File: sles.htm

package info (click to toggle)
petsc 2.1.3-1.woody.1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 70,272 kB
  • ctags: 310,869
  • sloc: ansic: 257,275; sh: 9,870; makefile: 7,622; fortran: 6,211; cpp: 1,026; python: 416; csh: 41; asm: 9
file content (229 lines) | stat: -rw-r--r-- 11,424 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
<html>
<title>SLES</title><body bgcolor="FFFFFF">
<h2>SLES</h2>
<menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex1.c.html"><CONCEPT>solving a system of linear equations</CONCEPT></A>
<menu>
Solves a tridiagonal linear system with SLES.<BR></menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex12.c.html"><CONCEPT>solving a system of linear equations</CONCEPT></A>
<menu>
Solves a linear system in parallel with SLES.<BR>Input parameters include:<BR>
  -m &lt;mesh_x&gt;       : number of mesh points in x-direction<BR>
  -n &lt;mesh_n&gt;       : number of mesh points in y-direction<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex1f.F.html"><CONCEPT>solving a system of linear equations</CONCEPT></A>
<menu>
<BR>
<BR>
   Description: Solves a tridiagonal linear system with SLES.<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex2.c.html"><CONCEPT>basic parallel example;</CONCEPT></A>
<menu>
Solves a linear system in parallel with SLES.<BR>Input parameters include:<BR>
  -random_exact_sol : use a random exact solution vector<BR>
  -view_exact_sol   : write exact solution vector to stdout<BR>
  -m &lt;mesh_x&gt;       : number of mesh points in x-direction<BR>
  -n &lt;mesh_n&gt;       : number of mesh points in y-direction<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex23.c.html"><CONCEPT>basic parallel example;</CONCEPT></A>
<menu>
Solves a tridiagonal linear system.<BR></menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex12.c.html"><CONCEPT>Laplacian, 2d</CONCEPT></A>
<menu>
Solves a linear system in parallel with SLES.<BR>Input parameters include:<BR>
  -m &lt;mesh_x&gt;       : number of mesh points in x-direction<BR>
  -n &lt;mesh_n&gt;       : number of mesh points in y-direction<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex13.c.html"><CONCEPT>Laplacian, 2d</CONCEPT></A>
<menu>
Solves a variable Poisson problem with SLES.<BR></menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex13f90.F.html"><CONCEPT>Laplacian, 2d</CONCEPT></A>
<menu>
<BR>
<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex16.c.html"><CONCEPT>Laplacian, 2d</CONCEPT></A>
<menu>
Solves a sequence of linear systems with different right-hand-side vectors.<BR>Input parameters include:<BR>
  -ntimes &lt;ntimes&gt;  : number of linear systems to solve<BR>
  -view_exact_sol   : write exact solution vector to stdout<BR>
  -m &lt;mesh_x&gt;       : number of mesh points in x-direction<BR>
  -n &lt;mesh_n&gt;       : number of mesh points in y-direction<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex2.c.html"><CONCEPT>Laplacian, 2d</CONCEPT></A>
<menu>
Solves a linear system in parallel with SLES.<BR>Input parameters include:<BR>
  -random_exact_sol : use a random exact solution vector<BR>
  -view_exact_sol   : write exact solution vector to stdout<BR>
  -m &lt;mesh_x&gt;       : number of mesh points in x-direction<BR>
  -n &lt;mesh_n&gt;       : number of mesh points in y-direction<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex15.c.html"><CONCEPT>basic parallel example</CONCEPT></A>
<menu>
Solves a linear system in parallel with SLES.  Also<BR>illustrates setting a user-defined shell preconditioner and using the<BR>
macro __FUNCT__ to define routine names for use in error handling.<BR>
Input parameters include:<BR>
  -user_defined_pc : Activate a user-defined preconditioner<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex15f.F.html"><CONCEPT>basic parallel example</CONCEPT></A>
<menu>
<BR>
<BR>
   Solves a linear system in parallel with SLES.  Also indicates<BR>
   use of a user-provided preconditioner.  Input parameters include:<BR>
      -user_defined_pc : Activate a user-defined preconditioner<BR>
<BR>
  Program usage: mpirun ex15f [-help] [all PETSc options]<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex21f.F.html"><CONCEPT>basic parallel example</CONCEPT></A>
<menu>
<BR>
<BR>
   Solves a linear system in parallel with SLES.  Also indicates<BR>
   use of a user-provided preconditioner.  Input parameters include:<BR>
<BR>
  Program usage: mpirun ex21f [-help] [all PETSc options]<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex2f.F.html"><CONCEPT>basic parallel example</CONCEPT></A>
<menu>
<BR>
<BR>
  Description: Solves a linear system in parallel with SLES (Fortran code).<BR>
               Also shows how to set a user-defined monitoring routine.<BR>
<BR>
  Program usage: mpirun -np &lt;procs&gt; ex2f [-help] [all PETSc options]<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex3.c.html"><CONCEPT>basic parallel example</CONCEPT></A>
<menu>
Solves a linear system in parallel with SLES.  The matrix<BR>uses simple bilinear elements on the unit square.  To test the parallel<BR>
matrix assembly, the matrix is intentionally laid out across processors<BR>
differently from the way it is assembled.  Input arguments are:<BR>
  -m &lt;size&gt; : problem size<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex4.c.html"><CONCEPT>different matrices for linear system and preconditioner;</CONCEPT></A>
<menu>
Uses a different preconditioner matrix and linear system matrix in the SLES solvers.<BR>Note that different storage formats<BR>
can be used for the different matrices.<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex6f.F.html"><CONCEPT>different matrices for linear system and preconditioner;</CONCEPT></A>
<menu>
<BR>
<BR>
  Description: This example demonstrates repeated linear solves as<BR>
  well as the use of different preconditioner and linear system<BR>
  matrices.  This example also illustrates how to save PETSc objects<BR>
  in common blocks.<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex16.c.html"><CONCEPT>repeatedly solving linear systems;</CONCEPT></A>
<menu>
Solves a sequence of linear systems with different right-hand-side vectors.<BR>Input parameters include:<BR>
  -ntimes &lt;ntimes&gt;  : number of linear systems to solve<BR>
  -view_exact_sol   : write exact solution vector to stdout<BR>
  -m &lt;mesh_x&gt;       : number of mesh points in x-direction<BR>
  -n &lt;mesh_n&gt;       : number of mesh points in y-direction<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex5.c.html"><CONCEPT>repeatedly solving linear systems;</CONCEPT></A>
<menu>
Solves two linear systems in parallel with SLES.  The code<BR>illustrates repeated solution of linear systems with the same preconditioner<BR>
method but different matrices (having the same nonzero structure).  The code<BR>
also uses multiple profiling stages.  Input arguments are<BR>
  -m &lt;size&gt; : problem size<BR>
  -mat_nonsym : use nonsymmetric matrix (default is symmetric)<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex6f.F.html"><CONCEPT>repeatedly solving linear systems;</CONCEPT></A>
<menu>
<BR>
<BR>
  Description: This example demonstrates repeated linear solves as<BR>
  well as the use of different preconditioner and linear system<BR>
  matrices.  This example also illustrates how to save PETSc objects<BR>
  in common blocks.<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex9.c.html"><CONCEPT>repeatedly solving linear systems;</CONCEPT></A>
<menu>
The solution of 2 different linear systems with different linear solvers.<BR>Also, this example illustrates the repeated<BR>
solution of linear systems, while reusing matrix, vector, and solver data<BR>
structures throughout the process.  Note the various stages of event logging.<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex7.c.html"><CONCEPT>customizing the block Jacobi preconditioner</CONCEPT></A>
<menu>
Block Jacobi preconditioner for solving a linear system in parallel with SLES.<BR>The code indicates the<BR>
procedures for setting the particular block sizes and for using different<BR>
linear solvers on the individual blocks.<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex8.c.html"><CONCEPT>Additive Schwarz Method (ASM) with user-defined subdomains</CONCEPT></A>
<menu>
Illustrates use of the preconditioner ASM.<BR>The Additive Schwarz Method for solving a linear system in parallel with SLES.  The<BR>
code indicates the procedure for setting user-defined subdomains.  Input<BR>
parameters include:<BR>
  -user_set_subdomain_solvers:  User explicitly sets subdomain solvers<BR>
  -user_set_subdomains:  Activate user-defined subdomains<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex10.c.html"><CONCEPT>solving a linear system</CONCEPT></A>
<menu>
Reads a PETSc matrix and vector from a file and solves a linear system.<BR>This version first preloads and solves a small system, then loads <BR>
another (larger) system and solves it as well.  This example illustrates<BR>
preloading of instructions with the smaller system so that more accurate<BR>
performance monitoring can be done with the larger one (that actually<BR>
is the system of interest).  See the 'Performance Hints' chapter of the<BR>
users manual for a discussion of preloading.  Input parameters include<BR>
  -f0 &lt;input_file&gt; : first file to load (small system)<BR>
  -f1 &lt;input_file&gt; : second file to load (larger system)<BR>
  -trans  : solve transpose system instead<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex11.c.html"><CONCEPT>solving a Helmholtz equation</CONCEPT></A>
<menu>
Solves a linear system in parallel with SLES.<BR></menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex11f.F.html"><CONCEPT>solving a Helmholtz equation</CONCEPT></A>
<menu>
<BR>
<BR>
  Description: Solves a complex linear system in parallel with SLES (Fortran code).<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex13.c.html"><CONCEPT>basic sequential example</CONCEPT></A>
<menu>
Solves a variable Poisson problem with SLES.<BR></menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex13f90.F.html"><CONCEPT>basic sequential example</CONCEPT></A>
<menu>
<BR>
<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex2f.F.html"><CONCEPT>setting a user-defined monitoring routine</CONCEPT></A>
<menu>
<BR>
<BR>
  Description: Solves a linear system in parallel with SLES (Fortran code).<BR>
               Also shows how to set a user-defined monitoring routine.<BR>
<BR>
  Program usage: mpirun -np &lt;procs&gt; ex2f [-help] [all PETSc options]<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex14f.F.html"><CONCEPT>writing a user-defined nonlinear solver</CONCEPT></A>
<menu>
<BR>
<BR>
  Solves a nonlinear system in parallel with a user-defined<BR>
  Newton method that uses SLES to solve the linearized Newton sytems.  This solver<BR>
  is a very simplistic inexact Newton method.  The intent of this code is to<BR>
  demonstrate the repeated solution of linear sytems with the same nonzero pattern.<BR>
<BR>
  This is NOT the recommended approach for solving nonlinear problems with PETSc!<BR>
  We urge users to employ the SNES component for solving nonlinear problems whenever<BR>
  possible, as it offers many advantages over coding nonlinear solvers independently.<BR>
<BR>
  We solve the  Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
  domain, using distributed arrays (DAs) to partition the parallel grid.<BR>
<BR>
</menu>
</menu>
</body>
</html>