File: faq.html

package info (click to toggle)
petsc 2.3.2-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 77,732 kB
  • ctags: 314,526
  • sloc: ansic: 254,277; python: 26,350; cpp: 18,257; fortran: 15,694; makefile: 11,000; sh: 3,638; xml: 620; csh: 211
file content (734 lines) | stat: -rw-r--r-- 30,925 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
<html>
<body BGCOLOR="FFFFFF">

      <h1>Docs:&nbsp; FAQ</h1>



      <h4><a href="faq.html#General">General</a></h4>

      <menu> <li><a href="faq.html#petsc-mailing-list">How
can I subscribe to the PETSc&nbsp;mailing lists?</a></li>

      <li><a href="faq.html#computers">What kind of
parallel computers or clusters are needed
to use PETSc?</a></li>

      <li><a href="faq.html#license">What kind of
license is PETSc released under?</a></li>

      <li><a href="faq.html#why-c">Why is PETSc
programmed in C, instead of Fortran or C++?</a> </li>

      <li><a href="faq.html#logging-overhead">Does
all the PETSc error checking and logging reduce PETSc's efficiency?</a></li>

      <li><a href="faq.html#work-efficiently">How do
such a small group of people manage to write and maintain such a large
and marvelous package as PETSc?</a></li>

      <li><a href="#mg-log">How do I know the amount
of time spent on each level of the solver in multigrid (PCType of PCMG)
-pc_type mg.</a></li>

      <li><a href="#mpi-vec-to-seq-vec">How do I
collect all the values from a parallel PETSc vector into a sequential
vector on each processor?</a></li>

      <li><a href="#mpi-vec-to-mpi-vec">How do I
collect all the values from a parallel PETSc vector into a vector on
the zeroth (or any particular) processor?</a></li>

      </menu>

      <h4><a href="faq.html#Installation">Installation</a></h4>

      <menu> <li><a href="faq.html#already-installed">How
do I begin using PETSc if the software has already been completely
built and installed by someone else?</a></li>

      <li><a href="faq.html#reduce-disk-space">The
PETSc distribution is SO large. How can I reduce my disk space usage?</a></li>

      <li><a href="faq.html#petsc-uni">I want to use
PETSc only for uniprocessor programs. Must I still install and use a
version of MPI?</a></li>

      <li><a href="faq.html#no-x">Can I install
PETSc to not use X windows (either under Unix or Windows with gcc, the
gnu compiler)?</a></li>

      <li><a href="faq.html#use-mpi">Why do you use MPI</a>?</li>

              <li><a href="faq.html#mpi-compilers">What do I do if my MPI compiler wrappers are invalid</a>?</li>

      </menu>

      <p><a href="#usage"><b>Usage</b></a></p>

      <ul>

        <li><a href="#hypre">I want to use hypre
boomerAMG without GMRES
but when I run -pc_type hypre -pc_hypre_type boomeramg -ksp_type
preonly I don't get a very accurate answer!</a></li>

        <li><a href="#nosaij">You have AIJ and BAIJ
matrix formats, and SBAIJ for symmetric storage, how come no SAIJ?</a></li>

        <li><a href="#domaindecomposition">How do I
use PETSc for domain decomposition?</a></li>

        <li><a href="#blocks">Can I create BAIJ
matrices with different size blocks for different block rows?</a></li>

      </ul>

      <h4><a href="faq.html#Execution">Execution</a></h4>

      <menu> <li><a href="faq.html#long-link-time">PETSc
executables are SO big and take SO long to link.</a></li>

      <li><a href="faq.html#petsc-options">PETSc has
so many options for my program that it is hard to keep them straight.</a></li>

      <li><a href="faq.html#petsc-log-info">PETSc
automatically handles many of the details in parallel PDE solvers. How
can I understand what is really happening within my program? </a></li>

      <li><a href="faq.html#efficient-assembly">Assembling
large sparse matrices takes a long time. What can I do make this
process faster?</a></li>

      <li><a href="faq.html#log-summary">How can I
generate performance summaries with PETSc?</a></li>

      <li><a href="faq.html#parallel-roundoff">Why
do I get different answers on a different numbers of processors?</a></li>

      </menu>

      <h4><a href="faq.html#Debugging">Debugging</a></h4>

      <menu> <li><a href="faq.html#debug-ibmfortran">How
do I turn off PETSc signal handling so I can use the -C option on xlF?</a></li>

      <li><a href="faq.html#debug-cray">How do I
debug on the Cray T3D/T3E?</a></li>

      <li><a href="faq.html#start_in_debugger-doesnotwork">How
do I debug if -start_in_debugger does not work on my machine?</a></li>

      <li><a href="faq.html#debug-hang">How can I
see where my code is hanging?</a></li>

      <li><a href="faq.html#debug-inspect">How can I
inspect Vec and Mat values when in the debugger?</a></li>

      </menu>

      <h4><a href="faq.html#Shared%20Libraries">Shared
Libraries</a></h4>

      <menu> <li><a href="faq.html#install-shared">Can
I install PETSc libraries as shared libraries?</a></li>

      <li><a href="faq.html#why-use-shared">Why
should I use shared libraries?</a></li>

      <li><a href="faq.html#link-shared">How do I
link to the PETSc shared libraries?</a></li>

      <li><a href="faq.html#link-regular-lib">What
if I want to link to the regular .a library files?</a></li>

      <li><a href="faq.html#move-shared-exec">What
do I do if I want to move my executable to a different machine?</a></li>

      <li><a href="#dynamic-shared">What is the deal
with dynamic libraries (and difference with shared libraries)</a></li>

      </menu>

      <hr>
      <h3><a name="General">General</a></h3>

      <p><a name="petsc-mailing-list"><strong><font color="#ff0000">How can I subscribe to the
PETSc&nbsp;mailing lists?</font></strong> </a></p>

      <p>See <a href="miscellaneous/mailing-lists.html">miscellaneous/mailing-lists.html</a></p>


      <p><a name="computers"><strong><font color="#ff0000">What kind of parallel computers or clusters
are needed to use PETSc?</font></strong><br>

      </a><br>

PETSc can be used with
any kind of parallel system that supports MPI.<span style="font-weight: bold;"> BUT </span>for any decent
performance one needs&nbsp;</p>

      <ul>

        <li>a <span style="font-weight: bold;">fast,
low-latency interconnect</span>; any ethernet, even 10 gigE
simply cannot provide the needed performance.&nbsp;</li>

        <li><span style="font-weight: bold;">high
per-CPU memory performance</span>. Each CPU (core in dual core
systems) needs to have its <span style="font-weight: bold;">own</span>
memory bandwith of roughly 2 or more gigabytes. For example, standard
dual processor "PC's" will <span style="font-weight: bold;">not</span>
provide better performance when the second processor is used, that is,
you will not see speed-up when you using the second processor. This is
because the speed of sparse matrix computations is almost totally
determined by the speed of the memory, not the speed of the CPU.</li>

      </ul>

      <a name="license"><strong><font color="#ff0000">What kind of license is PETSc released under?</font></strong><br>

      </a><br>

See the <a href="copyright.html">copyright notice.</a>&nbsp;
      <span style="text-decoration: underline;"></span><strong></strong>
      <p><strong><a name="why-c"><font color="#ff0000">Why is PETSc programmed in C, instead of
Fortran or C++?</font> </a></strong></p>

      <p>C enables us to build data structures for storing sparse
matrices, solver information, etc. in ways that Fortran simply does not
allow. ANSI C is a complete standard that all modern C compilers
support. The language is identical on all machines. C++ is still
evolving and compilers on different machines are not identical. Using C
function pointers to provide data encapsulation and polymorphism allows
us to get many of the advantages of C++ without using such a large and
more complicated language. It would be natural and reasonable to have
coded PETSc in C++; we opted to use C instead. </p>

      <p><strong><a name="logging-overhead"><font color="#ff0000">Does all the PETSc error checking and
logging reduce PETSc's efficiency? </font></a></strong></p>

      <p>No, </p>

      <p><strong><font color="#ff0000"><a name="work-efficiently">How do such a small group of people
manage to write and maintain such a large and marvelous package as
PETSc?</a> </font></strong></p>

      <p>a) We work very efficiently. </p>

      <ol>

        <li>We use Emacs for all editing; the etags feature makes
navigating and changing our source code very easy. </li>

        <li>Our manual pages are generated automatically from
formatted comments in the code, thus alleviating the need for creating
and maintaining manual pages. </li>

        <li>We employ automatic nightly tests of PETSc on several
different machine architectures. This process helps us to discover
problems the day after we have introduced them rather than weeks or
months later. </li>

      </ol>

      <p>b) We are very careful in our design (and are constantly
revising our design) to make the package easy to use, write, and
maintain. </p>

      <p>c) We are willing to do the grunt work of going through
all the code regularly to make sure that <u><strong>all</strong></u>
code conforms to our interface design. We will <u><strong>never</strong></u>
keep in a bad design decision simply because changing it will require a
lot of editing; we do a lot of editing. </p>

      <p>d) We constantly seek out and experiment with new design
ideas; we retain the the useful ones and discard the rest. All of these
decisions are based on <u><strong>practicality</strong></u>.
      </p>

      <p>e) Function and variable names are chosen to be very
consistent throughout the software. Even the rules about capitalization
are designed to make it easy to figure out the name of a particular
object or routine. Our memories are terrible, so careful consistent
naming puts less stress on our limited human RAM. </p>

      <p>f) The PETSc directory tree is carefully designed to
make it easy to move throughout the entire package. </p>

      <p>g) Our bug reporting system, based on email to <a href="../documentation/bugreporting.html">petsc-maint@mcs.anl.gov</a>,
makes it very simple to keep track of what bugs have been found and
fixed. In addition, the bug report system retains an archive of all
reported problems and fixes, so it is easy to refind fixes to
previously discovered problems. </p>

      <p>h) We contain the complexity of PETSc by using
object-oriented programming techniques including data encapsulation
(this is why your program cannot, for example, look directly at what is
inside the object Mat) and polymorphism (you call MatMult() regardless
of whether your matrix is dense, sparse, parallel or sequential; you
don't call a different routine for each format).</p>

      <p>i) We try to provide the functionality requested by our
users.</p>

      <p>j) We never sleep. </p>

      <p><strong><a name="mg-log"><font color="#ff0000">How do I know the amount of time spent on
each level of the multigrid solver/preconditioner?</font></a></strong></p>

      <p>Run with -log_summary and -pc_mg_log</p>

      <p><strong><a name="mpi-vec-to-seq-vec"><font color="#ff0000">How do I collect all the values from a
parallel PETSc vector into a sequential vector on each processor?</font></a></strong></p>

      <p> </p>

      <ul>

        <li> Create the scatter context that will do the
communication </li>

        <li> <a href="manualpages/Vec/VecScatterCreateToAll.html"><strong>VecScatterCreateToAll</strong></a>(v,&amp;ctx,&amp;w);</li>

      </ul>

      <li> Actually do the communication; this can be done
repeatedly as needed</li>

      <ul>

        <li> <a href="manualpages/Vec/VecScatterBegin.html"><strong>VecScatterBegin</strong></a>(v,w,INSERT_VALUES,SCATTER_FORWARD,ctx);</li>

        <li> <a href="manualpages/Vec/VecScatterEnd.html"><strong>VecScatterEnd</strong></a>(v,w,INSERT_VALUES,SCATTER_FORWARD,ctx);</li>

      </ul>

      <li> Remember to free the scatter context when no longer
needed</li>

      <ul>

        <li> <a href="manualpages/Vec/VecScatterDestroy.html"><strong>VecScatterDestroy</strong></a>(ctx);</li>

      </ul>

Note that this simply concatenates in the parallel ordering of the
vector. If you are using a vector from DACreateGlobalVector() you
likely want to first call DAGlobalToNaturalBegin/End() to scatter the
original vector into the natural ordering in a new global vector before
calling VecScatterBegin/End() to scatter the natural vector onto all
processes.
      <p></p>

      <p><strong><a name="mpi-vec-to-mpi-vec"><font color="#ff0000">How do I collect all the values from a
parallel PETSc vector into a vector on the zeroth processor?</font></a></strong></p>

      <p> </p>

      <ul>

        <li> Create the scatter context that will do the
communication </li>

        <ul>

          <li> <a href="manualpages/Vec/VecScatterCreateToZero.html"><strong>VecScatterCreateToZero</strong></a>(v,&amp;ctx,&amp;w);</li>

        </ul>

        <li> Actually do the communication; this can be done
repeatedly as needed</li>

        <ul>

          <li> <a href="manualpages/Vec/VecScatterBegin.html"><strong>VecScatterBegin</strong></a>(v,w,INSERT_VALUES,SCATTER_FORWARD,ctx);</li>

          <li> <a href="manualpages/Vec/VecScatterEnd.html"><strong>VecScatterEnd</strong></a>(v,w,INSERT_VALUES,SCATTER_FORWARD,ctx);</li>

        </ul>

        <li> Remember to free the scatter context when no longer
needed</li>

        <ul>

          <li> <a href="manualpages/Vec/VecScatterDestroy.html"><strong>VecScatterDestroy</strong></a>(ctx);</li>

        </ul>

      </ul>

Note that this simply concatenates in the parallel ordering of the
vector. If you are using a vector from DACreateGlobalVector() you
likely want to first call DAGlobalToNaturalBegin/End() to scatter the
original vector into the natural ordering in a new global vector before
calling VecScatterBegin/End() to scatter the natural vector onto
process 0.
      <p>&nbsp;</p>

      <hr>
      <h3><a name="Installation">Installation</a></h3>

      <p><strong><a name="already-installed"><font color="#ff0000">How do I begin using PETSc if the software
has already been completely built and installed by someone else?</font>
      </a></strong></p>

      <p>Assuming that the PETSc libraries have been successfully
built for a particular architecture and level of optimization, a new
user must merely: </p>

      <p>a) Set the environmental variable PETSC_DIR to the full
path of the PETSc home directory (for example, /home/username/petsc). </p>

      <p>b) Set the environmental variable PETSC_ARCH, which
indicates
the configuration on which PETSc will be used.&nbsp; Note that the
PETSC_ARCH is simply a name the installer used when installing the
libraries. There many be several on a single system, like mylinux-g for
the debug versions of the library and mylinux-O for the optimized
version, or petscdebug for the debug version &nbsp;and petscopt for
the
optimized version. </p>

      <p>c) Begin by copying one of the many PETSc examples (in,
for example, petsc/src/ksp/examples/tutorials) and its corresponding
makefile. </p>

      <p>d) See the introductory section of the PETSc users
manual for tips on documentation. </p>

      <p><a name="reduce-disk-space"><strong><font color="#ff0000">The PETSc distribution is SO large. How can
I reduce my disk space usage?</font> </strong></a></p>

      <p>a) The directory ${PETSC_DIR}/docs contains a set of
HTML manual pages in for use with a browser. You can delete these pages
to save about .8 Mbyte of space. </p>

      <p>b) The PETSc users manual is provided in PDF in
${PETSC_DIR}/docs/manual.pdf. You can delete this.&nbsp; </p>

      <p>c) The PETSc test suite contains sample output for many
of the examples. These are contained in the PETSc directories
${PETSC_DIR}/src/*/examples/tutorials/output and
${PETSC_DIR}/src/*/examples/tests/output. Once you have run the test
examples, you may remove all of these directories to save about 300
Kbytes of disk space. </p>

      <p>d) The debugging versions of the libraries are larger
than the optimized versions&nbsp;. In a pinch you can work with the
optimized version although we do not recommend it generally because
finding bugs is much easier with the debug version. </p>

      <p>e) <strong><font color="#ff0000"><a name="petsc-uni">I want to use PETSc only for uniprocessor
programs. Must I still install and use a version of MPI</a>?</font>
      </strong></p>

No, run config/configure.py with the option --with-mpi=0<br>

      <p><strong><a name="no-x"><font color="#ff0000">Can I install PETSc to not use X windows
(either under Unix or Windows with gcc, the gnu compiler)?</font></a></strong></p>

      <p>Yes. Run config/configure.py with the additional flag
--with-x=0</p>

      <p><strong><font color="#ff0000"><a name="use-mpi">Why do you use MPI</a>? </font></strong></p>

      <p>MPI is the message-passing standard. Because it is a
standard, it will not change over time; thus, we do not have to change
PETSc every time the provider of the message-passing system decides to
make an interface change. MPI was carefully designed by experts from
industry, academia, and government labs to provide the highest quality
performance and capability. For example, the careful design of
communicators in MPI allows the easy nesting of different libraries; no
other message-passing system provides this support. All of the major
parallel computer vendors were involved in the design of MPI and have
committed to providing quality implementations. In addition, since MPI
is a standard, several different groups have already provided complete
free implementations. Thus, one does not have to rely on the technical
skills of one particular group to provide the message-passing
libraries. Today, MPI is the only practical, portable approach to
writing efficient parallel numerical software. </p>

            <p><strong><font color="#ff0000"><a name="mpi-compilers">What do I do if my MPI compiler wrappers are invalid</a>?</font></strong></p>

            <p>Most MPI implementations provide compiler wrappers (such as mpicc) which give the include and link
              options necessary to use that verson of MPI to the underlying compilers . These wrappers are either absent
              or broken in the MPI pointed to by --with-mpi-dir. You can rerun the configure with the additional option
              --with-mpi-compilers=0, which will try to auto-detect working compilers; however, these compilers may be
              incompatible with the particular MPI build. If this fix does not work, run with --with-cc=c_compiler where
              you know c_compiler works with this particular MPI, and likewise for C++ and Fortran.</p>

      <p>&nbsp; </p>

      <hr>
      <h3><a name="Using">Using</a></h3>

      <p>&nbsp;<strong><a name="hypre"><font color="#ff0000">I want to
use hypre boomerAMG without GMRES but when I run -pc_type hypre
-pc_hypre_type boomeramg -ksp_type preonly I don't get a very accurate
answer!</font></a></strong> </p>

You should run with -ksp_type richardson to have PETSc run several V or
W cycles. -ksp_type of preonly causes boomerAMG to use only one V/W
cycle. You can control how many cycles are used in a single application
of the boomerAMG preconditioner with
-pc_hypre_boomeramg_max_iter <it> (the default is 1). You can
also control the tolerance boomerAMG uses to decide if to stop before
max_iter with -pc_hypre_boomeramg_tol <tol> (the default is
1.e-7). Run with -ksp_view to see all the hypre options used and -help
| grep boomeramg to see all the command line options. </tol></it>
      <p>&nbsp;<strong><a name="nosaij"><font color="#ff0000">You have AIJ and BAIJ matrix formats, and
SBAIJ for symmetric storage, how come no SAIJ</font></a></strong>
      </p>

Just for historical reasons, the SBAIJ format with blocksize one is
just as efficient as an SAIJ would be
      <p></p>

      <p>&nbsp;<strong><a name="long-link-time"><font color="#ff0000">How do I use P</font></a></strong><strong><a name="domaindecomposition"><font color="#ff0000">ETSc
for Domain Decomposition?</font></a></strong> </p>

      <p>PETSc includes Additive Schwarz methods in the suite of
preconditioners. These may be activated with the runtime
option&nbsp;<br>

      <i>-pc_type asm.</i>&nbsp;<br>

Various other options may be set, including the degree of overlap<br>

      <i> -pc_asm_overlap &lt;number&gt;</i><br>

the type of restriction/extension&nbsp;<br>

      <i>-pc_asm_type [basic,restrict,interpolate,none] </i>
- Sets ASM type and several others. You may see the available ASM
options by using<br>

      <i> -pc_type asm -help</i><br>

Also, see the procedural interfaces in the manual pages, with names <b>PCASMxxxx()</b><br>

and check the index of the users manual for <b>PCASMxxx</b>().<br>

      <br>

Note that Paulo Goldfeld contributed a preconditioner "nn", a version
of your Neumann-Neumann balancing preconditioner; this may be activated
via<br>

      <i> -pc_type nn</i><br>

The program petsc/src/contrib/oberman/laplacian_ql contains an example
of its use.<br>

      </p>

      <hr>
      <p>&nbsp;<strong><a name="blocks"><font color="#ff0000">Can I create BAIJ matrices with different
size blocks for different block rows?</font></a></strong></p>

Sorry, this is not possible, the BAIJ format only supports a single
fixed block size on the entire matrix. But the AIJ format automatically
searches for matching rows and thus still takes advantage of the
natural blocks in your matrix to obtain good performance. Unfortunately
you cannot use the MatSetValuesBlocked().
      <hr>
      <h3><a name="Execution">Execution</a></h3>

      <p><strong><a name="long-link-time"><font color="#ff0000">PETSc executables are SO big and take SO
long to link</font>.</a></strong></p>

      <p>We find this annoying as well. On most machines PETSc
can use
shared libraries, so executables should be much smaller, run
config/configure.py with the additional option --with-shared. Also, if
you have room, compiling and linking PETSc on your machine's /tmp disk
or similar local disk, rather than over the network will be much
faster. </p>

      <p><a name="petsc-options"><strong><font color="#ff0000">PETSc has so many options for my program
that it is hard to keep them straight.</font></strong> </a></p>

      <p>Running the PETSc program with the option -help will
print of many of the options. To print the options that have been
specified within a program, employ -optionsleft to print any options
that the user specified but were not actually used by the program and
all options used; this is helpful for detecting typo errors. </p>

      <p><strong><a name="petsc-log-info"><font color="#ff0000">PETSc automatically handles many of the
details in parallel PDE solvers. How can I understand what is really
happening within my program?</font> </a></strong></p>

      <p>You can use the option -info to get more details about
the solution process. The option -log_summary provides details about
the distribution of time spent in the various phases of the solution
process. You can use ${PETSC_DIR}/bin/petscview, which is a Tk/Tcl
utility that provides high-level visualization of the computations
within a PETSc program. This tool illustrates the changing
relationships among objects during program execution in the form of a
dynamic icon tree.</p>

      <p><strong><a name="efficient-assembly"><font color="#ff0000">Assembling large sparse matrices takes a
long time. What can I do make this process faster?</font> </a></strong></p>

      <p>See the Performance chapter of the users manual for many
tips on this.</p>

      <p>a) Preallocate enough space for the sparse matrix. For
example, rather than calling
MatCreateSeqAIJ(comm,n,n,0,PETSC_NULL,&amp;mat); call
MatCreateSeqAIJ(comm,n,n,rowmax,PETSC_NULL,&amp;mat); where rowmax
is the maximum number of nonzeros expected per row. Or if you know the
number of nonzeros per row, you can pass this information in instead of
the PETSC_NULL argument. See the&nbsp; manual pages for each of the
MatCreateXXX() routines.</p>

      <p>b) Insert blocks of values into the matrix, rather than
individual components.&nbsp;</p>

      <p><strong><a name="log-summary"><font color="#ff0000">How can I generate performance summaries
with PETSc?</font> </a></strong></p>

      <p>Use these options at runtime: -log_summary. See the
Performance chapter of the users manual for information on interpreting
the summary data. If using the PETSc (non)linear solvers, one can also
specify -snes_view or -ksp_view for a printout of solver info. Only the
highest level PETSc object used needs to specify the view option. </p>

      <p><strong><a name="parallel-roundoff"><font color="#ff0000">Why do I get different answers on a
different numbers of processors?</font> </a></strong></p>

      <p>Most commonly, you are using a preconditioner which
behaves differently based upon the number of processors, such as
Block-Jacobi which is the PETSc default. However, since computations
are reordered in parallel, small roundoff errors will still be present
with identical mathematical formulations. If you set a tighter linear
solver tolerance (using -ksp_rtol), the differences will decrease.</p>

      <hr>
      <h3><a name="Debugging">Debugging</a></h3>

      <p><a name="debug-ibm"><font color="#ff0000"><strong>How
do I turn off PETSc signal handling so I can use the -C option on xlF?</strong>
      </font></a></p>

      <p>Immediately after calling PetscInitialize() call
PetscPopSignalHandler()</p>

      <p>Some Fortran compilers including the IBM xlf, xlF etc
compilers have a compile option (-C for IBM's) that causes all array
access in Fortran to be checked that they are in-bounds. This is a
great feature but does require that the array dimensions be set
explicitly, not with a *.</p>

      <p><a name="debug-cray"><font color="#ff0000"><strong>How do I debug on the Cray
T3D/T3E?</strong> </font></a></p>

      <p>Use TotalView. First, link your program with the
additional option -Xn where n is the number of processors to use when
debugging. Then run totalview programname -a your arguments The -a is
used to distinguish between totalview arguments and yours. </p>

      <p><strong><a name="start_in_debugger-doesnotwork"><font color="#ff0000">How do I debug if -start_in_debugger does
not work on my machine?</font> </a></strong></p>

      <p>For a uniprocessor job, just try&nbsp;the debugger
directly, for example: gdb ex1 </p>

      <p><a name="debug-hang"><font color="#ff0000"><strong>How do I see where my code is
hanging?</strong> </font></a></p>

      <p>You can use the -start_in_debugger option to start all
processes in the debugger (each will come up in its own xterm). Then
use cont (for continue) in each xterm. Once you are sure that the
program is hanging, hit control-c in each xterm and then use 'where' to
print a stack trace for each process.</p>

      <p><a name="debug-inspect"><font color="#ff0000"><strong>How can I inspect Vec and Mat
values when in the debugger?</strong> </font></a></p>

      <p>I will illustrate this with gdb, but it should be
similar on other debuggers. You can look at local Vec values directly
by obtaining the array. For a Vec v, we can print all local values using</p>

      <p>(gdb) p ((Vec_Seq*)
v-&gt;data)-&gt;array[0]@v-&gt;n</p>

      <p>However, this becomes much more complicated for a
matrix. Therefore, it is advisable to use the default viewer to look at
the object. For a Vec v and a Mat m, this would be</p>

      <p>(gdb) call VecView(v, 0)</p>

      <p>(gdb) call MatView(m, 0)</p>

      <p>or with a communicator other than MPI_COMM_WORLD,</p>

      <p>(gdb) call MatView(m,
PETSC_VIEWER_STDOUT_(m-&gt;comm))</p>

      <hr>
      <h3><a name="Shared Libraries">Shared Libraries</a></h3>

      <p><font color="#ff0000"><strong><a name="install-shared">Can I install PETSc libraries as
shared libraries</a>?</strong></font></p>

      <p>Yes.&nbsp;Use the config/configure.py option
--with-shared</p>

      <p><a name="why-use-shared"><strong><font color="#ff0000">Why should I use shared libraries?</font></strong></a></p>

      <p>When you link to shared libraries, the function symbols
from the shared libraries are not copied in the executable. This way
the size of the executable is considerably smaller than when using
regular libraries. This helps in a couple of ways: <br>

&nbsp;&nbsp;&nbsp; 1) saves disk space when more than one
executable is created, and &nbsp; <br>

&nbsp;&nbsp;&nbsp; 2) improves the compile time immensly,
because the compiler has to write a much smaller file (executable) to
the disk.</p>

      <p><font color="#ff0000"><strong><a name="link-shared">How do I link to the PETSc shared
libraries</a>?</strong></font></p>

      <p>By default, the compiler should pick up the shared
libraries instead of the regular ones. Nothing special should be done
for this.</p>

      <p><font color="#ff0000"><strong><a name="link-regular-lib">What If I want to link to the
regular .a library files</a>?</strong></font></p>

      <p>You must run config/configure.py without the option
--with-shared (you can use a different PETSC_ARCH for this build so you
can easily switch between the two).</p>

      <p><a name="move-shared-exec"><font color="#ff0000"><strong>What do I do if I want to move
my executable to a different machine?</strong></font></a></p>

      <p>You would also need to have access to the shared
libraries on this new machine. The other alternative is to build the
exeutable without shared libraries by first deleting the shared
libraries, and then creating the executable.&nbsp;</p>

      <p><a name="dynamic-shared"><font color="#ff0000"><strong>What is the deal with dynamic
libraries (and difference between shared libraries)</strong></font></a></p>

      <p>PETSc libraries are installed as dynamic libraries when
the
config/configure.py flag --with-dynamic is used. The difference with
this - from shared libraries - is the way the libraries are used. From
the program the library is loaded using dlopen() - and the functions
are searched using dlsymm(). This separates the resolution of function
names from link-time to run-time - i.e when dlopen()/dlsymm() are
called.</p>

      <p>When using Dynamic libraries - PETSc libraries cannot be
moved to a different location after they are built. </p>

      <p>&nbsp; </p>

      <p></body>
</html>