File: t_DataSensitivityAnalysis_std.py

package info (click to toggle)
persalys 19.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 46,900 kB
  • sloc: xml: 97,263; cpp: 61,701; python: 4,109; sh: 397; makefile: 84
file content (185 lines) | stat: -rw-r--r-- 4,645 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import openturns as ot
import openturns.testing as ott
import persalys
from math import sin, exp

myStudy = persalys.Study("myStudy")

# +++++++++++++++++++++++++++++++++ Model 1 +++++++++++++++++++++++++++++++++ #
# simple example with a data model
model1 = persalys.DataModel(
    "model1", "Housing-prices-Boston.csv", list(range(13)), [13]
)
myStudy.add(model1)
print(model1)
print("inputNames=", model1.getInputNames())
print("outputNames=", model1.getOutputNames())

# Sensitivity analysis
analysis1 = persalys.DataSensitivityAnalysis("analysis1", model1)
myStudy.add(analysis1)
analysis1.run()

result1 = analysis1.getResult()
ott.assert_almost_equal(
    result1.getFirstOrderSobolIndices()[0],
    [
        0.269789,
        0.712661,
        0.709397,
        0.687175,
        0.698848,
        0.626429,
        0.166526,
        0.240896,
        0.69844,
        0.71514,
        0.707562,
        0.267871,
        0.649162,
    ],
)
ott.assert_almost_equal(
    result1.getFirstOrderSobolIndicesInterval()[0].getLowerBound(),
    [
        0.190449,
        0.0968657,
        0.325595,
        -0.104384,
        0.497543,
        0.541836,
        0.0273068,
        0.123202,
        0.0962543,
        0.243149,
        0.268534,
        0.0559757,
        0.600002,
    ],
)
ott.assert_almost_equal(
    result1.getFirstOrderSobolIndicesInterval()[0].getUpperBound(),
    [
        0.363531,
        0.307685,
        0.547926,
        0.142314,
        0.647108,
        0.688973,
        0.218533,
        0.33305,
        0.314734,
        0.460371,
        0.482617,
        0.225703,
        0.699414,
    ],
)

ott.assert_almost_equal(
    result1.getSignedSRCIndices(),
    [
        [
            -0.100175,
            0.117651,
            0.0155602,
            0.0742493,
            -0.224215,
            0.290666,
            0.00229872,
            -0.33788,
            0.289376,
            -0.225936,
            -0.22444,
            0.0932346,
            -0.407997,
        ]
    ],
)
ott.assert_almost_equal(
    result1.getSRCIndices(), [[x**2 for x in result1.getSignedSRCIndices()[0]]]
)

ott.assert_almost_equal(
    result1.getSignedSRCIndicesInterval()[0].getLowerBound()[:3],
    [-0.151228, 0.0624121, -0.0406055],
)
ott.assert_almost_equal(
    result1.getSignedSRCIndicesInterval()[0].getUpperBound()[:3],
    [-0.0307025, 0.171362, 0.0924589],
)

ott.assert_almost_equal(result1.getR2()[0], 0.638872)

# +++++++++++++++++++++++++++++++++ Model 2 +++++++++++++++++++++++++++++++++ #
# Model with several outputs and dependences between inputs

# ------------------------------model definition----------------------------- #
marginals = [
    ot.Normal(),  # X0
    ot.Uniform(0, 1),  # X1
    ot.Normal(),  # X2
    ot.Normal(),  # X3
    ot.Normal(),  # X4
]
R = ot.CorrelationMatrix(5)
R[0, 2] = 0.3
R[3, 4] = -0.2
copula = ot.NormalCopula(R)
distribution = ot.JointDistribution(marginals, copula)
distribution.setDescription(["X0", "X1", "X2", "X3", "X4"])


def model2_def(X):
    x0, x1, x2, x3, x4 = X
    y0 = x0 + x1**2 + sin(x2)
    y1 = x3 * x4 + exp(-x0)
    y2 = x1 + x2 + x3 + x4
    return [y0, y1, y2]


ot_model2 = ot.PythonFunction(5, 3, model2_def)

sample_size = 300
ot.RandomGenerator.SetSeed(0)
sample = distribution.getSample(sample_size)
output_sample = ot_model2(sample)
output_sample.setDescription(["Y0", "Y1", "Y2"])
sample.stack(output_sample)


# saving the sample to a CSV file
filename = "DataSensitivityAnalysis_std.csv"
sample.exportToCSVFile(filename)

# ------------------------test of the persalys model------------------------- #
model2 = persalys.DataModel("model2", filename, list(range(5)), list(range(5, 8)))
myStudy.add(model2)
print()
print(model2)

analysis2 = persalys.DataSensitivityAnalysis("analysis2", model2)
myStudy.add(analysis2)
analysis2.run()

result2 = analysis2.getResult()
for i in range(3):
    print(f"Output Y{i} first order indices: ", result2.getFirstOrderSobolIndices()[i])
    print(
        f"Output Y{i} first order indices intervals: ",
        result2.getFirstOrderSobolIndicesInterval()[i],
    )

print("Is independent ?", result2.isIndependent())
print("Warning message: ", result2.getIndependenceWarningMessage())

# -------------------------test without output sample------------------------ #
model2_no_output = persalys.DataModel("model2_no_output", filename, list(range(5)), [])
myStudy.add(model2_no_output)

analysis2_no_output = persalys.DataSensitivityAnalysis(
    "analysis2_no_output", model2_no_output
)
myStudy.add(analysis2_no_output)
with ott.assert_raises(RuntimeError):
    analysis2_no_output.run()