File: t_InferenceAnalysis_std.expout

package info (click to toggle)
persalys 19.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 46,900 kB
  • sloc: xml: 97,263; cpp: 61,701; python: 4,109; sh: 397; makefile: 84
file content (49 lines) | stat: -rw-r--r-- 5,888 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
class=DataModel name=myDataModel fileName=data1.csv inputColumns=[0,2,3] outputColumns=[] inputNames=[X0,X2,X3] outputNames=[]
class=InferenceAnalysis name=analysis designOfExperiment=myDataModel interestVariables=[X0,X3] level=0.1 interestVariable X0 distributionFactories=[NormalFactory] interestVariable X3 distributionFactories=[NormalFactory,GumbelFactory]
result= class=InferenceResult FittingTestResultCollection=[class=FittingTestResult variableName=X0 testedDistributions=[Normal(mu = -0.0698719, sigma = 0.948364)] paramConfidenceInterval=[[-0.192328, 0.0525837]
[0.861954, 1.03531]] testResults=[class=TestResult name=Unnamed type=Kolmogorov Normal binaryQualityMeasure=true p-value threshold=0.1 p-value=0.927898 statistic=0.0309239 description=[Normal(mu = -0.0698719, sigma = 0.948364) vs sample Unnamed]] bicResults=class=Point name=Unnamed dimension=1 values=[2.76653] error messages=[],class=FittingTestResult variableName=X3 testedDistributions=[Normal(mu = 0.651858, sigma = 1.37028),Gumbel(beta = 1.0684, gamma = 0.0351576)] paramConfidenceInterval=[[0.474923, 0.828793]
[1.24543, 1.49591],[0.916758, 1.21274]
[-0.107103, 0.18679]] testResults=[class=TestResult name=Unnamed type=Kolmogorov Normal binaryQualityMeasure=false p-value threshold=0.1 p-value=0.00286352 statistic=0.103832 description=[Normal(mu = 0.651858, sigma = 1.37028) vs sample Unnamed],class=TestResult name=Unnamed type=Kolmogorov Gumbel binaryQualityMeasure=true p-value threshold=0.1 p-value=0.835684 statistic=0.0353023 description=[Gumbel(beta = 1.0684, gamma = 0.0351576) vs sample Unnamed]] bicResults=class=Point name=Unnamed dimension=2 values=[3.5026,3.29942] error messages=[,]]
class=FittingTestResult variableName=X3 testedDistributions=[Normal(mu = 0.651858, sigma = 1.37028),Gumbel(beta = 1.0684, gamma = 0.0351576)] paramConfidenceInterval=[[0.474923, 0.828793]
[1.24543, 1.49591],[0.916758, 1.21274]
[-0.107103, 0.18679]] testResults=[class=TestResult name=Unnamed type=Kolmogorov Normal binaryQualityMeasure=false p-value threshold=0.1 p-value=0.00286352 statistic=0.103832 description=[Normal(mu = 0.651858, sigma = 1.37028) vs sample Unnamed],class=TestResult name=Unnamed type=Kolmogorov Gumbel binaryQualityMeasure=true p-value threshold=0.1 p-value=0.835684 statistic=0.0353023 description=[Gumbel(beta = 1.0684, gamma = 0.0351576) vs sample Unnamed]] bicResults=class=Point name=Unnamed dimension=2 values=[3.5026,3.29942] error messages=[,]
class=InferenceAnalysis name=analysis2 designOfExperiment=myDataModel interestVariables=[X0,X3] level=0.1 interestVariable X0 distributionFactories=[NormalFactory] interestVariable X3 distributionFactories=[NormalFactory,GumbelFactory]
result= class=InferenceResult FittingTestResultCollection=[class=FittingTestResult variableName=X0 testedDistributions=[Normal(mu = -0.0698719, sigma = 0.948364)] paramConfidenceInterval=[[-0.192328, 0.0525837]
[0.861954, 1.03531]] testResults=[class=TestResult name=Unnamed type=Lilliefors Normal binaryQualityMeasure=true p-value threshold=0.1 p-value=0.697674 statistic=0.0309239 description=[Normal(mu = -0.0698719, sigma = 0.948364) vs sample Unnamed]] bicResults=class=Point name=Unnamed dimension=1 values=[2.76653] error messages=[],class=FittingTestResult variableName=X3 testedDistributions=[Normal(mu = 0.651858, sigma = 1.37028),Gumbel(beta = 1.0684, gamma = 0.0351576)] paramConfidenceInterval=[[0.474923, 0.828793]
[1.24543, 1.49591],[0.908298, 1.23979]
[-0.117423, 0.19062]] testResults=[class=TestResult name=Unnamed type=Lilliefors Normal binaryQualityMeasure=false p-value threshold=0.1 p-value=0 statistic=0.103832 description=[Normal(mu = 0.651858, sigma = 1.37028) vs sample Unnamed],class=TestResult name=Unnamed type=Lilliefors Gumbel binaryQualityMeasure=true p-value threshold=0.1 p-value=0.52 statistic=0.0353023 description=[Gumbel(beta = 1.0684, gamma = 0.0351576) vs sample Unnamed]] bicResults=class=Point name=Unnamed dimension=2 values=[3.5026,3.29942] error messages=[,]]
class=FittingTestResult variableName=X3 testedDistributions=[Normal(mu = 0.651858, sigma = 1.37028),Gumbel(beta = 1.0684, gamma = 0.0351576)] paramConfidenceInterval=[[0.474923, 0.828793]
[1.24543, 1.49591],[0.908298, 1.23979]
[-0.117423, 0.19062]] testResults=[class=TestResult name=Unnamed type=Lilliefors Normal binaryQualityMeasure=false p-value threshold=0.1 p-value=0 statistic=0.103832 description=[Normal(mu = 0.651858, sigma = 1.37028) vs sample Unnamed],class=TestResult name=Unnamed type=Lilliefors Gumbel binaryQualityMeasure=true p-value threshold=0.1 p-value=0.52 statistic=0.0353023 description=[Gumbel(beta = 1.0684, gamma = 0.0351576) vs sample Unnamed]] bicResults=class=Point name=Unnamed dimension=2 values=[3.5026,3.29942] error messages=[,]
#!/usr/bin/env python

import openturns as ot
import persalys

myStudy = persalys.Study('myStudy')
persalys.Study.Add(myStudy)
inputColumns = [0, 2, 3]
outputColumns = []
inputNames = ['X0', 'X2', 'X3']
outputNames = []
myDataModel = persalys.DataModel('myDataModel', 'data1.csv', inputColumns, outputColumns, inputNames, outputNames)
myStudy.add(myDataModel)
analysis = persalys.InferenceAnalysis('analysis', myDataModel)
interestVariables = ['X0', 'X3']
analysis.setInterestVariables(interestVariables)
factories = [ot.NormalFactory()]
analysis.setDistributionsFactories('X0', factories)
factories = [ot.NormalFactory(), ot.GumbelFactory()]
analysis.setDistributionsFactories('X3', factories)
analysis.setLevel(0.1)
myStudy.add(analysis)
analysis2 = persalys.InferenceAnalysis('analysis2', myDataModel)
interestVariables = ['X0', 'X3']
analysis2.setInterestVariables(interestVariables)
factories = [ot.NormalFactory()]
analysis2.setDistributionsFactories('X0', factories)
factories = [ot.NormalFactory(), ot.GumbelFactory()]
analysis2.setDistributionsFactories('X3', factories)
analysis2.setLevel(0.1)
myStudy.add(analysis2)