1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
analysis= class=MultiObjectiveOptimizationAnalysis name=optim physicalModel=aModelPhys algorithmName=nsga2 number of generations=10 blockSize=1 starting population size=50 bounds=[[0, 5],[0, 0],[0, 5]] variable inputs=[X0,X1] variable types=[0,0,2] variables of interest=[Y0,Y1] minimization=[Y0,Y2,Y1] constraints=[Y0<3.] maximumConstraintError=1e-05 seed=0
results=
class=MultiObjectiveOptimizationAnalysisResult fronts=[ [ Y0 Y1 ]
0 : [ 0.0118802 0.992246 ], [ Y0 Y1 ]
0 : [ 0.0151824 1.00528 ], [ Y0 Y1 ]
0 : [ 0.0157035 1.00746 ], [ Y0 Y1 ]
0 : [ 0.0157035 18.5931 ]
1 : [ 0.0323259 1.08665 ]
2 : [ 0.0323148 9.71416 ], [ Y0 Y1 ]
0 : [ 0.0323438 1.08674 ], [ Y0 Y1 ]
0 : [ 0.0323446 1.08675 ]
1 : [ 0.0323446 1.08675 ]
2 : [ 0.0323446 1.08675 ]
3 : [ 0.0323446 1.08675 ]
4 : [ 0.0323446 1.08675 ], [ Y0 Y1 ]
0 : [ 0.0323446 9.71416 ]
1 : [ 0.032388 1.08697 ]
2 : [ 0.032388 1.08697 ]
3 : [ 0.032388 1.08697 ]
4 : [ 0.0323446 9.71416 ], [ Y0 Y1 ]
0 : [ 0.0325405 1.08775 ]
1 : [ 0.0323446 18.5012 ]
2 : [ 0.0323446 18.5012 ]
3 : [ 0.032388 18.501 ]
4 : [ 0.032388 18.501 ]
5 : [ 0.032383 18.5011 ], [ Y0 Y1 ]
0 : [ 0.0325574 18.5005 ]
1 : [ 0.0326313 1.08822 ]
2 : [ 0.0323446 36.1928 ], [ Y0 Y1 ]
0 : [ 0.0327228 9.7141 ]
1 : [ 0.0345148 1.09795 ], [ Y0 Y1 ]
0 : [ 0.0328649 18.4994 ]
1 : [ 0.0345376 1.09806 ], [ Y0 Y1 ]
0 : [ 0.0345533 1.09814 ]
1 : [ 0.0345533 1.09814 ]
2 : [ 0.0345533 1.09814 ]
3 : [ 0.0345533 1.09814 ], [ Y0 Y1 ]
0 : [ 0.0356064 1.10362 ]
1 : [ 0.0345533 9.71409 ]
2 : [ 0.0356064 1.10362 ]
3 : [ 0.0356064 1.10362 ], [ Y0 Y1 ]
0 : [ 0.0356052 18.491 ]
1 : [ 0.0356064 9.71426 ]
2 : [ 0.0356279 1.10374 ]
3 : [ 0.0356064 9.71426 ], [ Y0 Y1 ]
0 : [ 0.0358094 1.10468 ]
1 : [ 0.0356064 18.491 ]
2 : [ 0.0357194 18.4907 ], [ Y0 Y1 ]
0 : [ 0.0358179 1.10473 ], [ Y0 Y1 ]
0 : [ 0.0359637 1.10549 ]
1 : [ 0.0359635 9.71435 ]]#17 finalPop=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=48 dimension=8 description=[X0,X2,X1,Y0,Y1,Y2,_feasibility_,_front_index_] data=[[0.0118802,0,0,0.0118802,0.992246,0,1,0],[0.0151824,0,0,0.0151824,1.00528,0,1,1],[0.0157035,0,0,0.0157035,1.00746,0,1,2],[0.0157035,0,2,0.0157035,18.5931,2,1,3],[0.0323259,0,0,0.0323259,1.08665,0,1,3],[0.0323148,0,1,0.0323148,9.71416,1,1,3],[0.0323438,0,0,0.0323438,1.08674,0,1,4],[0.0323446,0,0,0.0323446,1.08675,0,1,5],[0.0323446,0,0,0.0323446,1.08675,0,1,5],[0.0323446,0,0,0.0323446,1.08675,0,1,5],[0.0323446,0,0,0.0323446,1.08675,0,1,5],[0.0323446,0,0,0.0323446,1.08675,0,1,5],[0.0323446,0,1,0.0323446,9.71416,1,1,6],[0.032388,0,0,0.032388,1.08697,0,1,6],[0.032388,0,0,0.032388,1.08697,0,1,6],[0.032388,0,0,0.032388,1.08697,0,1,6],[0.0323446,0,1,0.0323446,9.71416,1,1,6],[0.0325405,0,0,0.0325405,1.08775,0,1,7],[0.0323446,0,2,0.0323446,18.5012,2,1,7],[0.0323446,0,2,0.0323446,18.5012,2,1,7],[0.032388,0,2,0.032388,18.501,2,1,7],[0.032388,0,2,0.032388,18.501,2,1,7],[0.032383,0,2,0.032383,18.5011,2,1,7],[0.0325574,0,2,0.0325574,18.5005,2,1,8],[0.0326313,0,0,0.0326313,1.08822,0,1,8],[0.0323446,0,4,0.0323446,36.1928,4,1,8],[0.0327228,0,1,0.0327228,9.7141,1,1,9],[0.0345148,0,0,0.0345148,1.09795,0,1,9],[0.0328649,0,2,0.0328649,18.4994,2,1,10],[0.0345376,0,0,0.0345376,1.09806,0,1,10],[0.0345533,0,0,0.0345533,1.09814,0,1,11],[0.0345533,0,0,0.0345533,1.09814,0,1,11],[0.0345533,0,0,0.0345533,1.09814,0,1,11],[0.0345533,0,0,0.0345533,1.09814,0,1,11],[0.0356064,0,0,0.0356064,1.10362,0,1,12],[0.0345533,0,1,0.0345533,9.71409,1,1,12],[0.0356064,0,0,0.0356064,1.10362,0,1,12],[0.0356064,0,0,0.0356064,1.10362,0,1,12],[0.0356052,0,2,0.0356052,18.491,2,1,13],[0.0356064,0,1,0.0356064,9.71426,1,1,13],[0.0356279,0,0,0.0356279,1.10374,0,1,13],[0.0356064,0,1,0.0356064,9.71426,1,1,13],[0.0358094,0,0,0.0358094,1.10468,0,1,14],[0.0356064,0,2,0.0356064,18.491,2,1,14],[0.0357194,0,2,0.0357194,18.4907,2,1,14],[0.0358179,0,0,0.0358179,1.10473,0,1,15],[0.0359637,0,0,0.0359637,1.10549,0,1,16],[0.0359635,0,1,0.0359635,9.71435,1,1,16]]
final population=
[ X0 X2 X1 Y0 Y1 Y2 _feasibility_ _front_index_ ]
0 : [ 0.0118802 0 0 0.0118802 0.992246 0 1 0 ]
1 : [ 0.0151824 0 0 0.0151824 1.00528 0 1 1 ]
2 : [ 0.0157035 0 0 0.0157035 1.00746 0 1 2 ]
3 : [ 0.0157035 0 2 0.0157035 18.5931 2 1 3 ]
4 : [ 0.0323259 0 0 0.0323259 1.08665 0 1 3 ]
5 : [ 0.0323148 0 1 0.0323148 9.71416 1 1 3 ]
6 : [ 0.0323438 0 0 0.0323438 1.08674 0 1 4 ]
7 : [ 0.0323446 0 0 0.0323446 1.08675 0 1 5 ]
8 : [ 0.0323446 0 0 0.0323446 1.08675 0 1 5 ]
9 : [ 0.0323446 0 0 0.0323446 1.08675 0 1 5 ]
10 : [ 0.0323446 0 0 0.0323446 1.08675 0 1 5 ]
11 : [ 0.0323446 0 0 0.0323446 1.08675 0 1 5 ]
12 : [ 0.0323446 0 1 0.0323446 9.71416 1 1 6 ]
13 : [ 0.032388 0 0 0.032388 1.08697 0 1 6 ]
14 : [ 0.032388 0 0 0.032388 1.08697 0 1 6 ]
15 : [ 0.032388 0 0 0.032388 1.08697 0 1 6 ]
16 : [ 0.0323446 0 1 0.0323446 9.71416 1 1 6 ]
17 : [ 0.0325405 0 0 0.0325405 1.08775 0 1 7 ]
18 : [ 0.0323446 0 2 0.0323446 18.5012 2 1 7 ]
19 : [ 0.0323446 0 2 0.0323446 18.5012 2 1 7 ]
20 : [ 0.032388 0 2 0.032388 18.501 2 1 7 ]
21 : [ 0.032388 0 2 0.032388 18.501 2 1 7 ]
22 : [ 0.032383 0 2 0.032383 18.5011 2 1 7 ]
23 : [ 0.0325574 0 2 0.0325574 18.5005 2 1 8 ]
24 : [ 0.0326313 0 0 0.0326313 1.08822 0 1 8 ]
25 : [ 0.0323446 0 4 0.0323446 36.1928 4 1 8 ]
26 : [ 0.0327228 0 1 0.0327228 9.7141 1 1 9 ]
27 : [ 0.0345148 0 0 0.0345148 1.09795 0 1 9 ]
28 : [ 0.0328649 0 2 0.0328649 18.4994 2 1 10 ]
29 : [ 0.0345376 0 0 0.0345376 1.09806 0 1 10 ]
30 : [ 0.0345533 0 0 0.0345533 1.09814 0 1 11 ]
31 : [ 0.0345533 0 0 0.0345533 1.09814 0 1 11 ]
32 : [ 0.0345533 0 0 0.0345533 1.09814 0 1 11 ]
33 : [ 0.0345533 0 0 0.0345533 1.09814 0 1 11 ]
34 : [ 0.0356064 0 0 0.0356064 1.10362 0 1 12 ]
35 : [ 0.0345533 0 1 0.0345533 9.71409 1 1 12 ]
36 : [ 0.0356064 0 0 0.0356064 1.10362 0 1 12 ]
37 : [ 0.0356064 0 0 0.0356064 1.10362 0 1 12 ]
38 : [ 0.0356052 0 2 0.0356052 18.491 2 1 13 ]
39 : [ 0.0356064 0 1 0.0356064 9.71426 1 1 13 ]
40 : [ 0.0356279 0 0 0.0356279 1.10374 0 1 13 ]
41 : [ 0.0356064 0 1 0.0356064 9.71426 1 1 13 ]
42 : [ 0.0358094 0 0 0.0358094 1.10468 0 1 14 ]
43 : [ 0.0356064 0 2 0.0356064 18.491 2 1 14 ]
44 : [ 0.0357194 0 2 0.0357194 18.4907 2 1 14 ]
45 : [ 0.0358179 0 0 0.0358179 1.10473 0 1 15 ]
46 : [ 0.0359637 0 0 0.0359637 1.10549 0 1 16 ]
47 : [ 0.0359635 0 1 0.0359635 9.71435 1 1 16 ]
#!/usr/bin/env python
import openturns as ot
import persalys
myStudy = persalys.Study('myStudy')
persalys.Study.Add(myStudy)
X0 = persalys.Input('X0', 0, '')
X2 = persalys.Input('X2', 0, '')
X1 = persalys.Input('X1', 0, '')
Y0 = persalys.Output('Y0', '')
Y2 = persalys.Output('Y2', '')
Y1 = persalys.Output('Y1', '')
inputs = [X0, X2, X1]
outputs = [Y0, Y2, Y1]
formulas = ['X0', 'X1', 'var g := 1.0 + 9.0 * (X0 + X1); g * (1.0 - sqrt(X0 / g))']
aModelPhys = persalys.SymbolicPhysicalModel('aModelPhys', inputs, outputs, formulas)
myStudy.add(aModelPhys)
optim = persalys.MultiObjectiveOptimizationAnalysis('optim', aModelPhys, 'nsga2')
interestVariables = ['Y0', 'Y1']
optim.setInterestVariables(interestVariables)
optim.setMinimization(['Y0', 'Y2', 'Y1'])
bounds = ot.Interval([0, 0, 0], [5, 0, 5])
optim.addConstraint("Y0<3.")
optim.setBounds(bounds)
optim.setPopulationSize(50)
optim.setGenerationNumber(10)
optim.setBlockSize(1)
optim.setVariableInputs(['X0', 'X1'])
optim.setVariablesType([0, 0, 2])
myStudy.add(optim)
|