1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
<html>
<title>SLES</title><body bgcolor="FFFFFF">
<h2>SLES</h2>
<menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex1.c.html"><CONCEPT>solving a system of linear equations</CONCEPT></A>
<menu>
Solves a tridiagonal linear system with SLES.<BR></menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex12.c.html"><CONCEPT>solving a system of linear equations</CONCEPT></A>
<menu>
Solves a linear system in parallel with SLES.<BR>Input parameters include:<BR>
-m <mesh_x> : number of mesh points in x-direction<BR>
-n <mesh_n> : number of mesh points in y-direction<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex1f.F.html"><CONCEPT>solving a system of linear equations</CONCEPT></A>
<menu>
<BR>
<BR>
Description: Solves a tridiagonal linear system with SLES.<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex2.c.html"><CONCEPT>basic parallel example;</CONCEPT></A>
<menu>
Solves a linear system in parallel with SLES.<BR>Input parameters include:<BR>
-random_exact_sol : use a random exact solution vector<BR>
-view_exact_sol : write exact solution vector to stdout<BR>
-m <mesh_x> : number of mesh points in x-direction<BR>
-n <mesh_n> : number of mesh points in y-direction<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex23.c.html"><CONCEPT>basic parallel example;</CONCEPT></A>
<menu>
Solves a tridiagonal linear system.<BR></menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex12.c.html"><CONCEPT>Laplacian, 2d</CONCEPT></A>
<menu>
Solves a linear system in parallel with SLES.<BR>Input parameters include:<BR>
-m <mesh_x> : number of mesh points in x-direction<BR>
-n <mesh_n> : number of mesh points in y-direction<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex13.c.html"><CONCEPT>Laplacian, 2d</CONCEPT></A>
<menu>
Solves a variable Poisson problem with SLES.<BR></menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex13f90.F.html"><CONCEPT>Laplacian, 2d</CONCEPT></A>
<menu>
<BR>
<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex16.c.html"><CONCEPT>Laplacian, 2d</CONCEPT></A>
<menu>
Solves a sequence of linear systems with different right-hand-side vectors.<BR>Input parameters include:<BR>
-ntimes <ntimes> : number of linear systems to solve<BR>
-view_exact_sol : write exact solution vector to stdout<BR>
-m <mesh_x> : number of mesh points in x-direction<BR>
-n <mesh_n> : number of mesh points in y-direction<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex2.c.html"><CONCEPT>Laplacian, 2d</CONCEPT></A>
<menu>
Solves a linear system in parallel with SLES.<BR>Input parameters include:<BR>
-random_exact_sol : use a random exact solution vector<BR>
-view_exact_sol : write exact solution vector to stdout<BR>
-m <mesh_x> : number of mesh points in x-direction<BR>
-n <mesh_n> : number of mesh points in y-direction<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex15.c.html"><CONCEPT>basic parallel example</CONCEPT></A>
<menu>
Solves a linear system in parallel with SLES. Also<BR>illustrates setting a user-defined shell preconditioner and using the<BR>
macro __FUNCT__ to define routine names for use in error handling.<BR>
Input parameters include:<BR>
-user_defined_pc : Activate a user-defined preconditioner<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex15f.F.html"><CONCEPT>basic parallel example</CONCEPT></A>
<menu>
<BR>
<BR>
Solves a linear system in parallel with SLES. Also indicates<BR>
use of a user-provided preconditioner. Input parameters include:<BR>
-user_defined_pc : Activate a user-defined preconditioner<BR>
<BR>
Program usage: mpirun ex15f [-help] [all PETSc options]<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex21f.F.html"><CONCEPT>basic parallel example</CONCEPT></A>
<menu>
<BR>
<BR>
Solves a linear system in parallel with SLES. Also indicates<BR>
use of a user-provided preconditioner. Input parameters include:<BR>
<BR>
Program usage: mpirun ex21f [-help] [all PETSc options]<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex2f.F.html"><CONCEPT>basic parallel example</CONCEPT></A>
<menu>
<BR>
<BR>
Description: Solves a linear system in parallel with SLES (Fortran code).<BR>
Also shows how to set a user-defined monitoring routine.<BR>
<BR>
Program usage: mpirun -np <procs> ex2f [-help] [all PETSc options]<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex3.c.html"><CONCEPT>basic parallel example</CONCEPT></A>
<menu>
Solves a linear system in parallel with SLES. The matrix<BR>uses simple bilinear elements on the unit square. To test the parallel<BR>
matrix assembly, the matrix is intentionally laid out across processors<BR>
differently from the way it is assembled. Input arguments are:<BR>
-m <size> : problem size<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex4.c.html"><CONCEPT>different matrices for linear system and preconditioner;</CONCEPT></A>
<menu>
Uses a different preconditioner matrix and linear system matrix in the SLES solvers.<BR>Note that different storage formats<BR>
can be used for the different matrices.<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex6f.F.html"><CONCEPT>different matrices for linear system and preconditioner;</CONCEPT></A>
<menu>
<BR>
<BR>
Description: This example demonstrates repeated linear solves as<BR>
well as the use of different preconditioner and linear system<BR>
matrices. This example also illustrates how to save PETSc objects<BR>
in common blocks.<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex16.c.html"><CONCEPT>repeatedly solving linear systems;</CONCEPT></A>
<menu>
Solves a sequence of linear systems with different right-hand-side vectors.<BR>Input parameters include:<BR>
-ntimes <ntimes> : number of linear systems to solve<BR>
-view_exact_sol : write exact solution vector to stdout<BR>
-m <mesh_x> : number of mesh points in x-direction<BR>
-n <mesh_n> : number of mesh points in y-direction<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex5.c.html"><CONCEPT>repeatedly solving linear systems;</CONCEPT></A>
<menu>
Solves two linear systems in parallel with SLES. The code<BR>illustrates repeated solution of linear systems with the same preconditioner<BR>
method but different matrices (having the same nonzero structure). The code<BR>
also uses multiple profiling stages. Input arguments are<BR>
-m <size> : problem size<BR>
-mat_nonsym : use nonsymmetric matrix (default is symmetric)<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex6f.F.html"><CONCEPT>repeatedly solving linear systems;</CONCEPT></A>
<menu>
<BR>
<BR>
Description: This example demonstrates repeated linear solves as<BR>
well as the use of different preconditioner and linear system<BR>
matrices. This example also illustrates how to save PETSc objects<BR>
in common blocks.<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex9.c.html"><CONCEPT>repeatedly solving linear systems;</CONCEPT></A>
<menu>
The solution of 2 different linear systems with different linear solvers.<BR>Also, this example illustrates the repeated<BR>
solution of linear systems, while reusing matrix, vector, and solver data<BR>
structures throughout the process. Note the various stages of event logging.<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex7.c.html"><CONCEPT>customizing the block Jacobi preconditioner</CONCEPT></A>
<menu>
Block Jacobi preconditioner for solving a linear system in parallel with SLES.<BR>The code indicates the<BR>
procedures for setting the particular block sizes and for using different<BR>
linear solvers on the individual blocks.<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex8.c.html"><CONCEPT>Additive Schwarz Method (ASM) with user-defined subdomains</CONCEPT></A>
<menu>
Illustrates use of the preconditioner ASM.<BR>The Additive Schwarz Method for solving a linear system in parallel with SLES. The<BR>
code indicates the procedure for setting user-defined subdomains. Input<BR>
parameters include:<BR>
-user_set_subdomain_solvers: User explicitly sets subdomain solvers<BR>
-user_set_subdomains: Activate user-defined subdomains<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex10.c.html"><CONCEPT>solving a linear system</CONCEPT></A>
<menu>
Reads a PETSc matrix and vector from a file and solves a linear system.<BR>This version first preloads and solves a small system, then loads <BR>
another (larger) system and solves it as well. This example illustrates<BR>
preloading of instructions with the smaller system so that more accurate<BR>
performance monitoring can be done with the larger one (that actually<BR>
is the system of interest). See the 'Performance Hints' chapter of the<BR>
users manual for a discussion of preloading. Input parameters include<BR>
-f0 <input_file> : first file to load (small system)<BR>
-f1 <input_file> : second file to load (larger system)<BR>
-trans : solve transpose system instead<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex11.c.html"><CONCEPT>solving a Helmholtz equation</CONCEPT></A>
<menu>
Solves a linear system in parallel with SLES.<BR></menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex11f.F.html"><CONCEPT>solving a Helmholtz equation</CONCEPT></A>
<menu>
<BR>
<BR>
Description: Solves a complex linear system in parallel with SLES (Fortran code).<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex13.c.html"><CONCEPT>basic sequential example</CONCEPT></A>
<menu>
Solves a variable Poisson problem with SLES.<BR></menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex13f90.F.html"><CONCEPT>basic sequential example</CONCEPT></A>
<menu>
<BR>
<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex2f.F.html"><CONCEPT>setting a user-defined monitoring routine</CONCEPT></A>
<menu>
<BR>
<BR>
Description: Solves a linear system in parallel with SLES (Fortran code).<BR>
Also shows how to set a user-defined monitoring routine.<BR>
<BR>
Program usage: mpirun -np <procs> ex2f [-help] [all PETSc options]<BR>
<BR>
</menu>
<LI><A HREF="../../../src/sles/examples/tutorials/ex14f.F.html"><CONCEPT>writing a user-defined nonlinear solver</CONCEPT></A>
<menu>
<BR>
<BR>
Solves a nonlinear system in parallel with a user-defined<BR>
Newton method that uses SLES to solve the linearized Newton sytems. This solver<BR>
is a very simplistic inexact Newton method. The intent of this code is to<BR>
demonstrate the repeated solution of linear sytems with the same nonzero pattern.<BR>
<BR>
This is NOT the recommended approach for solving nonlinear problems with PETSc!<BR>
We urge users to employ the SNES component for solving nonlinear problems whenever<BR>
possible, as it offers many advantages over coding nonlinear solvers independently.<BR>
<BR>
We solve the Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
domain, using distributed arrays (DAs) to partition the parallel grid.<BR>
<BR>
</menu>
</menu>
</body>
</html>
|