File: t_DataModel_std.py

package info (click to toggle)
persalys 19.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 46,900 kB
  • sloc: xml: 97,263; cpp: 61,701; python: 4,109; sh: 397; makefile: 84
file content (221 lines) | stat: -rwxr-xr-x 7,489 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#! /usr/bin/env python

import openturns as ot
import openturns.testing
import persalys
import os

myStudy = persalys.Study("myStudy")

# Model 1
filename = "data.csv"
ot.RandomGenerator.SetSeed(0)
ot.Normal(3).getSample(10).exportToCSVFile(filename)
inColumns = [0, 2]

model = persalys.DataModel("myDataModel", filename, inColumns)
myStudy.add(model)
print(model)

print("inputNames=", model.getInputNames())
print("outputNames=", model.getOutputNames())

# Data analysis ##
analysis = persalys.DataAnalysis("aDataAnalysis", model)
myStudy.add(analysis)

analysis.run()

result = analysis.getResult()
print("result=", result)
print("PDF=", result.getPDF())
print("CDF=", result.getCDF())
print("SurvivalFunction=", result.getSurvivalFunction())
print("outliers=", result.getOutliers())

# Comparaison
openturns.testing.assert_almost_equal(0.2012538261144671, result.getMean()[0][0], 1e-13)
openturns.testing.assert_almost_equal(
    -0.14315074899830527, result.getMean()[1][0], 1e-13
)

# Model 2
outColumns = [1]

model2 = persalys.DataModel(
    "myDataModel2", filename, inColumns, outColumns, ["var1", "var2"], ["var3"]
)
myStudy.add(model2)
print(model2)

print("inputNames=", model2.getInputNames())
print("outputNames=", model2.getOutputNames())

print("min=", model2.getListXMin())
print("max=", model2.getListXMax())

# Model 3
model3 = persalys.DataModel("myDataModel3", filename, inColumns, outColumns)
myStudy.add(model3)
print(model3)

print("inputNames=", model3.getInputNames())
print("outputNames=", model3.getOutputNames())

print("inputSample=", model3.getInputSample())
print("outputSample=", model3.getOutputSample())

print("min=", model3.getListXMin())
print("max=", model3.getListXMax())

# Quantile analysis
# Model 4
filename = "data_500.csv"
ot.RandomGenerator.SetSeed(0)
ot.Normal(3).getSample(500).exportToCSVFile(filename)
inColumns = [0, 1, 2]

model4 = persalys.DataModel("myDataModel4", filename, inColumns)
myStudy.add(model4)
print(model4)
print("inputNames=", model4.getInputNames())
print("outputNames=", model4.getOutputNames())

# Monte Carlo
analysis2 = persalys.QuantileAnalysis("aQuantileAnalysis", model4)
analysis2.setTargetProbabilities([[1e-2, 1e-3], [6e-3], [1e-1, 1e-2, 1e-3]])
analysis2.setTailTypes(
    [persalys.QuantileAnalysisResult.Upper | persalys.QuantileAnalysisResult.Lower | persalys.QuantileAnalysisResult.Bilateral,
     persalys.QuantileAnalysisResult.Lower,
     persalys.QuantileAnalysisResult.Bilateral])

analysis2.setType(persalys.QuantileAnalysisResult.MonteCarlo)
myStudy.add(analysis2)
analysis2.run()
result = analysis2.getResult()

x0ref = [[[-2.46389, -2.23369, -2.0035],
          [-2.51804, -2.4067, -2.29536]],
         [[1.92083, 2.30459, 2.68835],
          [2.85639, 3.15958, 3.46277]],
         [[-2.47455, -2.29006, -2.10558],
          [-2.48545, -2.4067, -2.32795]],
         [[2.41487, 3.02799, 3.64111],
          [2.94514, 3.15958, 3.37402]]]

x1ref = [[[-3.36709, -2.84159, -2.31609]]]

x2ref = [[[-1.73368, -1.5705, -1.40732],
          [-3.6264, -2.98535, -2.3443],
          [-3.32293, -3.09834, -2.87375]],
         [[1.51902, 1.69843, 1.87784],
          [2.29461, 2.5038, 2.71299],
          [2.53902, 2.63821, 2.7374]]]

for i, qx in enumerate(result.getQuantiles('X0')):
    for j, qxi in enumerate(qx):
        openturns.testing.assert_almost_equal(qxi, x0ref[i][j])
for i, qx in enumerate(result.getQuantiles('X1')):
    for j, qxi in enumerate(qx):
        openturns.testing.assert_almost_equal(qxi, x1ref[i][j])
for i, qx in enumerate(result.getQuantiles('X2')):
    for j, qxi in enumerate(qx):
        openturns.testing.assert_almost_equal(qxi, x2ref[i][j])

print(result.getSampleSizeValidity('X0', persalys.QuantileAnalysisResult.Upper))
print(result.getSampleSizeValidity('X0', persalys.QuantileAnalysisResult.Lower))
print(result.getSampleSizeValidity('X0', persalys.QuantileAnalysisResult.Bilateral))
print(result.getSampleSizeValidity('X1', persalys.QuantileAnalysisResult.Lower))
print(result.getSampleSizeValidity('X2', persalys.QuantileAnalysisResult.Bilateral))

# Generalized Pareto
# test wrong threshold
analysis2.setType(persalys.QuantileAnalysisResult.GeneralizedPareto)
try:
    analysis2.run()
except Exception as e:
    print(e)
analysis2.setTargetProbabilities([[1e-2, 1e-3], [6e-3], [2e-2, 1e-2, 1e-3]])
analysis2.run()

# correct threshold
ot.RandomGenerator.SetSeed(0)
analysis2.setThreshold(ot.Sample([[-1.2] * 3, [1.3] * 3]))
print(analysis2.getCDFThreshold())
analysis2.run()

lower = persalys.QuantileAnalysisResult.Lower
upper = persalys.QuantileAnalysisResult.Upper
result = analysis2.getResult()
x0ref = [[[-2.44824, -2.00098, -1.77584],
          [-3.41554, -2.30532, -1.81387]],
         [[1.963, 2.39031, 2.80089],
          [2.00437, 3.32964, 4.43636]],
         [[-2.792, -2.12135, -1.85867],
          [-3.78112, -2.3562, -1.89605]],
         [[2.1527, 2.70119, 3.29286],
          [2.21385, 3.56467, 5.04221]]]

x1ref = [[[-3.41533, -2.61337, -2.14595]]]

x2ref = [[[-2.69465, -2.37834, -1.91663],
          [-3.03319, -2.68309, -1.95693],
          [-4.48605, -3.59798, -1.98668]],
         [[1.85113, 2.16798, 2.66877],
          [1.88352, 2.30282, 2.93784],
          [1.9117, 2.56313, 3.89188]]]

for i, qx in enumerate(result.getQuantiles('X0')):
    for j, qxi in enumerate(qx):
        openturns.testing.assert_almost_equal(qxi, x0ref[i][j])
for i, qx in enumerate(result.getQuantiles('X1')):
    for j, qxi in enumerate(qx):
        openturns.testing.assert_almost_equal(qxi, x1ref[i][j])
for i, qx in enumerate(result.getQuantiles('X2')):
    for j, qxi in enumerate(qx):
        openturns.testing.assert_almost_equal(qxi, x2ref[i][j])

openturns.testing.assert_almost_equal(result.getPValue('X0', upper), 0.9378335994, 1e-3)
openturns.testing.assert_almost_equal(result.getPValue('X0', lower), 0.5392217742, 1e-3)
openturns.testing.assert_almost_equal(result.getPValue('X1', lower), 0.9037923523, 1e-3)
openturns.testing.assert_almost_equal(result.getPValue('X2', upper), 0.0674410269, 1e-3)
openturns.testing.assert_almost_equal(result.getPValue('X2', lower), 0.4360724055, 1e-3)

# test interest variables
analysis2.setInterestVariables(["X0", "X2"])
analysis2.setTailTypes(
    [persalys.QuantileAnalysisResult.Upper | persalys.QuantileAnalysisResult.Lower | persalys.QuantileAnalysisResult.Bilateral,
     persalys.QuantileAnalysisResult.Bilateral])
analysis2.setTargetProbabilities([[1e-2, 1e-3], [2e-2, 1e-2, 1e-3]])
analysis2.setThreshold(ot.Sample([[-1.2] * 2, [1.3] * 2]))
print(analysis2.getCDFThreshold())
analysis2.run()

# script
script = myStudy.getPythonScript()
print(script)
exec(script)

# check ambiguous import
sample = ot.Normal(2).getSample(10)
sample[0] = [1, 2]
inColumns = [0, 1]

for col_sep in [";", ",", " "]:
    for num_sep in [".", ","]:
        if col_sep == num_sep:
            continue
        with open(filename, "w") as csv:
            csv.write('"x"' + col_sep + '"y"\n')
            for p in sample:
                for j in range(len(p)):
                    csv.write(str(p[j]).replace(".", num_sep))
                    if j < len(p) - 1:
                        csv.write(col_sep)
                csv.write("\n")
        model = persalys.DataModel("myDataModel2", filename, inColumns)
        assert model.getSampleFromFile().getDimension() == 2, (
            "wrong dimension sep=" + col_sep
        )
        assert model.getSampleFromFile().getSize() == 10, "wrong size"
os.remove(filename)