1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing
import persalys
import os
myStudy = persalys.Study("myStudy")
# Model
filename = "data1.csv"
ot.RandomGenerator.SetSeed(0)
sample = ot.Normal(3).getSample(300)
sample.stack(ot.Gumbel().getSample(300))
sample.setDescription(["X0", "X1", "X2", "X3"])
sample.exportToCSVFile(filename, ",")
columns = [0, 2, 3]
model = persalys.DataModel("myDataModel", "data1.csv", columns)
myStudy.add(model)
print(model)
# Inference analysis - Kolmogorov##
analysis = persalys.InferenceAnalysis("analysis", model)
variables = ["X0", "X3"]
analysis.setInterestVariables(variables)
factories = [ot.NormalFactory(), ot.GumbelFactory()]
analysis.setDistributionsFactories("X3", factories)
analysis.setLevel(0.1)
analysis.setEstimateParametersConfidenceInterval(True)
myStudy.add(analysis)
print(analysis)
analysis.run()
result = analysis.getResult()
print("result=", result)
print(result.getFittingTestResultForVariable("X3"))
# Inference analysis - Lilliefors##
analysis2 = persalys.InferenceAnalysis("analysis2", model)
variables = ["X0", "X3"]
analysis2.setInterestVariables(variables)
factories = [ot.NormalFactory(), ot.GumbelFactory()]
analysis2.setDistributionsFactories("X3", factories)
analysis2.setLevel(0.1)
analysis2.setTestType(persalys.InferenceAnalysis.Lilliefors)
analysis2.setLillieforsPrecision(0.05)
analysis2.setEstimateParametersConfidenceInterval(True)
myStudy.add(analysis2)
print(analysis2)
analysis2.run()
result = analysis2.getResult()
print("result=", result)
print(result.getFittingTestResultForVariable("X3"))
# script
script = myStudy.getPythonScript()
print(script)
exec(script)
os.remove(filename)
|