File: t_MultiObjectiveOptimizationAnalysis_std.expout

package info (click to toggle)
persalys 19.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 46,900 kB
  • sloc: xml: 97,263; cpp: 61,701; python: 4,109; sh: 397; makefile: 84
file content (133 lines) | stat: -rw-r--r-- 11,379 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
analysis= class=MultiObjectiveOptimizationAnalysis name=optim physicalModel=aModelPhys algorithmName=nsga2 number of generations=10 blockSize=1 starting population size=50 bounds=[[0, 5],[0, 0],[0, 5]] variable inputs=[X0,X1] variable types=[0,0,2] variables of interest=[Y0,Y1] minimization=[Y0,Y2,Y1] constraints=[Y0<3.] maximumConstraintError=1e-05 seed=0
results=
 class=MultiObjectiveOptimizationAnalysisResult fronts=[    [ Y0        Y1        ]
0 : [ 0.0118802 0.992246  ],    [ Y0        Y1        ]
0 : [ 0.0151824 1.00528   ],    [ Y0        Y1        ]
0 : [ 0.0157035 1.00746   ],    [ Y0         Y1         ]
0 : [  0.0157035 18.5931    ]
1 : [  0.0323259  1.08665   ]
2 : [  0.0323148  9.71416   ],    [ Y0        Y1        ]
0 : [ 0.0323438 1.08674   ],    [ Y0        Y1        ]
0 : [ 0.0323446 1.08675   ]
1 : [ 0.0323446 1.08675   ]
2 : [ 0.0323446 1.08675   ]
3 : [ 0.0323446 1.08675   ]
4 : [ 0.0323446 1.08675   ],    [ Y0        Y1        ]
0 : [ 0.0323446 9.71416   ]
1 : [ 0.032388  1.08697   ]
2 : [ 0.032388  1.08697   ]
3 : [ 0.032388  1.08697   ]
4 : [ 0.0323446 9.71416   ],    [ Y0         Y1         ]
0 : [  0.0325405  1.08775   ]
1 : [  0.0323446 18.5012    ]
2 : [  0.0323446 18.5012    ]
3 : [  0.032388  18.501     ]
4 : [  0.032388  18.501     ]
5 : [  0.032383  18.5011    ],    [ Y0         Y1         ]
0 : [  0.0325574 18.5005    ]
1 : [  0.0326313  1.08822   ]
2 : [  0.0323446 36.1928    ],    [ Y0        Y1        ]
0 : [ 0.0327228 9.7141    ]
1 : [ 0.0345148 1.09795   ],    [ Y0         Y1         ]
0 : [  0.0328649 18.4994    ]
1 : [  0.0345376  1.09806   ],    [ Y0        Y1        ]
0 : [ 0.0345533 1.09814   ]
1 : [ 0.0345533 1.09814   ]
2 : [ 0.0345533 1.09814   ]
3 : [ 0.0345533 1.09814   ],    [ Y0        Y1        ]
0 : [ 0.0356064 1.10362   ]
1 : [ 0.0345533 9.71409   ]
2 : [ 0.0356064 1.10362   ]
3 : [ 0.0356064 1.10362   ],    [ Y0         Y1         ]
0 : [  0.0356052 18.491     ]
1 : [  0.0356064  9.71426   ]
2 : [  0.0356279  1.10374   ]
3 : [  0.0356064  9.71426   ],    [ Y0         Y1         ]
0 : [  0.0358094  1.10468   ]
1 : [  0.0356064 18.491     ]
2 : [  0.0357194 18.4907    ],    [ Y0        Y1        ]
0 : [ 0.0358179 1.10473   ],    [ Y0        Y1        ]
0 : [ 0.0359637 1.10549   ]
1 : [ 0.0359635 9.71435   ]]#17 finalPop=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=48 dimension=8 description=[X0,X2,X1,Y0,Y1,Y2,_feasibility_,_front_index_] data=[[0.0118802,0,0,0.0118802,0.992246,0,1,0],[0.0151824,0,0,0.0151824,1.00528,0,1,1],[0.0157035,0,0,0.0157035,1.00746,0,1,2],[0.0157035,0,2,0.0157035,18.5931,2,1,3],[0.0323259,0,0,0.0323259,1.08665,0,1,3],[0.0323148,0,1,0.0323148,9.71416,1,1,3],[0.0323438,0,0,0.0323438,1.08674,0,1,4],[0.0323446,0,0,0.0323446,1.08675,0,1,5],[0.0323446,0,0,0.0323446,1.08675,0,1,5],[0.0323446,0,0,0.0323446,1.08675,0,1,5],[0.0323446,0,0,0.0323446,1.08675,0,1,5],[0.0323446,0,0,0.0323446,1.08675,0,1,5],[0.0323446,0,1,0.0323446,9.71416,1,1,6],[0.032388,0,0,0.032388,1.08697,0,1,6],[0.032388,0,0,0.032388,1.08697,0,1,6],[0.032388,0,0,0.032388,1.08697,0,1,6],[0.0323446,0,1,0.0323446,9.71416,1,1,6],[0.0325405,0,0,0.0325405,1.08775,0,1,7],[0.0323446,0,2,0.0323446,18.5012,2,1,7],[0.0323446,0,2,0.0323446,18.5012,2,1,7],[0.032388,0,2,0.032388,18.501,2,1,7],[0.032388,0,2,0.032388,18.501,2,1,7],[0.032383,0,2,0.032383,18.5011,2,1,7],[0.0325574,0,2,0.0325574,18.5005,2,1,8],[0.0326313,0,0,0.0326313,1.08822,0,1,8],[0.0323446,0,4,0.0323446,36.1928,4,1,8],[0.0327228,0,1,0.0327228,9.7141,1,1,9],[0.0345148,0,0,0.0345148,1.09795,0,1,9],[0.0328649,0,2,0.0328649,18.4994,2,1,10],[0.0345376,0,0,0.0345376,1.09806,0,1,10],[0.0345533,0,0,0.0345533,1.09814,0,1,11],[0.0345533,0,0,0.0345533,1.09814,0,1,11],[0.0345533,0,0,0.0345533,1.09814,0,1,11],[0.0345533,0,0,0.0345533,1.09814,0,1,11],[0.0356064,0,0,0.0356064,1.10362,0,1,12],[0.0345533,0,1,0.0345533,9.71409,1,1,12],[0.0356064,0,0,0.0356064,1.10362,0,1,12],[0.0356064,0,0,0.0356064,1.10362,0,1,12],[0.0356052,0,2,0.0356052,18.491,2,1,13],[0.0356064,0,1,0.0356064,9.71426,1,1,13],[0.0356279,0,0,0.0356279,1.10374,0,1,13],[0.0356064,0,1,0.0356064,9.71426,1,1,13],[0.0358094,0,0,0.0358094,1.10468,0,1,14],[0.0356064,0,2,0.0356064,18.491,2,1,14],[0.0357194,0,2,0.0357194,18.4907,2,1,14],[0.0358179,0,0,0.0358179,1.10473,0,1,15],[0.0359637,0,0,0.0359637,1.10549,0,1,16],[0.0359635,0,1,0.0359635,9.71435,1,1,16]]
final population=
      [ X0            X2            X1            Y0            Y1            Y2            _feasibility_ _front_index_ ]
 0 : [  0.0118802     0             0             0.0118802     0.992246      0             1             0            ]
 1 : [  0.0151824     0             0             0.0151824     1.00528       0             1             1            ]
 2 : [  0.0157035     0             0             0.0157035     1.00746       0             1             2            ]
 3 : [  0.0157035     0             2             0.0157035    18.5931        2             1             3            ]
 4 : [  0.0323259     0             0             0.0323259     1.08665       0             1             3            ]
 5 : [  0.0323148     0             1             0.0323148     9.71416       1             1             3            ]
 6 : [  0.0323438     0             0             0.0323438     1.08674       0             1             4            ]
 7 : [  0.0323446     0             0             0.0323446     1.08675       0             1             5            ]
 8 : [  0.0323446     0             0             0.0323446     1.08675       0             1             5            ]
 9 : [  0.0323446     0             0             0.0323446     1.08675       0             1             5            ]
10 : [  0.0323446     0             0             0.0323446     1.08675       0             1             5            ]
11 : [  0.0323446     0             0             0.0323446     1.08675       0             1             5            ]
12 : [  0.0323446     0             1             0.0323446     9.71416       1             1             6            ]
13 : [  0.032388      0             0             0.032388      1.08697       0             1             6            ]
14 : [  0.032388      0             0             0.032388      1.08697       0             1             6            ]
15 : [  0.032388      0             0             0.032388      1.08697       0             1             6            ]
16 : [  0.0323446     0             1             0.0323446     9.71416       1             1             6            ]
17 : [  0.0325405     0             0             0.0325405     1.08775       0             1             7            ]
18 : [  0.0323446     0             2             0.0323446    18.5012        2             1             7            ]
19 : [  0.0323446     0             2             0.0323446    18.5012        2             1             7            ]
20 : [  0.032388      0             2             0.032388     18.501         2             1             7            ]
21 : [  0.032388      0             2             0.032388     18.501         2             1             7            ]
22 : [  0.032383      0             2             0.032383     18.5011        2             1             7            ]
23 : [  0.0325574     0             2             0.0325574    18.5005        2             1             8            ]
24 : [  0.0326313     0             0             0.0326313     1.08822       0             1             8            ]
25 : [  0.0323446     0             4             0.0323446    36.1928        4             1             8            ]
26 : [  0.0327228     0             1             0.0327228     9.7141        1             1             9            ]
27 : [  0.0345148     0             0             0.0345148     1.09795       0             1             9            ]
28 : [  0.0328649     0             2             0.0328649    18.4994        2             1            10            ]
29 : [  0.0345376     0             0             0.0345376     1.09806       0             1            10            ]
30 : [  0.0345533     0             0             0.0345533     1.09814       0             1            11            ]
31 : [  0.0345533     0             0             0.0345533     1.09814       0             1            11            ]
32 : [  0.0345533     0             0             0.0345533     1.09814       0             1            11            ]
33 : [  0.0345533     0             0             0.0345533     1.09814       0             1            11            ]
34 : [  0.0356064     0             0             0.0356064     1.10362       0             1            12            ]
35 : [  0.0345533     0             1             0.0345533     9.71409       1             1            12            ]
36 : [  0.0356064     0             0             0.0356064     1.10362       0             1            12            ]
37 : [  0.0356064     0             0             0.0356064     1.10362       0             1            12            ]
38 : [  0.0356052     0             2             0.0356052    18.491         2             1            13            ]
39 : [  0.0356064     0             1             0.0356064     9.71426       1             1            13            ]
40 : [  0.0356279     0             0             0.0356279     1.10374       0             1            13            ]
41 : [  0.0356064     0             1             0.0356064     9.71426       1             1            13            ]
42 : [  0.0358094     0             0             0.0358094     1.10468       0             1            14            ]
43 : [  0.0356064     0             2             0.0356064    18.491         2             1            14            ]
44 : [  0.0357194     0             2             0.0357194    18.4907        2             1            14            ]
45 : [  0.0358179     0             0             0.0358179     1.10473       0             1            15            ]
46 : [  0.0359637     0             0             0.0359637     1.10549       0             1            16            ]
47 : [  0.0359635     0             1             0.0359635     9.71435       1             1            16            ]
#!/usr/bin/env python

import openturns as ot
import persalys

myStudy = persalys.Study('myStudy')
persalys.Study.Add(myStudy)
X0 = persalys.Input('X0', 0, '')
X2 = persalys.Input('X2', 0, '')
X1 = persalys.Input('X1', 0, '')
Y0 = persalys.Output('Y0', '')
Y2 = persalys.Output('Y2', '')
Y1 = persalys.Output('Y1', '')
inputs = [X0, X2, X1]
outputs = [Y0, Y2, Y1]
formulas = ['X0', 'X1', 'var g := 1.0 + 9.0 * (X0 + X1); g * (1.0 - sqrt(X0 / g))']
aModelPhys = persalys.SymbolicPhysicalModel('aModelPhys', inputs, outputs, formulas)
myStudy.add(aModelPhys)
optim = persalys.MultiObjectiveOptimizationAnalysis('optim', aModelPhys, 'nsga2')
interestVariables = ['Y0', 'Y1']
optim.setInterestVariables(interestVariables)
optim.setMinimization(['Y0', 'Y2', 'Y1'])
bounds = ot.Interval([0, 0, 0], [5, 0, 5])
optim.addConstraint("Y0<3.")
optim.setBounds(bounds)
optim.setPopulationSize(50)
optim.setGenerationNumber(10)
optim.setBlockSize(1)
optim.setVariableInputs(['X0', 'X1'])
optim.setVariablesType([0, 0, 2])
myStudy.add(optim)