1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
|
<html>
<title>multicomponent</title><body bgcolor="FFFFFF">
<h2>multicomponent</h2>
<menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex19.c.html"><CONCEPT>ex19.c</CONCEPT></A>
<menu>
Nonlinear driven cavity with multigrid in 2d.<BR> <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
-lidvelocity <lid>, where <lid> = dimensionless velocity of lid<BR>
-grashof <gr>, where <gr> = dimensionless temperature gradent<BR>
-prandtl <pr>, where <pr> = dimensionless thermal/momentum diffusity ratio<BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex27.c.html"><CONCEPT>ex27.c</CONCEPT></A>
<menu>
Nonlinear driven cavity with multigrid and pusedo timestepping 2d.<BR> <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
-lidvelocity <lid>, where <lid> = dimensionless velocity of lid<BR>
-grashof <gr>, where <gr> = dimensionless temperature gradent<BR>
-prandtl <pr>, where <pr> = dimensionless thermal/momentum diffusity ratio<BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex29.c.html"><CONCEPT>ex29.c</CONCEPT></A>
<menu>
Hall MHD with in two dimensions with time stepping and multigrid.<BR>-options_file ex29.options<BR>
other PETSc options<BR>
-resistivity <eta><BR>
-viscosity <nu><BR>
-skin_depth <d_e><BR>
-larmor_radius <rho_s><BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex30.c.html"><CONCEPT>ex30.c</CONCEPT></A>
<menu>
Steady-state 2D subduction flow, pressure and temperature solver.<BR>\\nThe flow is driven by the subducting slab.<BR>
-ivisc <#> = rheology option.<BR>
0 --- constant viscosity.<BR>
1 --- olivine diffusion creep rheology (T-dependent, newtonian).<BR>
2 --- weak temperature dependent rheology (1200/T, newtonian).<BR>
-ibound <#> = boundary condition <BR>
0 --- isoviscous analytic.<BR>
1 --- stress free. <BR>
2 --- stress is von neumann. <BR>
-icorner <#> = i index of wedge corner point.<BR>
-jcorner <#> = j index of wedge corner point.<BR>
-slab_dip <#> = dip of the subducting slab in DEGREES.<BR>
-back_arc <#> = distance from trench to back-arc in KM.(if unspecified then no back-arc). <BR>
-u_back_arcocity <#> = full spreading rate of back arc as a factor of slab velocity. <BR>
-width <#> = width of domain in KM.<BR>
-depth <#> = depth of domain in KM.<BR>
-lid_depth <#> = depth to the base of the lithosphere in KM.<BR>
-slab_dip <#> = dip of the subducting slab in DEGREES.<BR>
-slab_velocity <#> = velocity of slab in CM/YEAR.<BR>
-slab_age <#> = age of slab in MILLIONS OF YEARS. <BR>
-potentialT <#> = mantle potential temperature in degrees CENTIGRADE.<BR>
-kappa <#> = thermal diffusivity in M^2/SEC. <BR>
-peclet <#> = dimensionless Peclet number (default 111.691)<BR>\
</menu>
</menu>
</body>
</html>
|