File: da.html

package info (click to toggle)
petsc 2.2.0-4
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 64,404 kB
  • ctags: 284,528
  • sloc: ansic: 223,999; python: 11,758; makefile: 7,707; fortran: 6,327; cpp: 4,104; sh: 3,387; csh: 41; asm: 6
file content (123 lines) | stat: -rw-r--r-- 6,474 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
<html>
<title>DA</title><body bgcolor="FFFFFF">
<h2>DA</h2>
<menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex14.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Bratu nonlinear PDE in 3d.<BR>We solve the  Bratu (SFI - solid fuel ignition) problem in a 3D rectangular<BR>
domain, using distributed arrays (DAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex19.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear driven cavity with multigrid in 2d.<BR>  <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
  -lidvelocity &lt;lid&gt;, where &lt;lid&gt; = dimensionless velocity of lid<BR>
  -grashof &lt;gr&gt;, where &lt;gr&gt; = dimensionless temperature gradent<BR>
  -prandtl &lt;pr&gt;, where &lt;pr&gt; = dimensionless thermal/momentum diffusity ratio<BR>
  -contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex26.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Grad-Shafranov solver for one dimensional CHI equilibrium.<BR></menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex27.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear driven cavity with multigrid and pusedo timestepping 2d.<BR>  <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
  -lidvelocity &lt;lid&gt;, where &lt;lid&gt; = dimensionless velocity of lid<BR>
  -grashof &lt;gr&gt;, where &lt;gr&gt; = dimensionless temperature gradent<BR>
  -prandtl &lt;pr&gt;, where &lt;pr&gt; = dimensionless thermal/momentum diffusity ratio<BR>
  -contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex29.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Hall MHD with in two dimensions with time stepping and multigrid.<BR>-options_file ex29.options<BR>
other PETSc options<BR>
-resistivity &lt;eta&gt;<BR>
-viscosity &lt;nu&gt;<BR>
-skin_depth &lt;d_e&gt;<BR>
-larmor_radius &lt;rho_s&gt;<BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex30.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Steady-state 2D subduction flow, pressure and temperature solver.<BR>\\nThe flow is driven by the subducting slab.<BR>
  -ivisc &lt;#&gt; = rheology option.<BR>
      0 --- constant viscosity.<BR>
      1 --- olivine diffusion creep rheology (T-dependent, newtonian).<BR>
      2 --- weak temperature dependent rheology (1200/T, newtonian).<BR>
  -ibound &lt;#&gt; = boundary condition <BR>
      0 --- isoviscous analytic.<BR>
      1 --- stress free. <BR>
      2 --- stress is von neumann. <BR>
  -icorner &lt;#&gt; = i index of wedge corner point.<BR>
  -jcorner &lt;#&gt; = j index of wedge corner point.<BR>
  -slab_dip &lt;#&gt; = dip of the subducting slab in DEGREES.<BR>
  -back_arc &lt;#&gt; = distance from trench to back-arc in KM.(if unspecified then no back-arc). <BR>
  -u_back_arcocity &lt;#&gt; = full spreading rate of back arc as a factor of slab velocity. <BR>
  -width &lt;#&gt; = width of domain in KM.<BR>
  -depth &lt;#&gt; = depth of domain in KM.<BR>
  -lid_depth &lt;#&gt; = depth to the base of the lithosphere in KM.<BR>
  -slab_dip &lt;#&gt; = dip of the subducting slab in DEGREES.<BR>
  -slab_velocity &lt;#&gt; = velocity of slab in CM/YEAR.<BR>
  -slab_age &lt;#&gt; = age of slab in MILLIONS OF YEARS. <BR>
  -potentialT &lt;#&gt; = mantle potential temperature in degrees CENTIGRADE.<BR>
  -kappa &lt;#&gt; = thermal diffusivity in M^2/SEC. <BR>
  -peclet &lt;#&gt; = dimensionless Peclet number (default 111.691)<BR>\
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex5.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Bratu nonlinear PDE in 2d.<BR>We solve the  Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
domain, using distributed arrays (DAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex5f.F.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
<BR>
  Description: This example solves a nonlinear system in parallel with SNES.<BR>
  We solve the  Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
  domain, using distributed arrays (DAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex5f90.F.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
<BR>
  Description: Solves a nonlinear system in parallel with SNES.<BR>
  We solve the  Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
  domain, using distributed arrays (DAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex18.c.html"><CONCEPT>using distributed arrays</CONCEPT></A>
<menu>
Nonlinear Radiative Transport PDE with multigrid in 2d.<BR>Uses 2-dimensional distributed arrays.<BR>
A 2-dim simplified Radiative Transport test problem is used, with analytic Jacobian. <BR>
<BR>
  Solves the linear systems via multilevel methods <BR>
<BR>
The command line<BR>
options are:<BR>
  -tleft &lt;tl&gt;, where &lt;tl&gt; indicates the left Diriclet BC <BR>
  -tright &lt;tr&gt;, where &lt;tr&gt; indicates the right Diriclet BC <BR>
  -beta &lt;beta&gt;, where &lt;beta&gt; indicates the exponent in T <BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex20.c.html"><CONCEPT>using distributed arrays</CONCEPT></A>
<menu>
Nonlinear Radiative Transport PDE with multigrid in 3d.<BR>Uses 3-dimensional distributed arrays.<BR>
A 3-dim simplified Radiative Transport test problem is used, with analytic Jacobian. <BR>
<BR>
  Solves the linear systems via multilevel methods <BR>
<BR>
The command line<BR>
options are:<BR>
  -tleft &lt;tl&gt;, where &lt;tl&gt; indicates the left Diriclet BC <BR>
  -tright &lt;tr&gt;, where &lt;tr&gt; indicates the right Diriclet BC <BR>
  -beta &lt;beta&gt;, where &lt;beta&gt; indicates the exponent in T <BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex25.c.html"><CONCEPT>using distributed arrays</CONCEPT></A>
<menu>
Minimum surface problem<BR>Uses 2-dimensional distributed arrays.<BR>
<BR>
  Solves the linear systems via multilevel methods <BR>
<BR>
</menu>
</menu>
</body>
</html>