1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing
import persalys
import os
myStudy = persalys.Study("myStudy")
# Model 1
filename = "data.csv"
ot.RandomGenerator.SetSeed(0)
ot.Normal(3).getSample(10).exportToCSVFile(filename)
inColumns = [0, 2]
model = persalys.DataModel("myDataModel", filename, inColumns)
myStudy.add(model)
print(model)
print("inputNames=", model.getInputNames())
print("outputNames=", model.getOutputNames())
# Data analysis ##
analysis = persalys.DataAnalysis("aDataAnalysis", model)
myStudy.add(analysis)
analysis.run()
result = analysis.getResult()
print("result=", result)
print("PDF=", result.getPDF())
print("CDF=", result.getCDF())
print("SurvivalFunction=", result.getSurvivalFunction())
print("outliers=", result.getOutliers())
# Comparaison
openturns.testing.assert_almost_equal(0.2012538261144671, result.getMean()[0][0], 1e-13)
openturns.testing.assert_almost_equal(
-0.14315074899830527, result.getMean()[1][0], 1e-13
)
# Model 2
outColumns = [1]
model2 = persalys.DataModel(
"myDataModel2", filename, inColumns, outColumns, ["var1", "var2"], ["var3"]
)
myStudy.add(model2)
print(model2)
print("inputNames=", model2.getInputNames())
print("outputNames=", model2.getOutputNames())
print("min=", model2.getListXMin())
print("max=", model2.getListXMax())
# Model 3
model3 = persalys.DataModel("myDataModel3", filename, inColumns, outColumns)
myStudy.add(model3)
print(model3)
print("inputNames=", model3.getInputNames())
print("outputNames=", model3.getOutputNames())
print("inputSample=", model3.getInputSample())
print("outputSample=", model3.getOutputSample())
print("min=", model3.getListXMin())
print("max=", model3.getListXMax())
# Quantile analysis
# Model 4
filename = "data_500.csv"
ot.RandomGenerator.SetSeed(0)
ot.Normal(3).getSample(500).exportToCSVFile(filename)
inColumns = [0, 1, 2]
model4 = persalys.DataModel("myDataModel4", filename, inColumns)
myStudy.add(model4)
print(model4)
print("inputNames=", model4.getInputNames())
print("outputNames=", model4.getOutputNames())
# Monte Carlo
analysis2 = persalys.QuantileAnalysis("aQuantileAnalysis", model4)
analysis2.setTargetProbabilities([[1e-2, 1e-3], [6e-3], [1e-1, 1e-2, 1e-3]])
analysis2.setTailTypes(
[persalys.QuantileAnalysisResult.Upper | persalys.QuantileAnalysisResult.Lower | persalys.QuantileAnalysisResult.Bilateral,
persalys.QuantileAnalysisResult.Lower,
persalys.QuantileAnalysisResult.Bilateral])
analysis2.setType(persalys.QuantileAnalysisResult.MonteCarlo)
myStudy.add(analysis2)
analysis2.run()
result = analysis2.getResult()
x0ref = [[[-2.46389, -2.23369, -2.0035],
[-2.51804, -2.4067, -2.29536]],
[[1.92083, 2.30459, 2.68835],
[2.85639, 3.15958, 3.46277]],
[[-2.47455, -2.29006, -2.10558],
[-2.48545, -2.4067, -2.32795]],
[[2.41487, 3.02799, 3.64111],
[2.94514, 3.15958, 3.37402]]]
x1ref = [[[-3.36709, -2.84159, -2.31609]]]
x2ref = [[[-1.73368, -1.5705, -1.40732],
[-3.6264, -2.98535, -2.3443],
[-3.32293, -3.09834, -2.87375]],
[[1.51902, 1.69843, 1.87784],
[2.29461, 2.5038, 2.71299],
[2.53902, 2.63821, 2.7374]]]
for i, qx in enumerate(result.getQuantiles('X0')):
for j, qxi in enumerate(qx):
openturns.testing.assert_almost_equal(qxi, x0ref[i][j])
for i, qx in enumerate(result.getQuantiles('X1')):
for j, qxi in enumerate(qx):
openturns.testing.assert_almost_equal(qxi, x1ref[i][j])
for i, qx in enumerate(result.getQuantiles('X2')):
for j, qxi in enumerate(qx):
openturns.testing.assert_almost_equal(qxi, x2ref[i][j])
print(result.getSampleSizeValidity('X0', persalys.QuantileAnalysisResult.Upper))
print(result.getSampleSizeValidity('X0', persalys.QuantileAnalysisResult.Lower))
print(result.getSampleSizeValidity('X0', persalys.QuantileAnalysisResult.Bilateral))
print(result.getSampleSizeValidity('X1', persalys.QuantileAnalysisResult.Lower))
print(result.getSampleSizeValidity('X2', persalys.QuantileAnalysisResult.Bilateral))
# Generalized Pareto
# test wrong threshold
analysis2.setType(persalys.QuantileAnalysisResult.GeneralizedPareto)
try:
analysis2.run()
except Exception as e:
print(e)
analysis2.setTargetProbabilities([[1e-2, 1e-3], [6e-3], [2e-2, 1e-2, 1e-3]])
analysis2.run()
# correct threshold
ot.RandomGenerator.SetSeed(0)
analysis2.setThreshold(ot.Sample([[-1.2] * 3, [1.3] * 3]))
print(analysis2.getCDFThreshold())
analysis2.run()
lower = persalys.QuantileAnalysisResult.Lower
upper = persalys.QuantileAnalysisResult.Upper
result = analysis2.getResult()
x0ref = [[[-2.44824, -2.00098, -1.77584],
[-3.41554, -2.30532, -1.81387]],
[[1.963, 2.39031, 2.80089],
[2.00437, 3.32964, 4.43636]],
[[-2.792, -2.12135, -1.85867],
[-3.78112, -2.3562, -1.89605]],
[[2.1527, 2.70119, 3.29286],
[2.21385, 3.56467, 5.04221]]]
x1ref = [[[-3.41533, -2.61337, -2.14595]]]
x2ref = [[[-2.69465, -2.37834, -1.91663],
[-3.03319, -2.68309, -1.95693],
[-4.48605, -3.59798, -1.98668]],
[[1.85113, 2.16798, 2.66877],
[1.88352, 2.30282, 2.93784],
[1.9117, 2.56313, 3.89188]]]
for i, qx in enumerate(result.getQuantiles('X0')):
for j, qxi in enumerate(qx):
openturns.testing.assert_almost_equal(qxi, x0ref[i][j])
for i, qx in enumerate(result.getQuantiles('X1')):
for j, qxi in enumerate(qx):
openturns.testing.assert_almost_equal(qxi, x1ref[i][j])
for i, qx in enumerate(result.getQuantiles('X2')):
for j, qxi in enumerate(qx):
openturns.testing.assert_almost_equal(qxi, x2ref[i][j])
openturns.testing.assert_almost_equal(result.getPValue('X0', upper), 0.9378335994, 1e-3)
openturns.testing.assert_almost_equal(result.getPValue('X0', lower), 0.5392217742, 1e-3)
openturns.testing.assert_almost_equal(result.getPValue('X1', lower), 0.9037923523, 1e-3)
openturns.testing.assert_almost_equal(result.getPValue('X2', upper), 0.0674410269, 1e-3)
openturns.testing.assert_almost_equal(result.getPValue('X2', lower), 0.4360724055, 1e-3)
# test interest variables
analysis2.setInterestVariables(["X0", "X2"])
analysis2.setTailTypes(
[persalys.QuantileAnalysisResult.Upper | persalys.QuantileAnalysisResult.Lower | persalys.QuantileAnalysisResult.Bilateral,
persalys.QuantileAnalysisResult.Bilateral])
analysis2.setTargetProbabilities([[1e-2, 1e-3], [2e-2, 1e-2, 1e-3]])
analysis2.setThreshold(ot.Sample([[-1.2] * 2, [1.3] * 2]))
print(analysis2.getCDFThreshold())
analysis2.run()
# script
script = myStudy.getPythonScript()
print(script)
exec(script)
# check ambiguous import
sample = ot.Normal(2).getSample(10)
sample[0] = [1, 2]
inColumns = [0, 1]
for col_sep in [";", ",", " "]:
for num_sep in [".", ","]:
if col_sep == num_sep:
continue
with open(filename, "w") as csv:
csv.write('"x"' + col_sep + '"y"\n')
for p in sample:
for j in range(len(p)):
csv.write(str(p[j]).replace(".", num_sep))
if j < len(p) - 1:
csv.write(col_sep)
csv.write("\n")
model = persalys.DataModel("myDataModel2", filename, inColumns)
assert model.getSampleFromFile().getDimension() == 2, (
"wrong dimension sep=" + col_sep
)
assert model.getSampleFromFile().getSize() == 10, "wrong size"
os.remove(filename)
|