File: t_FieldModelEvaluation_std.expout

package info (click to toggle)
persalys 19.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 46,900 kB
  • sloc: xml: 97,263; cpp: 61,701; python: 4,109; sh: 397; makefile: 84
file content (75 lines) | stat: -rw-r--r-- 3,120 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
class=ModelEvaluation name=analysis1 physicalModel=PhysicalModel_1 inputValues=[[100],[55],[80],[16]]
result= [field 0:
     [ t          z          z2         ]
 0 : [   0        100        200        ]
 1 : [   0.631579 130.756    261.511    ]
 2 : [   1.26316  154.186    308.372    ]
 3 : [   1.89474  171.16     342.319    ]
 4 : [   2.52632  182.443    364.886    ]
 5 : [   3.15789  188.712    377.423    ]
 6 : [   3.78947  190.56     381.12     ]
 7 : [   4.42105  188.513    377.026    ]
 8 : [   5.05263  183.033    366.066    ]
 9 : [   5.68421  174.527    349.055    ]
10 : [   6.31579  163.355    326.71     ]
11 : [   6.94737  149.832    299.664    ]
12 : [   7.57895  134.238    268.475    ]
13 : [   8.21053  116.818    233.636    ]
14 : [   8.84211   97.789    195.578    ]
15 : [   9.47368   77.3421   154.684    ]
16 : [  10.1053    55.6454   111.291    ]
17 : [  10.7368    32.8473    65.6947   ]
18 : [  11.3684     9.07844   18.1569   ]
19 : [  12          0          0        ]]
class=ModelEvaluation name=analysis2 physicalModel=PhysicalModel_1 inputValues=[[100],[55],[81],[17]]
result= [field 0:
     [ t          z2         ]
 0 : [   0        200        ]
 1 : [   0.631579 261.32     ]
 2 : [   1.26316  307.698    ]
 3 : [   1.89474  340.989    ]
 4 : [   2.52632  362.817    ]
 5 : [   3.15789  374.606    ]
 6 : [   3.78947  377.601    ]
 7 : [   4.42105  372.895    ]
 8 : [   5.05263  361.443    ]
 9 : [   5.68421  344.083    ]
10 : [   6.31579  321.549    ]
11 : [   6.94737  294.482    ]
12 : [   7.57895  263.446    ]
13 : [   8.21053  228.933    ]
14 : [   8.84211  191.375    ]
15 : [   9.47368  151.149    ]
16 : [  10.1053   108.588    ]
17 : [  10.7368    63.9806   ]
18 : [  11.3684    17.5813   ]
19 : [  12          0        ]]
#!/usr/bin/env python

import openturns as ot
import persalys

Study_0 = persalys.Study('Study_0')
persalys.Study.Add(Study_0)
t = persalys.Variable('t', 0, '')
meshModel = persalys.GridMeshModel([t], ot.Interval([0], [12]), [20])
z0 = persalys.Input('z0', 100, '')
v0 = persalys.Input('v0', 55, '')
m = persalys.Input('m', 80, '')
c = persalys.Input('c', 16, '')
z = persalys.Output('z', '')
z2 = persalys.Output('z2', 'fake output')
inputs = [z0, v0, m, c]
outputs = [z, z2]
code = 'from math import exp\n\ndef _exec(z0,v0,m,c):\n    g = 9.81\n    zmin = 0.\n    tau = m / c\n    vinf = -m * g / c\n\n    # mesh nodes\n    t = getMesh().getVertices()\n\n    z = [max(z0 + vinf * t_i[0] + tau * (v0 - vinf) * (1 - exp(-t_i[0] / tau)), zmin) for t_i in t]\n    z2 = [2*max(z0 + vinf * t_i[0] + tau * (v0 - vinf) * (1 - exp(-t_i[0] / tau)), zmin) for t_i in t]\n\n    return z, z2'
PhysicalModel_1 = persalys.PythonFieldModel('PhysicalModel_1', meshModel, inputs, outputs, code)
Study_0.add(PhysicalModel_1)
values = [100, 55, 80, 16]
analysis1 = persalys.FieldModelEvaluation('analysis1', PhysicalModel_1, values)
Study_0.add(analysis1)
values = [100, 55, 81, 17]
analysis2 = persalys.FieldModelEvaluation('analysis2', PhysicalModel_1, values)
interestVariables = ['z2']
analysis2.setInterestVariables(interestVariables)
Study_0.add(analysis2)