14 : [ 21.27 20.43 19.2  19.51 19.96 20.92 21.85 24.19 25.95 26.68 27.1  26.04 ]
15 : [ 24.57 23.34 22.02 21.38 21.67 22.3  23.45 25.27 25.92 25.41 24.18 23.07 ]
16 : [ 21.84 20.81 20.27 19.62 20.64 21.07 22.32 23.77 25.64 25.75 25.23 23.89 ]
17 : [ 22.18 20.99 19.73 19.18 19.41 20.21 21.3  23.17 24.79 25.17 24.09 22.54 ]
18 : [ 21.6  21.13 20.73 20.86 21.16 21.35 22.99 24.76 25.55 26.88 26.42 25.97 ]
19 : [ 24.3  22.24 21.01 20.68 21.8  22.33 23.45 24.92 25.63 25.57 24.48 23.13 ]
20 : [ 21.33 19.7  19.3  19.49 20.29 20.32 21.79 23.32 24.66 24.91 25.1  22.96 ]
21 : [ 21.86 21.26 19.86 19.79 20.07 21.13 21.96 24.62 26.81 27.31 26.35 25.51 ]
22 : [ 24.86 24.07 23.27 22.12 22.56 23.4  24.69 26.33 26.5  26.15 24.52 23.47 ]
23 : [ 21.51 20.75 19.47 19.24 19.68 20.71 21.61 23.32 24.92 26.04 25.29 24.42 ]
24 : [ 22.68 21.6  20.47 19.91 20.02 20.95 21.41 23.67 24.9  26.17 25.44 23.36 ]
25 : [ 21.71 20.98 20.05 18.8  19.13 19.61 20.94 23.73 25.63 26.21 25.78 25.33 ]
26 : [ 24.4  23.46 22.19 21.67 21.52 22    23.69 25.31 25.97 26.35 25.25 23.95 ]
27 : [ 22.82 21.75 20.28 19.85 20.98 21.65 22.49 24.33 25.99 25.54 25.03 23.47 ]
28 : [ 22.09 21.11 20.03 19.86 20.35 21.99 23.3  24.77 25.7  26.26 25.39 24.13 ]
29 : [ 23.29 22.18 21.2  21.3  21.61 22.2  23.25 24.77 25.77 26.61 25.8  24.54 ]
30 : [ 23.27 21.52 20.77 20.66 20.36 21.56 22.54 23.48 25.21 26.31 25.03 24.06 ]
31 : [ 22.75 21.38 20.52 19.93 20.55 21.41 23    24.29 25.49 25.21 24.5  23.97 ]
32 : [ 22.89 22.47 21.75 21.8  22.94 24.59 26.13 27.42 28.09 28.68 28.56 28.19 ]
33 : [ 27.44 25.95 23.78 22.24 21.86 21.9  23.01 24.18 25.18 26    25.16 23.23 ]
34 : [ 21.96 21.24 20.17 20.37 20.52 21.5  22.58 23.59 24.87 25.74 24.25 22.29 ]
35 : [ 21.75 20.44 19.29 19.44 19.9  20.69 22.4  24.61 26.06 25.91 24.58 23.38 ]
36 : [ 21.98 21.12 20.97 20.44 21.07 22.03 23    25.3  27.14 28.01 27.17 25.58 ]
37 : [ 24.06 22.78 21.73 21.45 22.39 22.63 23.47 24.64 25.74 25.78 24.54 23.6  ]
38 : [ 21.27 20.26 19.12 19.19 19.5  20.55 21.8  24.09 26.26 26.66 25.63 23.18 ]
39 : [ 22    21.12 20.32 19.87 20.33 21.31 22.19 24.02 25.88 26.16 25.22 24.05 ]
40 : [ 22.68 21    20.25 20.13 20.28 20.84 22.45 23.86 25.97 26.51 24.99 24.37 ]
41 : [ 23.05 22.05 21.08 20.75 21.13 22.18 23.43 24.83 26.68 27.76 27.68 26.31 ]
42 : [ 23.82 21.95 20.55 20.06 20.82 21.49 22.48 24.43 26.49 27.17 26.44 25.15 ]
43 : [ 23.76 22.06 21.05 20.83 20.99 21.64 22.75 24.32 25.79 25.43 24.32 23.22 ]
44 : [ 22.43 21.21 19.7  20.16 21.53 22.41 23.61 25.33 26.43 26.12 24.47 23.1  ]
45 : [ 22.45 21.23 20.01 20.17 20.15 21.2  22.02 23.84 25.71 26.09 23.85 22.89 ]
46 : [ 21.56 20.02 19.53 19.24 19.95 20.26 21.61 23.67 25.74 26.95 26.64 26.71 ]
47 : [ 26.27 25.59 24.8  24.4  24.58 25.63 26.92 28.22 28.98 29.15 28.61 27.69 ]
48 : [ 25.18 23.43 21.77 20.87 21.16 21.43 22.56 23.73 25.64 26.62 24.3  23.46 ]
49 : [ 21.83 20.44 19.75 19.23 20.05 20.51 21.72 23.86 25.71 26.19 25.84 24.1  ]
50 : [ 22.25 20.59 20.1  19.94 20.37 20.6  22.22 23.88 25.91 27.44 26.69 23.77 ]
51 : [ 21.74 20.88 19.9  19.39 19.52 20.49 21.96 23.64 26.06 27.53 26.53 24.8  ]
52 : [ 22.67 21.01 19.94 19.89 21.16 22.25 23.44 24.38 25.81 25.97 24.44 22.49 ]
53 : [ 21.58 20.75 20.14 20    20.99 21.92 22.99 24.6  25.81 25.94 25.32 23.05 ]
 Karhunen-Loeve threshold=1e-05 quantile level=0.05
class=FieldMonteCarloResult name=Unnamed processSample_=class=ProcessSampleImplementation mesh=class=Mesh name=Unnamed dimension=1 vertices=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 description=[t] data=[[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12]] simplices=[[0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10],[10,11]] values=[class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.7],[20.74],[20.52],[19.82],[20.19],[20.46],[21.92],[25.13],[25.44],[25.9],[25.29],[24.9]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[24.56],[24.04],[22.43],[21.52],[22.2],[22.9],[23.01],[24.47],[26.42],[26.51],[24.54],[23.69]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.35],[20.74],[19.95],[20.12],[20.45],[20.72],[22.53],[24.19],[26.33],[27.21],[26.85],[25.24]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[23.74],[22.45],[21.68],[21.49],[21.08],[22.07],[22.47],[23.06],[25.22],[25.83],[23.05],[21.79]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.02],[19.89],[19.78],[19.23],[19.2],[20.47],[21.25],[23.7],[24.64],[25.51],[24.34],[22.53]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.12],[20.56],[19.75],[19.47],[19.35],[20],[21.1],[23.67],[24.78],[25.76],[25.06],[23.3]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.29],[21.62],[20.66],[19.98],[19.84],[20.86],[21.6],[23.25],[26.32],[27.47],[26.86],[26.29]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[24.92],[23.82],[22.33],[21.88],[21.76],[22.4],[23.75],[24.96],[26.74],[27.07],[26.45],[25.08]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[23.04],[22.38],[20.56],[20.72],[20.96],[21.64],[22.47],[24.09],[25.68],[27.07],[25.89],[24.26]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.63],[21.45],[20.34],[20.41],[20.91],[21.99],[22.69],[24.57],[25.72],[26.15],[24.72],[23.76]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.15],[21.01],[20.37],[20.54],[20.22],[20.91],[22.74],[24.45],[26.55],[25.91],[24.97],[23.71]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.39],[20.55],[19.96],[19.75],[20],[21.07],[22.06],[24.11],[25.55],[24.63],[23.57],[23.48]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.85],[20.57],[20.37],[20.16],[19.92],[20.88],[21.83],[24.11],[25.36],[25.88],[24.54],[24.17]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.6],[22.01],[21.45],[21.15],[21],[21.92],[22.83],[24.17],[24.98],[25.04],[24.53],[21.96]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.27],[20.43],[19.2],[19.51],[19.96],[20.92],[21.85],[24.19],[25.95],[26.68],[27.1],[26.04]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[24.57],[23.34],[22.02],[21.38],[21.67],[22.3],[23.45],[25.27],[25.92],[25.41],[24.18],[23.07]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.84],[20.81],[20.27],[19.62],[20.64],[21.07],[22.32],[23.77],[25.64],[25.75],[25.23],[23.89]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.18],[20.99],[19.73],[19.18],[19.41],[20.21],[21.3],[23.17],[24.79],[25.17],[24.09],[22.54]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.6],[21.13],[20.73],[20.86],[21.16],[21.35],[22.99],[24.76],[25.55],[26.88],[26.42],[25.97]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[24.3],[22.24],[21.01],[20.68],[21.8],[22.33],[23.45],[24.92],[25.63],[25.57],[24.48],[23.13]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.33],[19.7],[19.3],[19.49],[20.29],[20.32],[21.79],[23.32],[24.66],[24.91],[25.1],[22.96]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.86],[21.26],[19.86],[19.79],[20.07],[21.13],[21.96],[24.62],[26.81],[27.31],[26.35],[25.51]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[24.86],[24.07],[23.27],[22.12],[22.56],[23.4],[24.69],[26.33],[26.5],[26.15],[24.52],[23.47]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.51],[20.75],[19.47],[19.24],[19.68],[20.71],[21.61],[23.32],[24.92],[26.04],[25.29],[24.42]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.68],[21.6],[20.47],[19.91],[20.02],[20.95],[21.41],[23.67],[24.9],[26.17],[25.44],[23.36]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.71],[20.98],[20.05],[18.8],[19.13],[19.61],[20.94],[23.73],[25.63],[26.21],[25.78],[25.33]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[24.4],[23.46],[22.19],[21.67],[21.52],[22],[23.69],[25.31],[25.97],[26.35],[25.25],[23.95]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.82],[21.75],[20.28],[19.85],[20.98],[21.65],[22.49],[24.33],[25.99],[25.54],[25.03],[23.47]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.09],[21.11],[20.03],[19.86],[20.35],[21.99],[23.3],[24.77],[25.7],[26.26],[25.39],[24.13]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[23.29],[22.18],[21.2],[21.3],[21.61],[22.2],[23.25],[24.77],[25.77],[26.61],[25.8],[24.54]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[23.27],[21.52],[20.77],[20.66],[20.36],[21.56],[22.54],[23.48],[25.21],[26.31],[25.03],[24.06]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.75],[21.38],[20.52],[19.93],[20.55],[21.41],[23],[24.29],[25.49],[25.21],[24.5],[23.97]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.89],[22.47],[21.75],[21.8],[22.94],[24.59],[26.13],[27.42],[28.09],[28.68],[28.56],[28.19]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[27.44],[25.95],[23.78],[22.24],[21.86],[21.9],[23.01],[24.18],[25.18],[26],[25.16],[23.23]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.96],[21.24],[20.17],[20.37],[20.52],[21.5],[22.58],[23.59],[24.87],[25.74],[24.25],[22.29]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.75],[20.44],[19.29],[19.44],[19.9],[20.69],[22.4],[24.61],[26.06],[25.91],[24.58],[23.38]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.98],[21.12],[20.97],[20.44],[21.07],[22.03],[23],[25.3],[27.14],[28.01],[27.17],[25.58]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[24.06],[22.78],[21.73],[21.45],[22.39],[22.63],[23.47],[24.64],[25.74],[25.78],[24.54],[23.6]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.27],[20.26],[19.12],[19.19],[19.5],[20.55],[21.8],[24.09],[26.26],[26.66],[25.63],[23.18]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22],[21.12],[20.32],[19.87],[20.33],[21.31],[22.19],[24.02],[25.88],[26.16],[25.22],[24.05]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.68],[21],[20.25],[20.13],[20.28],[20.84],[22.45],[23.86],[25.97],[26.51],[24.99],[24.37]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[23.05],[22.05],[21.08],[20.75],[21.13],[22.18],[23.43],[24.83],[26.68],[27.76],[27.68],[26.31]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[23.82],[21.95],[20.55],[20.06],[20.82],[21.49],[22.48],[24.43],[26.49],[27.17],[26.44],[25.15]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[23.76],[22.06],[21.05],[20.83],[20.99],[21.64],[22.75],[24.32],[25.79],[25.43],[24.32],[23.22]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.43],[21.21],[19.7],[20.16],[21.53],[22.41],[23.61],[25.33],[26.43],[26.12],[24.47],[23.1]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.45],[21.23],[20.01],[20.17],[20.15],[21.2],[22.02],[23.84],[25.71],[26.09],[23.85],[22.89]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.56],[20.02],[19.53],[19.24],[19.95],[20.26],[21.61],[23.67],[25.74],[26.95],[26.64],[26.71]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[26.27],[25.59],[24.8],[24.4],[24.58],[25.63],[26.92],[28.22],[28.98],[29.15],[28.61],[27.69]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[25.18],[23.43],[21.77],[20.87],[21.16],[21.43],[22.56],[23.73],[25.64],[26.62],[24.3],[23.46]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.83],[20.44],[19.75],[19.23],[20.05],[20.51],[21.72],[23.86],[25.71],[26.19],[25.84],[24.1]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.25],[20.59],[20.1],[19.94],[20.37],[20.6],[22.22],[23.88],[25.91],[27.44],[26.69],[23.77]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.74],[20.88],[19.9],[19.39],[19.52],[20.49],[21.96],[23.64],[26.06],[27.53],[26.53],[24.8]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.67],[21.01],[19.94],[19.89],[21.16],[22.25],[23.44],[24.38],[25.81],[25.97],[24.44],[22.49]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.58],[20.75],[20.14],[20],[20.99],[21.92],[22.99],[24.6],[25.81],[25.94],[25.32],[23.05]]] meanSample_=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[22.765],[21.6319],[20.6707],[20.3694],[20.7413],[21.5083],[22.6485],[24.3776],[25.865],[26.3385],[25.3865],[24.1219]] lowerQuantileSample_=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[21.27],[20.068],[19.292],[19.198],[19.362],[20.22],[21.26],[23.264],[24.782],[25.066],[23.898],[22.33]] upperQuantileSample_=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=12 dimension=1 data=[[25.128],[24.064],[23.102],[22.072],[22.526],[23.3],[24.502],[26.13],[27.074],[27.96],[27.578],[26.63]] xiSamples_=[     [ Xi_0         Xi_1         Xi_2         Xi_3         Xi_4         Xi_5         Xi_6         Xi_7         Xi_8         Xi_9         Xi_10        Xi_11        ]
 0 : [ -0.518638    -0.334126    -0.166017    -2.89898      0.840206    -1.27267      0.259533    -0.110612    -0.0351358    2.38882      0.505122     0.0597695   ]
 1 : [  1.18866      1.13632      0.719227     1.05707      0.601325     0.0407882   -1.62385     -1.56993     -2.70582      0.467759     0.302878    -1.17029     ]
 2 : [ -0.242253    -1.26576      0.449698     0.479879    -0.216262     0.221158     0.667182     2.38302      0.278821     0.246556    -0.548077    -0.0950099   ]
 3 : [  0.134332     2.01273      0.306993     2.02446     -1.23086     -1.71909     -2.404        0.480497    -0.185203    -0.301569     0.349301     0.214025    ]
 4 : [ -1.36928      0.432047    -0.403875    -0.443322    -0.480392    -1.85652      0.615503    -1.32931      0.512184     0.197549     1.58523      1.9093      ]
 5 : [ -1.22041      0.0861756    0.489614    -0.873805    -0.387963    -1.41082      1.05185     -0.983126    -0.0586318    0.578201    -0.971345    -0.35141     ]
 6 : [ -0.257097    -1.25532      2.13204      0.442403     0.00356089  -0.169768    -1.94007     -0.479487    -0.729151    -1.82138      0.272511    -0.288187    ]
 7 : [  1.42767     -0.0353161    1.23318      0.0609397    0.280832     0.244165     0.367062     0.85244      0.143397    -1.38287     -1.09504     -0.106242    ]
 8 : [  0.200976    -0.14888      0.839051     1.15044     -0.792971     0.322893     0.217522    -1.08226      0.154442     1.30386     -2.27295     -0.654172    ]
 9 : [ -0.0369149    0.289031    -0.783918     0.311234    -0.0417466    0.173461    -0.715793    -0.869242     0.0495736    0.99809     -0.763771     1.12869     ]
10 : [ -0.272814     0.00997919  -0.603961    -0.140189     1.27903     -1.59996     -0.0490788    2.4766      -0.208609    -2.12747     -1.50296     -0.832378    ]
11 : [ -0.802217     0.864851    -1.05747     -1.42151      1.30728      0.492797    -1.68753      0.837288    -0.154533    -1.19838     -0.128719     2.06668     ]
12 : [ -0.667025     0.162792    -0.170696    -1.07084      0.0133072   -1.57603     -1.55838      0.239244     0.450127     0.595191     0.0494289    1.5804      ]
13 : [  0.0705411    1.34436     -0.491098    -0.634582    -2.04808     -1.4292       1.35281     -0.454256    -1.15708     -2.04992     -0.337072     0.0438419   ]
14 : [ -0.654507    -1.60921      0.255317    -0.732754    -0.497998     1.30046      0.00960052  -0.711076    -0.794827    -0.564798    -2.33793      1.17987     ]
15 : [  0.884485     1.43385     -0.282189    -1.04907      1.1232       0.0770187    0.528282    -0.0366557   -0.120944     0.00124874  -0.486565     0.211568    ]
16 : [ -0.53603     -0.000512983 -0.324112    -0.306247    -0.584044     0.636192    -0.201601     0.410228    -1.5523      -0.848803     1.81657     -1.83945     ]
17 : [ -1.22282      0.889728     0.430943    -0.105278     0.490324     0.398377     0.503826    -0.668666     0.490191    -0.661123     0.0385773   -0.384787    ]
18 : [  0.143921    -0.965429    -0.0976956   -1.68158     -2.08319     -0.782339    -0.905852     0.491709     0.482189     1.79467     -0.999106    -2.1948      ]
19 : [  0.497726     1.00506     -0.902186    -0.148335     0.0767542    1.98845      0.615607     0.488152     0.195385     1.25998      0.686198     1.32444     ]
20 : [ -1.24625      0.243895    -0.674304    -0.878696    -2.21485      1.05034      1.12125      1.97182     -1.41529     -0.179287    -0.139065    -0.118129    ]
21 : [ -0.255285    -1.26685      0.385896     0.556115     1.82333     -0.429926    -0.464363    -1.01165     -0.914229     0.255901    -1.69211      0.242658    ]
22 : [  1.84262      1.25248     -0.840215    -1.04928      1.02321     -1.27397      0.523767    -0.770384     0.321962     0.219816     1.71573     -0.903765    ]
23 : [ -1.00647     -0.230339     0.411364    -0.220953    -0.796899     1.06634     -0.750613    -1.72582      0.840106    -0.181422    -0.484492    -0.706246    ]
24 : [ -0.549225     0.285695     1.10687      0.0610291   -0.765274    -0.116208     1.11688     -1.72451     -0.334128     0.648959    -0.00457662   2.031       ]
25 : [ -1.06713     -0.687824     1.56664     -1.70169      1.83405     -0.00579789  -0.134505    -0.82454     -0.23371     -0.177606     1.03886     -1.41584     ]
26 : [  1.06241      0.693862     0.438143    -0.9441       0.442821    -0.751945     1.03054      0.369088     1.4479       0.236381    -0.889659    -1.04898     ]
27 : [ -0.142515     0.374775    -0.467345     0.0107532    0.693777     1.6902       0.589235    -0.591448    -2.10948     -0.767919    -0.198547    -0.388457    ]
28 : [ -0.145302    -0.266809    -1.14846      0.0111017   -0.0979643    0.627183     0.390285    -1.70315      2.41059     -1.2009       0.347431     0.193128    ]
29 : [  0.621837    -0.0152639   -0.0625053   -0.224295    -1.40081      0.0913386   -0.135249     0.221628    -0.0260873    1.03272     -1.10879      0.474017    ]
30 : [ -0.137131     0.362481     0.568369     0.461514    -1.36065      0.141938    -1.35538      0.467958     2.03416     -0.834048     0.268918     1.90771     ]
31 : [ -0.244409     0.549376    -0.694139    -1.33274      0.311706     1.28024     -0.571335     0.244233     1.19875     -1.57485      0.992892    -1.0034      ]
32 : [  2.32343     -2.57077     -2.00387     -0.403456    -0.607439     0.687901    -0.530987    -1.35326      1.34276     -0.616987     0.489123    -0.416396    ]
33 : [  1.61837      2.06212      3.41711     -0.829653     0.0740782    1.16236      1.88256     -0.0259141    0.897949    -0.206922    -0.202926     0.252172    ]
34 : [ -0.493933     0.891234    -0.655895     0.994526    -1.75513     -0.577939     0.113284    -0.706544     0.869687    -0.296745    -0.817945    -1.38588     ]
35 : [ -0.795111    -0.0629135   -1.17852      0.196179     1.94235     -0.203953     0.630737     0.673861     1.0143       0.340343    -1.06457     -0.667774    ]
36 : [  0.467266    -1.64063     -0.235847     0.79134      0.264926    -1.71815      0.25103     -0.166536    -1.47424      0.646081     2.00771      0.750556    ]
37 : [  0.855485     1.07327     -0.478537    -0.204155    -1.05184      0.970919    -0.945664     0.528097    -1.57959      1.18703      0.0670708   -0.640032    ]
38 : [ -0.983049    -0.659864    -0.397906     1.67945      1.36565     -0.920729     1.72343     -0.0820537   -0.337232    -0.542172    -0.689713     0.136684    ]
39 : [ -0.403837    -0.094712    -0.115424     0.117842     0.162104    -0.206599    -0.537184    -0.593282    -0.882055    -0.801846     0.558494    -0.232251    ]
40 : [ -0.376977    -0.11152      0.153333     0.462918     0.567815    -0.176729    -1.22275      1.86671      1.26185      0.227769     0.283656    -0.53323     ]
41 : [  0.754284    -1.52351      0.662888     0.250206    -0.739559     0.648318     0.219797    -0.198861     0.441571    -1.16581      0.320667     0.456908    ]
42 : [  0.228312    -0.723905     0.907987     0.793778     1.09597      1.6502       0.360468     0.380713    -0.206799     0.68282      0.505348     1.81799     ]
43 : [  0.139383     1.01034     -0.180669    -0.350497     0.501178     0.29702     -0.324153     1.25771     -0.344304    -0.593498    -0.577281     1.14486     ]
44 : [  0.123575     0.211941    -2.42071      1.29023      1.05194      1.0417       0.340227    -0.272286    -0.208786     1.45861     -1.0835      -0.771181    ]
45 : [ -0.55666      0.70363     -0.344857     1.31318      0.95689     -0.930275    -1.21052     -0.0955883    0.479507     0.725539    -1.25156      0.383979    ]
46 : [ -0.841652    -1.58826      0.841269    -1.025       -0.405858     1.22656     -1.80676      1.04935      0.139614     1.28164      0.756368     0.0240327   ]
47 : [  4.22569     -1.41152     -0.283548    -0.269684     0.0630054   -1.29865      0.0737603    0.58371     -0.528891    -0.365615    -0.20649      1.16943     ]
48 : [  0.499494     1.20736      1.66915      1.19284      0.981478     0.685755    -0.825231     0.552494     1.34334      1.74239      0.972172    -0.854521    ]
49 : [ -0.83206     -0.530109     0.182881    -0.0800032    0.15333      0.525753     0.900487     0.458092    -1.16633      0.0928792    1.17659      0.161481    ]
50 : [ -0.430122    -0.921137     0.59674      1.71142     -0.930864    -0.845058     2.18662      1.88765      0.014029     1.15424      1.35346      0.17869     ]
51 : [ -0.639736    -1.18011      1.05854      1.34152      0.35239     -0.65673      0.535333    -0.355978     1.31802     -0.654088     0.984371    -1.27606     ]
52 : [ -0.130833     0.527143    -1.81979      1.80145     -0.242189     1.31624      0.533496    -0.111041     0.647772    -0.0580238    1.53101     -0.202946    ]
53 : [ -0.232772    -0.0159144   -1.53751      0.456859    -0.944997    -0.127001     1.1889      -0.564832    -1.31679     -0.59099      0.879078    -0.562085    ]] correlationFunction_=[EvaluationImplementation]
#!/usr/bin/env python

import openturns as ot
import persalys

myStudy = persalys.Study('myStudy')
persalys.Study.Add(myStudy)
t = persalys.Variable('t', 0, 'date')
meshModel = persalys.GridMeshModel([t], ot.Interval([1], [12]), [12])
collection = [[[21.7], [20.74], [20.52], [19.82], [20.19], [20.46], [21.92], [25.13], [25.44], [25.9], [25.29], [24.9]],
 [[24.56], [24.04], [22.43], [21.52], [22.2], [22.9], [23.01], [24.47], [26.42], [26.51], [24.54], [23.69]],
 [[22.35], [20.74], [19.95], [20.12], [20.45], [20.72], [22.53], [24.19], [26.33], [27.21], [26.85], [25.24]],
 [[23.74], [22.45], [21.68], [21.49], [21.08], [22.07], [22.47], [23.06], [25.22], [25.83], [23.05], [21.79]],
 [[21.02], [19.89], [19.78], [19.23], [19.2], [20.47], [21.25], [23.7], [24.64], [25.51], [24.34], [22.53]],
 [[21.12], [20.56], [19.75], [19.47], [19.35], [20], [21.1], [23.67], [24.78], [25.76], [25.06], [23.3]],
 [[22.29], [21.62], [20.66], [19.98], [19.84], [20.86], [21.6], [23.25], [26.32], [27.47], [26.86], [26.29]],
 [[24.92], [23.82], [22.33], [21.88], [21.76], [22.4], [23.75], [24.96], [26.74], [27.07], [26.45], [25.08]],
 [[23.04], [22.38], [20.56], [20.72], [20.96], [21.64], [22.47], [24.09], [25.68], [27.07], [25.89], [24.26]],
 [[22.63], [21.45], [20.34], [20.41], [20.91], [21.99], [22.69], [24.57], [25.72], [26.15], [24.72], [23.76]],
 [[22.15], [21.01], [20.37], [20.54], [20.22], [20.91], [22.74], [24.45], [26.55], [25.91], [24.97], [23.71]],
 [[22.39], [20.55], [19.96], [19.75], [20], [21.07], [22.06], [24.11], [25.55], [24.63], [23.57], [23.48]],
 [[21.85], [20.57], [20.37], [20.16], [19.92], [20.88], [21.83], [24.11], [25.36], [25.88], [24.54], [24.17]],
 [[22.6], [22.01], [21.45], [21.15], [21], [21.92], [22.83], [24.17], [24.98], [25.04], [24.53], [21.96]],
 [[21.27], [20.43], [19.2], [19.51], [19.96], [20.92], [21.85], [24.19], [25.95], [26.68], [27.1], [26.04]],
 [[24.57], [23.34], [22.02], [21.38], [21.67], [22.3], [23.45], [25.27], [25.92], [25.41], [24.18], [23.07]],
 [[21.84], [20.81], [20.27], [19.62], [20.64], [21.07], [22.32], [23.77], [25.64], [25.75], [25.23], [23.89]],
 [[22.18], [20.99], [19.73], [19.18], [19.41], [20.21], [21.3], [23.17], [24.79], [25.17], [24.09], [22.54]],
 [[21.6], [21.13], [20.73], [20.86], [21.16], [21.35], [22.99], [24.76], [25.55], [26.88], [26.42], [25.97]],
 [[24.3], [22.24], [21.01], [20.68], [21.8], [22.33], [23.45], [24.92], [25.63], [25.57], [24.48], [23.13]],
 [[21.33], [19.7], [19.3], [19.49], [20.29], [20.32], [21.79], [23.32], [24.66], [24.91], [25.1], [22.96]],
 [[21.86], [21.26], [19.86], [19.79], [20.07], [21.13], [21.96], [24.62], [26.81], [27.31], [26.35], [25.51]],
 [[24.86], [24.07], [23.27], [22.12], [22.56], [23.4], [24.69], [26.33], [26.5], [26.15], [24.52], [23.47]],
 [[21.51], [20.75], [19.47], [19.24], [19.68], [20.71], [21.61], [23.32], [24.92], [26.04], [25.29], [24.42]],
 [[22.68], [21.6], [20.47], [19.91], [20.02], [20.95], [21.41], [23.67], [24.9], [26.17], [25.44], [23.36]],
 [[21.71], [20.98], [20.05], [18.8], [19.13], [19.61], [20.94], [23.73], [25.63], [26.21], [25.78], [25.33]],
 [[24.4], [23.46], [22.19], [21.67], [21.52], [22], [23.69], [25.31], [25.97], [26.35], [25.25], [23.95]],
 [[22.82], [21.75], [20.28], [19.85], [20.98], [21.65], [22.49], [24.33], [25.99], [25.54], [25.03], [23.47]],
 [[22.09], [21.11], [20.03], [19.86], [20.35], [21.99], [23.3], [24.77], [25.7], [26.26], [25.39], [24.13]],
 [[23.29], [22.18], [21.2], [21.3], [21.61], [22.2], [23.25], [24.77], [25.77], [26.61], [25.8], [24.54]],
 [[23.27], [21.52], [20.77], [20.66], [20.36], [21.56], [22.54], [23.48], [25.21], [26.31], [25.03], [24.06]],
 [[22.75], [21.38], [20.52], [19.93], [20.55], [21.41], [23], [24.29], [25.49], [25.21], [24.5], [23.97]],
 [[22.89], [22.47], [21.75], [21.8], [22.94], [24.59], [26.13], [27.42], [28.09], [28.68], [28.56], [28.19]],
 [[27.44], [25.95], [23.78], [22.24], [21.86], [21.9], [23.01], [24.18], [25.18], [26], [25.16], [23.23]],
 [[21.96], [21.24], [20.17], [20.37], [20.52], [21.5], [22.58], [23.59], [24.87], [25.74], [24.25], [22.29]],
 [[21.75], [20.44], [19.29], [19.44], [19.9], [20.69], [22.4], [24.61], [26.06], [25.91], [24.58], [23.38]],
 [[21.98], [21.12], [20.97], [20.44], [21.07], [22.03], [23], [25.3], [27.14], [28.01], [27.17], [25.58]],
 [[24.06], [22.78], [21.73], [21.45], [22.39], [22.63], [23.47], [24.64], [25.74], [25.78], [24.54], [23.6]],
 [[21.27], [20.26], [19.12], [19.19], [19.5], [20.55], [21.8], [24.09], [26.26], [26.66], [25.63], [23.18]],
 [[22], [21.12], [20.32], [19.87], [20.33], [21.31], [22.19], [24.02], [25.88], [26.16], [25.22], [24.05]],
 [[22.68], [21], [20.25], [20.13], [20.28], [20.84], [22.45], [23.86], [25.97], [26.51], [24.99], [24.37]],
 [[23.05], [22.05], [21.08], [20.75], [21.13], [22.18], [23.43], [24.83], [26.68], [27.76], [27.68], [26.31]],
 [[23.82], [21.95], [20.55], [20.06], [20.82], [21.49], [22.48], [24.43], [26.49], [27.17], [26.44], [25.15]],
 [[23.76], [22.06], [21.05], [20.83], [20.99], [21.64], [22.75], [24.32], [25.79], [25.43], [24.32], [23.22]],
 [[22.43], [21.21], [19.7], [20.16], [21.53], [22.41], [23.61], [25.33], [26.43], [26.12], [24.47], [23.1]],
 [[22.45], [21.23], [20.01], [20.17], [20.15], [21.2], [22.02], [23.84], [25.71], [26.09], [23.85], [22.89]],
 [[21.56], [20.02], [19.53], [19.24], [19.95], [20.26], [21.61], [23.67], [25.74], [26.95], [26.64], [26.71]],
 [[26.27], [25.59], [24.8], [24.4], [24.58], [25.63], [26.92], [28.22], [28.98], [29.15], [28.61], [27.69]],
 [[25.18], [23.43], [21.77], [20.87], [21.16], [21.43], [22.56], [23.73], [25.64], [26.62], [24.3], [23.46]],
 [[21.83], [20.44], [19.75], [19.23], [20.05], [20.51], [21.72], [23.86], [25.71], [26.19], [25.84], [24.1]],
 [[22.25], [20.59], [20.1], [19.94], [20.37], [20.6], [22.22], [23.88], [25.91], [27.44], [26.69], [23.77]],
 [[21.74], [20.88], [19.9], [19.39], [19.52], [20.49], [21.96], [23.64], [26.06], [27.53], [26.53], [24.8]],
 [[22.67], [21.01], [19.94], [19.89], [21.16], [22.25], [23.44], [24.38], [25.81], [25.97], [24.44], [22.49]],
 [[21.58], [20.75], [20.14], [20], [20.99], [21.92], [22.99], [24.6], [25.81], [25.94], [25.32], [23.05]]]
mesh = meshModel.getMesh()
pSample = ot.ProcessSample(mesh, collection)
myModel = persalys.DataFieldModel('myModel', meshModel, pSample)
myStudy.add(myModel)
myAnalysis = persalys.FieldKarhunenLoeveAnalysis('myAnalysis', myModel)
myAnalysis.setKarhunenLoeveThreshold(1e-05)
myAnalysis.setQuantileLevel(0.05)
myStudy.add(myAnalysis)