File: t_MetaModelAnalysis_std.py

package info (click to toggle)
persalys 19.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 46,900 kB
  • sloc: xml: 97,263; cpp: 61,701; python: 4,109; sh: 397; makefile: 84
file content (87 lines) | stat: -rwxr-xr-x 2,877 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/env python

import openturns as ot
import persalys

# proba
dist_X0 = ot.Normal(0, 1)
X0 = persalys.Input("X0", 0, dist_X0, "")
dist_X1 = ot.Normal(0, 1)
X1 = persalys.Input("X1", 0, dist_X1, "")
X2 = persalys.Input("X2", 0, "")
X3 = persalys.Input("X3", 0, "")
Y0 = persalys.Output("Y0", "")
inputs = [X0, X1, X2, X3]
outputs = [Y0]
formulas = ["X0+X1+X2+X3"]
SymbolicModel_0 = persalys.SymbolicPhysicalModel(
    "SymbolicModel_0", inputs, outputs, formulas
)
values = [[0], [0], [-0.1, 0.1], [-0.1, 0.1]]
design_0 = persalys.GridDesignOfExperiment("design_0", SymbolicModel_0, values)
design_0.setBlockSize(1)
interestVariables = ["Y0"]
design_0.setInterestVariables(interestVariables)
design_0.run()
metaModel_0 = persalys.FunctionalChaosAnalysis("metaModel_0", design_0)
metaModel_0.setChaosDegree(1)
metaModel_0.setSparseChaos(False)
metaModel_0.setAnalyticalValidation(True)
metaModel_0.setTestSampleValidation(False)
metaModel_0.setKFoldValidation(False)
metaModel_0.run()
print(metaModel_0.getResult())

# deterministic/chaos
X0 = persalys.Input("X0", 0, "")
X1 = persalys.Input("X1", 0, "")
X2 = persalys.Input("X2", 0, "")
X3 = persalys.Input("X3", 0, "")
Y0 = persalys.Output("Y0", "")
inputs = [X0, X1, X2, X3]
outputs = [Y0]
formulas = ["X0+X1+X2+X3"]
SymbolicModel_0 = persalys.SymbolicPhysicalModel(
    "SymbolicModel_0", inputs, outputs, formulas
)
values = [[0], [0], [-0.1, 0.1], [-0.1, 0.1]]
design_0 = persalys.GridDesignOfExperiment("design_0", SymbolicModel_0, values)
design_0.setBlockSize(1)
interestVariables = ["Y0"]
design_0.setInterestVariables(interestVariables)
design_0.run()
metaModel_0 = persalys.FunctionalChaosAnalysis("metaModel_0", design_0)
metaModel_0.setChaosDegree(1)
metaModel_0.setSparseChaos(False)
metaModel_0.setAnalyticalValidation(True)
metaModel_0.setTestSampleValidation(False)
metaModel_0.setKFoldValidation(False)
metaModel_0.run()
print(metaModel_0.getResult())

# deterministic/kriging
X0 = persalys.Input("X0", 0, "")
X1 = persalys.Input("X1", 0, "")
X2 = persalys.Input("X2", 0, "")
X3 = persalys.Input("X3", 0, "")
Y0 = persalys.Output("Y0", "")
inputs = [X0, X1, X2, X3]
outputs = [Y0]
formulas = ["X0+X1+X2+X3"]
SymbolicModel_0 = persalys.SymbolicPhysicalModel(
    "SymbolicModel_0", inputs, outputs, formulas
)
values = [[0], [0], [-0.1, 0.1], [-0.1, 0.1]]
design_0 = persalys.GridDesignOfExperiment("design_0", SymbolicModel_0, values)
design_0.setBlockSize(1)
interestVariables = ["Y0"]
design_0.setInterestVariables(interestVariables)
design_0.run()
metaModel_0 = persalys.KrigingAnalysis("metaModel_0", design_0)
metaModel_0.setBasis(ot.ConstantBasisFactory(2).build())
metaModel_0.setCovarianceModel(ot.SquaredExponential(2))
metaModel_0.setAnalyticalValidation(True)
metaModel_0.setTestSampleValidation(False)
metaModel_0.setKFoldValidation(False)
metaModel_0.run()
print(metaModel_0.getResult())