1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
class=FieldMonteCarloAnalysis name=mcAnalysis1 physicalModel=PhysicalModel_1 interestVariables=[z,z2] maximumCalls=30 maximumCoefficientOfVariation=0.01 maximumElapsedTime=60 seed=0 blockSize=1 Karhunen-Loeve threshold=1e-05 quantile level=0.05
result= class=FieldMonteCarloResult name=Unnamed processSample_=class=ProcessSampleImplementation mesh=class=Mesh name=Unnamed dimension=1 vertices=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=1 description=[t] data=[[0],[0.631579],[1.26316],[1.89474],[2.52632],[3.15789],[3.78947],[4.42105],[5.05263],[5.68421],[6.31579],[6.94737],[7.57895],[8.21053],[8.84211],[9.47368],[10.1053],[10.7368],[11.3684],[12]] simplices=[[0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10],[10,11],[11,12],[12,13],[13,14],[14,15],[15,16],[16,17],[17,18],[18,19]] values=[class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[131.494,262.988],[164.89,329.78],[187.54,375.079],[201.784,403.568],[209.455,418.911],[211.986,423.971],[210.495,420.99],[205.86,411.72],[198.766,397.531],[189.748,379.496],[179.226,358.452],[167.528,335.055],[154.909,309.818],[141.571,283.142],[127.67,255.34],[113.329,226.658],[98.644,197.288],[83.6895,167.379],[68.5245,137.049],[53.1948,106.39]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[146.034,292.068],[177.347,354.694],[202.03,404.06],[220.698,441.395],[233.907,467.813],[242.163,484.326],[245.926,491.851],[245.611,491.221],[241.596,483.192],[234.224,468.449],[223.807,447.613],[210.625,421.25],[194.936,389.872],[176.971,353.943],[156.942,313.884],[135.04,270.079],[111.437,222.875],[86.2927,172.585],[59.7487,119.497],[31.9348,63.8697]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[118.688,237.377],[153.248,306.496],[177.915,355.829],[194.506,389.012],[204.507,409.014],[209.128,418.256],[209.359,418.718],[206.006,412.011],[199.727,399.455],[191.062,382.124],[180.447,360.895],[168.243,336.485],[154.74,309.479],[140.177,280.354],[124.749,249.499],[108.616,217.232],[91.9064,183.813],[74.7266,149.453],[57.163,114.326],[39.2861,78.5722]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[134.229,268.457],[173.815,347.63],[208.214,416.429],[237.602,475.205],[262.148,524.297],[282.017,564.034],[297.366,594.732],[308.348,616.697],[315.113,630.225],[317.801,635.603],[316.553,633.105],[311.5,622.999],[302.771,605.542],[290.492,580.984],[274.782,549.564],[255.758,511.515],[233.531,467.062],[208.211,416.421],[179.901,359.803],[148.704,297.408]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[104.289,208.578],[138.509,277.017],[165.615,331.231],[186.316,372.632],[201.247,402.493],[210.979,421.959],[216.03,432.061],[216.865,433.729],[213.9,427.801],[207.515,415.03],[198.048,396.096],[185.805,371.61],[171.062,342.123],[154.067,308.133],[135.043,270.086],[114.192,228.384],[91.6952,183.39],[67.7161,135.432],[42.4018,84.8035],[15.8847,31.7694]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[149.092,298.184],[182.074,364.148],[206.614,413.228],[223.947,447.894],[235.126,470.252],[241.051,482.102],[242.49,484.98],[240.099,480.198],[234.438,468.877],[225.986,451.971],[215.149,430.299],[202.278,404.556],[187.669,375.338],[171.576,343.152],[154.217,308.434],[135.776,271.552],[116.412,232.824],[96.2595,192.519],[75.434,150.868],[54.0338,108.068]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[124.489,248.977],[153.782,307.564],[174.912,349.824],[189.149,378.299],[197.569,395.138],[201.077,402.154],[200.439,400.878],[196.301,392.601],[189.207,378.415],[179.62,359.239],[167.926,335.852],[154.455,308.91],[139.483,278.966],[123.244,246.488],[105.936,211.871],[87.7244,175.449],[68.751,137.502],[49.1342,98.2684],[28.9742,57.9484],[8.35566,16.7113]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[148.949,297.898],[183.437,366.874],[213.405,426.809],[238.937,477.874],[260.116,520.232],[277.024,554.047],[289.739,579.478],[298.341,596.682],[302.906,605.811],[303.509,607.017],[300.224,600.448],[293.124,586.248],[282.28,564.56],[267.762,535.524],[249.638,499.276],[227.976,455.952],[202.842,405.683],[174.3,348.6],[142.414,284.828],[107.247,214.493]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[111.243,222.487],[137.184,274.369],[156.811,313.623],[170.758,341.515],[179.592,359.185],[183.828,367.656],[183.925,367.851],[180.3,360.599],[173.324,346.647],[163.333,326.667],[150.631,301.262],[135.488,270.976],[118.15,236.3],[98.8357,197.671],[77.7441,155.488],[55.053,110.106],[30.9229,61.8459],[5.49797,10.9959],[0,0],[0,0]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[134.8,269.599],[167.638,335.275],[192.898,385.796],[211.482,422.963],[224.181,448.363],[231.696,463.393],[234.643,469.285],[233.563,467.127],[228.936,457.873],[221.183,442.367],[210.676,421.351],[197.741,395.482],[182.667,365.334],[165.709,331.417],[147.089,294.178],[127.006,254.013],[105.634,211.268],[83.1249,166.25],[59.6147,119.229],[35.222,70.444]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[145.676,291.353],[179.291,358.581],[203.272,406.544],[219.364,438.728],[228.996,457.992],[233.337,466.673],[233.344,466.688],[229.803,459.607],[223.357,446.713],[214.53,429.06],[203.754,407.508],[191.382,382.764],[177.703,355.406],[162.954,325.907],[147.327,294.655],[130.983,261.967],[114.051,228.102],[96.6376,193.275],[78.8296,157.659],[60.6987,121.397]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[121.754,243.508],[150.642,301.284],[171.827,343.653],[186.394,372.788],[195.277,390.555],[199.278,398.556],[199.084,398.169],[195.288,390.575],[188.396,376.792],[178.846,357.691],[167.011,334.023],[153.216,306.431],[137.735,275.469],[120.806,241.612],[102.634,205.267],[83.3934,166.787],[63.2355,126.471],[42.2894,84.5789],[20.6663,41.3326],[0,0]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[108.461,216.922],[146.853,293.706],[176.223,352.445],[197.837,395.674],[212.785,425.57],[222.002,444.004],[226.294,452.588],[226.351,452.703],[222.769,445.539],[216.059,432.118],[206.659,413.318],[194.948,389.896],[181.25,362.499],[165.843,331.687],[148.969,297.938],[130.832,261.665],[111.611,223.222],[91.4574,182.915],[70.5021,141.004],[48.8578,97.7156]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[141.009,282.018],[171.255,342.509],[193.826,387.652],[209.746,419.491],[219.899,439.798],[225.054,450.107],[225.876,451.751],[222.942,445.884],[216.752,433.505],[207.741,415.481],[196.282,392.565],[182.704,365.408],[167.287,334.574],[150.277,300.554],[131.885,263.771],[112.297,224.593],[91.6699,183.34],[70.1437,140.287],[47.8375,95.6751],[24.8554,49.7108]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[130.108,260.216],[163.904,327.808],[191.072,382.144],[212.177,424.354],[227.737,455.473],[238.225,476.449],[244.074,488.147],[245.68,491.359],[243.405,486.81],[237.581,475.162],[228.511,457.021],[216.471,432.941],[201.715,403.43],[184.475,368.95],[164.963,329.926],[143.373,286.746],[119.882,239.765],[94.6531,189.306],[67.8339,135.668],[39.5603,79.1207]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[121.006,242.013],[146.045,292.091],[162.547,325.094],[172.227,344.455],[176.457,352.914],[176.331,352.663],[172.726,345.452],[166.339,332.679],[157.731,315.463],[147.348,294.696],[135.546,271.092],[122.611,245.221],[108.769,217.539],[94.2046,188.409],[79.0616,158.123],[63.4565,126.913],[47.4822,94.9644],[31.2129,62.4258],[14.7079,29.4159],[0,0]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[125.881,251.763],[152.973,305.945],[173.699,347.399],[188.683,377.367],[198.485,396.97],[203.611,407.222],[204.517,409.034],[201.616,403.233],[195.28,390.56],[185.844,371.687],[173.61,347.22],[158.852,317.705],[141.817,283.634],[122.727,245.453],[101.782,203.564],[79.1635,158.327],[55.0354,110.071],[29.5448,59.0895],[2.8247,5.64941],[0,0]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[145.586,291.172],[182.734,365.468],[214.832,429.663],[242.042,484.084],[264.523,529.046],[282.428,564.855],[295.904,591.808],[305.095,610.19],[310.139,620.279],[311.171,622.342],[308.32,616.64],[301.712,603.423],[291.467,582.934],[277.705,555.409],[260.537,521.075],[240.076,480.151],[216.426,432.852],[189.691,379.382],[159.971,319.943],[127.363,254.726]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[141.203,282.406],[171.786,343.571],[193.088,386.175],[206.853,413.706],[214.499,428.997],[217.175,434.349],[215.815,431.63],[211.178,422.356],[203.88,407.76],[194.421,388.843],[183.208,366.416],[170.569,341.138],[156.773,313.547],[142.038,284.076],[126.54,253.079],[110.421,220.843],[93.8002,187.6],[76.7704,153.541],[59.4088,118.818],[41.7777,83.5554]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[114.297,228.594],[149.648,299.296],[179.597,359.194],[204.385,408.769],[224.242,448.483],[239.388,478.775],[250.033,500.065],[256.378,512.756],[258.615,517.229],[256.927,513.853],[251.489,502.977],[242.468,484.936],[230.025,460.049],[214.311,428.622],[195.473,390.947],[173.651,347.301],[148.976,297.952],[121.577,243.155],[91.5753,183.151],[59.0865,118.173]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[147.823,295.646],[179.269,358.539],[200.906,401.813],[214.701,429.401],[222.223,444.447],[224.732,449.464],[223.232,446.464],[218.526,437.051],[211.257,422.513],[201.938,403.876],[190.981,381.961],[178.713,357.426],[165.398,330.796],[151.245,302.491],[136.423,272.846],[121.065,242.13],[105.279,210.558],[89.1504,178.301],[72.7482,145.496],[56.1271,112.254]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[105.075,210.15],[128.551,257.102],[143.886,287.773],[152.686,305.371],[156.237,312.475],[155.575,311.151],[151.531,303.061],[144.77,289.539],[135.828,271.656],[125.135,250.271],[113.037,226.074],[99.8096,199.619],[85.6761,171.352],[70.8149,141.63],[55.3696,110.739],[39.4552,78.9103],[23.1641,46.3283],[6.57072,13.1414],[0,0],[0,0]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[105.81,211.621],[131.726,263.453],[150.524,301.047],[163.156,326.313],[170.451,340.902],[173.123,346.247],[171.793,343.586],[166.996,333.992],[159.198,318.396],[148.801,297.601],[136.153,272.305],[121.555,243.111],[105.271,210.541],[87.5243,175.049],[68.5124,137.025],[48.4046,96.8093],[27.3479,54.6957],[5.46933,10.9387],[0,0],[0,0]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[107.12,214.24],[132.595,265.189],[151.387,302.774],[164.285,328.571],[171.985,343.97],[175.099,350.197],[174.168,348.335],[169.669,339.338],[162.023,324.046],[151.602,303.204],[138.732,277.464],[123.703,247.406],[106.769,213.538],[88.1547,176.309],[68.0586,136.117],[46.6552,93.3105],[24.0989,48.1979],[0.525652,1.0513],[0,0],[0,0]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[144.241,288.483],[171.419,342.838],[190.581,381.161],[203.034,406.067],[209.872,419.743],[212.01,424.02],[210.215,420.43],[205.128,410.256],[197.286,394.572],[187.138,374.275],[175.059,350.118],[161.365,322.731],[146.32,292.639],[130.142,260.284],[113.018,226.035],[95.1004,190.201],[76.5197,153.039],[57.3838,114.768],[37.7831,75.5663],[17.7935,35.5869]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[117.56,235.12],[157.055,314.11],[192.551,385.101],[224.055,448.11],[251.578,503.156],[275.128,550.257],[294.716,589.432],[310.349,620.698],[322.038,644.075],[329.79,659.581],[333.617,667.233],[333.526,667.051],[329.526,659.052],[321.627,643.254],[309.838,619.676],[294.167,588.335],[274.625,549.249],[251.219,502.437],[223.958,447.916],[192.852,385.705]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[127.877,255.754],[173.918,347.836],[214.342,428.685],[249.368,498.735],[279.202,558.404],[304.047,608.094],[324.094,648.188],[339.53,679.059],[350.532,701.063],[357.271,714.543],[359.914,719.827],[358.617,717.234],[353.533,707.066],[344.809,689.618],[332.585,665.169],[316.996,633.992],[298.173,596.345],[276.24,552.48],[251.318,502.635],[223.522,447.043]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[118.935,237.87],[145.322,290.643],[163.936,327.873],[176.01,352.019],[182.577,365.154],[184.511,369.021],[182.543,365.087],[177.293,354.586],[169.279,338.559],[158.94,317.88],[146.643,293.286],[132.698,265.396],[117.367,234.733],[100.868,201.735],[83.3863,166.773],[65.0779,130.156],[46.0736,92.1471],[26.4833,52.9667],[6.4,12.8],[0,0]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[122.144,244.288],[157.912,315.824],[186.06,372.121],[207.426,414.851],[222.752,445.504],[232.702,465.404],[237.866,475.732],[238.769,477.538],[235.879,471.758],[229.612,459.223],[220.338,440.675],[208.387,416.775],[194.054,388.108],[177.599,355.199],[159.256,318.513],[139.232,278.464],[117.711,235.421],[94.8569,189.714],[70.8168,141.634],[45.7205,91.4411]],class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[140.75,281.5],[178.632,357.265],[210.491,420.982],[236.68,473.361],[257.533,515.067],[273.364,546.727],[284.467,568.933],[291.12,582.24],[293.585,587.17],[292.108,584.217],[286.922,573.843],[278.243,556.485],[266.277,532.554],[251.218,502.435],[233.246,466.493],[212.535,425.069],[189.243,378.486],[163.524,327.048],[135.519,271.039],[105.364,210.728]]] meanSample_=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 description=[z,z2] data=[[127.854,255.708],[160.115,320.23],[185.02,370.04],[203.543,407.086],[216.505,433.011],[224.602,449.204],[228.423,456.847],[228.47,456.941],[225.171,450.343],[218.893,437.786],[209.949,419.898],[198.611,397.222],[185.113,370.226],[169.658,339.316],[152.423,304.845],[133.56,267.12],[113.206,226.412],[91.4784,182.957],[70.8959,141.792],[51.248,102.496]] lowerQuantileSample_=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 data=[[105.075,210.15],[131.726,263.453],[150.524,301.047],[163.156,326.313],[170.451,340.902],[173.123,346.247],[171.793,343.586],[166.339,332.679],[157.731,315.463],[147.348,294.696],[135.546,271.092],[121.555,243.111],[105.271,210.541],[87.5243,175.049],[68.0586,136.117],[46.6552,93.3105],[24.0989,48.1979],[5.46933,10.9387],[0,0],[0,0]] upperQuantileSample_=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=20 dimension=2 data=[[148.949,297.898],[182.734,365.468],[214.342,428.685],[242.042,484.084],[264.523,529.046],[282.428,564.855],[297.366,594.732],[310.349,620.698],[322.038,644.075],[329.79,659.581],[333.617,667.233],[333.526,667.051],[329.526,659.052],[321.627,643.254],[309.838,619.676],[294.167,588.335],[274.625,549.249],[251.219,502.437],[223.958,447.916],[192.852,385.705]] xiSamples_=[ [ Xi_0 Xi_1 Xi_2 Xi_3 Xi_4 Xi_5 ]
0 : [ -0.326937 -0.322372 1.85012 0.138747 -0.631833 -0.250679 ]
1 : [ 0.12147 1.74002 -0.571592 0.0796062 0.400145 0.587704 ]
2 : [ -0.386804 -0.501243 0.729586 0.303706 -1.57026 -0.238589 ]
3 : [ 1.7102 -0.249018 -0.194263 -0.32455 0.297062 -0.0536498 ]
4 : [ -0.292678 -0.498703 -1.64515 1.20084 -1.61691 0.352298 ]
5 : [ 0.112309 1.40271 0.904467 -0.734573 -0.252131 0.0032646 ]
6 : [ -0.662706 -0.0132655 0.0743332 1.06383 -0.249488 0.535151 ]
7 : [ 1.36639 0.961926 -0.679998 0.540111 1.96297 0.684927 ]
8 : [ -1.06995 -0.402371 -1.15974 -2.3255 0.727296 0.540177 ]
9 : [ -0.0336047 0.945446 -0.247022 0.0175046 -0.555186 0.254869 ]
10 : [ 0.0047082 0.851751 1.59644 -0.686379 -0.468509 -0.228727 ]
11 : [ -0.717373 0.0347051 -0.399069 1.16447 -0.210917 0.352007 ]
12 : [ -0.0491119 -0.526282 -0.377789 -0.0706927 -2.7547 -0.471998 ]
13 : [ -0.241903 1.12011 0.150139 0.2113 0.108924 0.466292 ]
14 : [ 0.194436 0.848733 -1.03308 0.32631 -0.460043 0.393307 ]
15 : [ -1.09051 -1.0158 0.876104 1.93929 0.917835 0.490341 ]
16 : [ -0.719407 0.682523 -1.28829 -0.314383 1.14787 -4.15003 ]
17 : [ 1.53617 0.67779 -0.304234 -0.220183 1.02783 0.245329 ]
18 : [ -0.322697 0.428189 1.4762 0.121314 0.127535 0.154129 ]
19 : [ 0.542896 -0.353451 -1.83646 1.31443 -0.210234 0.56032 ]
20 : [ -0.162443 0.630286 2.01268 -0.286901 0.22645 -0.0281051 ]
21 : [ -1.45555 -2.08353 0.650511 0.371163 1.04099 0.0258852 ]
22 : [ -1.22274 -1.09976 -0.554925 -1.47322 0.335921 0.327466 ]
23 : [ -1.21527 -0.899612 -0.762498 -2.36753 0.494416 1.68066 ]
24 : [ -0.519539 0.825407 0.861112 0.630093 0.899236 0.681004 ]
25 : [ 2.09181 -2.5344 0.193217 0.917944 1.18878 0.11818 ]
26 : [ 2.52658 -1.38452 0.821294 -1.61318 -0.926954 -0.943395 ]
27 : [ -1.00788 -0.483269 -0.0413516 0.701275 0.612366 -2.08862 ]
28 : [ 0.112904 0.31865 -0.671843 0.01519 -1.46799 -0.00178643 ]
29 : [ 1.17723 0.899351 -0.428898 -0.640026 -0.140481 0.00226795 ], [ Xi_0 Xi_1 Xi_2 Xi_3 Xi_4 Xi_5 ]
0 : [ -0.326937 -0.322372 1.85012 0.138747 -0.631833 -0.250679 ]
1 : [ 0.12147 1.74002 -0.571592 0.0796062 0.400145 0.587704 ]
2 : [ -0.386804 -0.501243 0.729586 0.303706 -1.57026 -0.238589 ]
3 : [ 1.7102 -0.249018 -0.194263 -0.32455 0.297062 -0.0536498 ]
4 : [ -0.292678 -0.498703 -1.64515 1.20084 -1.61691 0.352298 ]
5 : [ 0.112309 1.40271 0.904467 -0.734573 -0.252131 0.0032646 ]
6 : [ -0.662706 -0.0132655 0.0743332 1.06383 -0.249488 0.535151 ]
7 : [ 1.36639 0.961926 -0.679998 0.540111 1.96297 0.684927 ]
8 : [ -1.06995 -0.402371 -1.15974 -2.3255 0.727296 0.540177 ]
9 : [ -0.0336047 0.945446 -0.247022 0.0175046 -0.555186 0.254869 ]
10 : [ 0.0047082 0.851751 1.59644 -0.686379 -0.468509 -0.228727 ]
11 : [ -0.717373 0.0347051 -0.399069 1.16447 -0.210917 0.352007 ]
12 : [ -0.0491119 -0.526282 -0.377789 -0.0706927 -2.7547 -0.471998 ]
13 : [ -0.241903 1.12011 0.150139 0.2113 0.108924 0.466292 ]
14 : [ 0.194436 0.848733 -1.03308 0.32631 -0.460043 0.393307 ]
15 : [ -1.09051 -1.0158 0.876104 1.93929 0.917835 0.490341 ]
16 : [ -0.719407 0.682523 -1.28829 -0.314383 1.14787 -4.15003 ]
17 : [ 1.53617 0.67779 -0.304234 -0.220183 1.02783 0.245329 ]
18 : [ -0.322697 0.428189 1.4762 0.121314 0.127535 0.154129 ]
19 : [ 0.542896 -0.353451 -1.83646 1.31443 -0.210234 0.56032 ]
20 : [ -0.162443 0.630286 2.01268 -0.286901 0.22645 -0.0281051 ]
21 : [ -1.45555 -2.08353 0.650511 0.371163 1.04099 0.0258852 ]
22 : [ -1.22274 -1.09976 -0.554925 -1.47322 0.335921 0.327466 ]
23 : [ -1.21527 -0.899612 -0.762498 -2.36753 0.494416 1.68066 ]
24 : [ -0.519539 0.825407 0.861112 0.630093 0.899236 0.681004 ]
25 : [ 2.09181 -2.5344 0.193217 0.917944 1.18878 0.11818 ]
26 : [ 2.52658 -1.38452 0.821294 -1.61318 -0.926954 -0.943395 ]
27 : [ -1.00788 -0.483269 -0.0413516 0.701275 0.612366 -2.08862 ]
28 : [ 0.112904 0.31865 -0.671843 0.01519 -1.46799 -0.00178643 ]
29 : [ 1.17723 0.899351 -0.428898 -0.640026 -0.140481 0.00226795 ]] correlationFunction_=[EvaluationImplementation,EvaluationImplementation]
eigen values= [35286.2,551.26,270.795,22.3289,13.0978,1.82423] [141145,2205.04,1083.18,89.3155,52.3911,7.29694]
class=FieldMonteCarloAnalysis name=mcAnalysis2 physicalModel=PhysicalModel_1 interestVariables=[z2] maximumCalls=100 maximumCoefficientOfVariation=0.01 maximumElapsedTime=50 seed=0 blockSize=10 Karhunen-Loeve threshold=1e-05 quantile level=0.05
eigen values= [110985,2982.14,1467.11,162.664,108.997,26.8557,11.3351,4.82782]
True
#!/usr/bin/env python
import openturns as ot
import persalys
Study_0 = persalys.Study('Study_0')
persalys.Study.Add(Study_0)
t = persalys.Variable('t', 0, '')
meshModel = persalys.GridMeshModel([t], ot.Interval([0], [12]), [20])
dist_z0 = ot.Uniform(100, 150)
z0 = persalys.Input('z0', 100, dist_z0, '')
dist_v0 = ot.Normal(55, 10)
v0 = persalys.Input('v0', 55, dist_v0, '')
dist_m = ot.Normal(80, 8)
m = persalys.Input('m', 80, dist_m, '')
dist_c = ot.Uniform(0, 30)
c = persalys.Input('c', 16, dist_c, '')
z = persalys.Output('z', '')
z2 = persalys.Output('z2', 'fake output')
inputs = [z0, v0, m, c]
outputs = [z, z2]
code = 'from math import exp\n\ndef _exec(z0,v0,m,c):\n g = 9.81\n zmin = 0.\n tau = m / c\n vinf = -m * g / c\n\n # mesh nodes\n t = getMesh().getVertices()\n\n z = [max(z0 + vinf * t_i[0] + tau * (v0 - vinf) * (1 - exp(-t_i[0] / tau)), zmin) for t_i in t]\n z2 = [2*max(z0 + vinf * t_i[0] + tau * (v0 - vinf) * (1 - exp(-t_i[0] / tau)), zmin) for t_i in t]\n\n return z, z2'
PhysicalModel_1 = persalys.PythonFieldModel('PhysicalModel_1', meshModel, inputs, outputs, code)
PhysicalModel_1.setParallel(True)
Study_0.add(PhysicalModel_1)
t = persalys.Variable('t', 0, '')
meshModel = persalys.GridMeshModel([t], ot.Interval([0], [12]), [20])
collection = [[[262.988], [329.78], [375.079], [403.568], [418.911], [423.971], [420.99], [411.72], [397.531], [379.496], [358.452], [335.055], [309.818], [283.142], [255.34], [226.658], [197.288], [167.379], [137.049], [106.39]],
[[292.068], [354.694], [404.06], [441.395], [467.813], [484.326], [491.851], [491.221], [483.192], [468.449], [447.613], [421.25], [389.872], [353.943], [313.884], [270.079], [222.875], [172.585], [119.497], [63.8697]],
[[237.377], [306.496], [355.829], [389.012], [409.014], [418.256], [418.718], [412.011], [399.455], [382.124], [360.895], [336.485], [309.479], [280.354], [249.499], [217.232], [183.813], [149.453], [114.326], [78.5722]],
[[268.457], [347.63], [416.429], [475.205], [524.297], [564.034], [594.732], [616.697], [630.225], [635.603], [633.105], [622.999], [605.542], [580.984], [549.564], [511.515], [467.062], [416.421], [359.803], [297.408]],
[[208.578], [277.017], [331.231], [372.632], [402.493], [421.959], [432.061], [433.729], [427.801], [415.03], [396.096], [371.61], [342.123], [308.133], [270.086], [228.384], [183.39], [135.432], [84.8035], [31.7694]],
[[298.184], [364.148], [413.228], [447.894], [470.252], [482.102], [484.98], [480.198], [468.877], [451.971], [430.299], [404.556], [375.338], [343.152], [308.434], [271.552], [232.824], [192.519], [150.868], [108.068]],
[[248.977], [307.564], [349.824], [378.299], [395.138], [402.154], [400.878], [392.601], [378.415], [359.239], [335.852], [308.91], [278.966], [246.488], [211.871], [175.449], [137.502], [98.2684], [57.9484], [16.7113]],
[[297.898], [366.874], [426.809], [477.874], [520.232], [554.047], [579.478], [596.682], [605.811], [607.017], [600.448], [586.248], [564.56], [535.524], [499.276], [455.952], [405.683], [348.6], [284.828], [214.493]],
[[222.487], [274.369], [313.623], [341.515], [359.185], [367.656], [367.851], [360.599], [346.647], [326.667], [301.262], [270.976], [236.3], [197.671], [155.488], [110.106], [61.8459], [10.9959], [0], [0]],
[[269.599], [335.275], [385.796], [422.963], [448.363], [463.393], [469.285], [467.127], [457.873], [442.367], [421.351], [395.482], [365.334], [331.417], [294.178], [254.013], [211.268], [166.25], [119.229], [70.444]],
[[291.353], [358.581], [406.544], [438.728], [457.992], [466.673], [466.688], [459.607], [446.713], [429.06], [407.508], [382.764], [355.406], [325.907], [294.655], [261.967], [228.102], [193.275], [157.659], [121.397]],
[[243.508], [301.284], [343.653], [372.788], [390.555], [398.556], [398.169], [390.575], [376.792], [357.691], [334.023], [306.431], [275.469], [241.612], [205.267], [166.787], [126.471], [84.5789], [41.3326], [0]],
[[216.922], [293.706], [352.445], [395.674], [425.57], [444.004], [452.588], [452.703], [445.539], [432.118], [413.318], [389.896], [362.499], [331.687], [297.938], [261.665], [223.222], [182.915], [141.004], [97.7156]],
[[282.018], [342.509], [387.652], [419.491], [439.798], [450.107], [451.751], [445.884], [433.505], [415.481], [392.565], [365.408], [334.574], [300.554], [263.771], [224.593], [183.34], [140.287], [95.6751], [49.7108]],
[[260.216], [327.808], [382.144], [424.354], [455.473], [476.449], [488.147], [491.359], [486.81], [475.162], [457.021], [432.941], [403.43], [368.95], [329.926], [286.746], [239.765], [189.306], [135.668], [79.1207]],
[[242.013], [292.091], [325.094], [344.455], [352.914], [352.663], [345.452], [332.679], [315.463], [294.696], [271.092], [245.221], [217.539], [188.409], [158.123], [126.913], [94.9644], [62.4258], [29.4159], [0]],
[[251.763], [305.945], [347.399], [377.367], [396.97], [407.222], [409.034], [403.233], [390.56], [371.687], [347.22], [317.705], [283.634], [245.453], [203.564], [158.327], [110.071], [59.0895], [5.64941], [0]],
[[291.172], [365.468], [429.663], [484.084], [529.046], [564.855], [591.808], [610.19], [620.279], [622.342], [616.64], [603.423], [582.934], [555.409], [521.075], [480.151], [432.852], [379.382], [319.943], [254.726]],
[[282.406], [343.571], [386.175], [413.706], [428.997], [434.349], [431.63], [422.356], [407.76], [388.843], [366.416], [341.138], [313.547], [284.076], [253.079], [220.843], [187.6], [153.541], [118.818], [83.5554]],
[[228.594], [299.296], [359.194], [408.769], [448.483], [478.775], [500.065], [512.756], [517.229], [513.853], [502.977], [484.936], [460.049], [428.622], [390.947], [347.301], [297.952], [243.155], [183.151], [118.173]],
[[295.646], [358.539], [401.813], [429.401], [444.447], [449.464], [446.464], [437.051], [422.513], [403.876], [381.961], [357.426], [330.796], [302.491], [272.846], [242.13], [210.558], [178.301], [145.496], [112.254]],
[[210.15], [257.102], [287.773], [305.371], [312.475], [311.151], [303.061], [289.539], [271.656], [250.271], [226.074], [199.619], [171.352], [141.63], [110.739], [78.9103], [46.3283], [13.1414], [0], [0]],
[[211.621], [263.453], [301.047], [326.313], [340.902], [346.247], [343.586], [333.992], [318.396], [297.601], [272.305], [243.111], [210.541], [175.049], [137.025], [96.8093], [54.6957], [10.9387], [0], [0]],
[[214.24], [265.189], [302.774], [328.571], [343.97], [350.197], [348.335], [339.338], [324.046], [303.204], [277.464], [247.406], [213.538], [176.309], [136.117], [93.3105], [48.1979], [1.0513], [0], [0]],
[[288.483], [342.838], [381.161], [406.067], [419.743], [424.02], [420.43], [410.256], [394.572], [374.275], [350.118], [322.731], [292.639], [260.284], [226.035], [190.201], [153.039], [114.768], [75.5663], [35.5869]],
[[235.12], [314.11], [385.101], [448.11], [503.156], [550.257], [589.432], [620.698], [644.075], [659.581], [667.233], [667.051], [659.052], [643.254], [619.676], [588.335], [549.249], [502.437], [447.916], [385.705]],
[[255.754], [347.836], [428.685], [498.735], [558.404], [608.094], [648.188], [679.059], [701.063], [714.543], [719.827], [717.234], [707.066], [689.618], [665.169], [633.992], [596.345], [552.48], [502.635], [447.043]],
[[237.87], [290.643], [327.873], [352.019], [365.154], [369.021], [365.087], [354.586], [338.559], [317.88], [293.286], [265.396], [234.733], [201.735], [166.773], [130.156], [92.1471], [52.9667], [12.8], [0]],
[[244.288], [315.824], [372.121], [414.851], [445.504], [465.404], [475.732], [477.538], [471.758], [459.223], [440.675], [416.775], [388.108], [355.199], [318.513], [278.464], [235.421], [189.714], [141.634], [91.4411]],
[[281.5], [357.265], [420.982], [473.361], [515.067], [546.727], [568.933], [582.24], [587.17], [584.217], [573.843], [556.485], [532.554], [502.435], [466.493], [425.069], [378.486], [327.048], [271.039], [210.728]]]
mesh = meshModel.getMesh()
pSample = ot.ProcessSample(mesh, collection)
dataModel = persalys.DataFieldModel('dataModel', meshModel, pSample)
Study_0.add(dataModel)
mcAnalysis1 = persalys.FieldMonteCarloAnalysis('mcAnalysis1', PhysicalModel_1)
mcAnalysis1.setMaximumCalls(30)
mcAnalysis1.setMaximumElapsedTime(60)
mcAnalysis1.setBlockSize(1)
mcAnalysis1.setSeed(0)
mcAnalysis1.setKarhunenLoeveThreshold(1e-05)
mcAnalysis1.setQuantileLevel(0.05)
Study_0.add(mcAnalysis1)
mcAnalysis2 = persalys.FieldMonteCarloAnalysis('mcAnalysis2', PhysicalModel_1)
interestVariables = ['z2']
mcAnalysis2.setInterestVariables(interestVariables)
mcAnalysis2.setMaximumCalls(100)
mcAnalysis2.setMaximumElapsedTime(50)
mcAnalysis2.setBlockSize(10)
mcAnalysis2.setSeed(0)
mcAnalysis2.setKarhunenLoeveThreshold(1e-05)
mcAnalysis2.setQuantileLevel(0.05)
Study_0.add(mcAnalysis2)
analysis3 = persalys.FieldKarhunenLoeveAnalysis('analysis3', dataModel)
analysis3.setKarhunenLoeveThreshold(1e-05)
analysis3.setQuantileLevel(0.05)
Study_0.add(analysis3)
|