1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML3.2 EN">
<HTML>
<HEAD>
<META NAME="GENERATOR" CONTENT="DOCTEXT">
<TITLE>MatLoad</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFFF">
<A NAME="MatLoad"><H1>MatLoad</H1></A>
Loads a matrix that has been stored in binary format with <A HREF="../Mat/MatView.html#MatView">MatView</A>(). The matrix format is determined from the options database. Generates a parallel MPI matrix if the communicator has more than one processor. The default matrix type is AIJ.
<H3><FONT COLOR="#CC3333">Synopsis</FONT></H3>
<PRE>
#include "petscmat.h"
PetscErrorCode PETSCMAT_DLLEXPORT MatLoad(PetscViewer viewer, MatType outtype,Mat *newmat)
</PRE>
Collective on <A HREF="../Viewer/PetscViewer.html#PetscViewer">PetscViewer</A>
<P>
<H3><FONT COLOR="#CC3333">Input Parameters</FONT></H3>
<TABLE border="0" cellpadding="0" cellspacing="0">
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>viewer </B></TD><TD>- binary file viewer, created with <A HREF="../Viewer/PetscViewerBinaryOpen.html#PetscViewerBinaryOpen">PetscViewerBinaryOpen</A>()
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>outtype </B></TD><TD>- type of matrix desired, for example <A HREF="../Mat/MATSEQAIJ.html#MATSEQAIJ">MATSEQAIJ</A>,
<A HREF="../Mat/MATMPIROWBS.html#MATMPIROWBS">MATMPIROWBS</A>, etc. See types in petsc/include/petscmat.h.
</TD></TR></TABLE>
<P>
<H3><FONT COLOR="#CC3333">Output Parameters</FONT></H3>
<DT><B>newmat </B> -new matrix
<br>
<P>
<H3><FONT COLOR="#CC3333">Basic Options Database Keys</FONT></H3>
<TABLE border="0" cellpadding="0" cellspacing="0">
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>-matload_type seqaij </B></TD><TD>- AIJ type
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>-matload_type mpiaij </B></TD><TD>- parallel AIJ type
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>-matload_type seqbaij </B></TD><TD>- block AIJ type
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>-matload_type mpibaij </B></TD><TD>- parallel block AIJ type
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>-matload_type seqsbaij </B></TD><TD>- block symmetric AIJ type
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>-matload_type mpisbaij </B></TD><TD>- parallel block symmetric AIJ type
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>-matload_type seqbdiag </B></TD><TD>- block diagonal type
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>-matload_type mpibdiag </B></TD><TD>- parallel block diagonal type
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>-matload_type mpirowbs </B></TD><TD>- parallel rowbs type
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>-matload_type seqdense </B></TD><TD>- dense type
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>-matload_type mpidense </B></TD><TD>- parallel dense type
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>-matload_symmetric </B></TD><TD>- matrix in file is symmetric
</TD></TR></TABLE>
<P>
<H3><FONT COLOR="#CC3333">More Options Database Keys</FONT></H3>
Used with block matrix formats (<A HREF="../Mat/MATSEQBAIJ.html#MATSEQBAIJ">MATSEQBAIJ</A>, <A HREF="../Mat/MATMPIBDIAG.html#MATMPIBDIAG">MATMPIBDIAG</A>, ...) to specify
block <A HREF="../Sys/size.html#size">size</A>
<DT><B>-matload_block_size <bs></B> -
Used to specify block diagonal numbers for <A HREF="../Mat/MATSEQBDIAG.html#MATSEQBDIAG">MATSEQBDIAG</A> and <A HREF="../Mat/MATMPIBDIAG.html#MATMPIBDIAG">MATMPIBDIAG</A> formats
<br>
<DT><B>-matload_bdiag_diags <s1,s2,s3,...></B> -
<br>
<P>
<H3><FONT COLOR="#CC3333">C++ variants</FONT></H3><TABLE border="0" cellpadding="0" cellspacing="0">
<TR><TD WIDTH=40></TD><TD> Mat MatLoad(PetscViewer v,MatType t)<TD WIDTH=20></TD><TD>-></TD><TD WIDTH=20></TD><TD>MatLoad(v,t,&a); return a;</TR></TD>
</TABLE>
<H3><FONT COLOR="#CC3333">Notes</FONT></H3>
<A HREF="../Mat/MatLoad.html#MatLoad">MatLoad</A>() automatically loads into the options database any options
given in the file filename.info where filename is the name of the file
that was passed to the <A HREF="../Viewer/PetscViewerBinaryOpen.html#PetscViewerBinaryOpen">PetscViewerBinaryOpen</A>(). The options in the info
file will be ignored if you use the -viewer_binary_skip_info option.
<P>
In parallel, each processor can load a subset of rows (or the
entire matrix). This routine is especially useful when a large
matrix is stored on disk and only part of it existsis desired on each
processor. For example, a parallel solver may access only some of
the rows from each processor. The algorithm used here reads
relatively small blocks of data rather than reading the entire
matrix and then subsetting it.
<P>
<H3><FONT COLOR="#CC3333">Notes for advanced users</FONT></H3>
Most users should not need to know the details of the binary storage
format, since <A HREF="../Mat/MatLoad.html#MatLoad">MatLoad</A>() and <A HREF="../Mat/MatView.html#MatView">MatView</A>() completely hide these details.
But for anyone who's interested, the standard binary matrix storage
format is
<P>
<pre>
int MAT_FILE_COOKIE
</pre>
<pre>
int number of rows
</pre>
<pre>
int number of columns
</pre>
<pre>
int total number of nonzeros
</pre>
<pre>
int *number nonzeros in each row
</pre>
<pre>
int *column indices of all nonzeros (starting index is zero)
</pre>
<pre>
<A HREF="../Sys/PetscScalar.html#PetscScalar">PetscScalar</A> *values of all nonzeros
</pre>
<P>
PETSc automatically does the byte swapping for
machines that store the bytes reversed, e.g. DEC alpha, freebsd,
linux, Windows and the paragon; thus if you write your own binary
read/write routines you have to swap the bytes; see <A HREF="../Sys/PetscBinaryRead.html#PetscBinaryRead">PetscBinaryRead</A>()
and <A HREF="../Sys/PetscBinaryWrite.html#PetscBinaryWrite">PetscBinaryWrite</A>() to see how this may be done.
<P>
<H3><FONT COLOR="#CC3333">Keywords</FONT></H3>
matrix, load, binary, input
<BR>
<P>
<H3><FONT COLOR="#CC3333">See Also</FONT></H3>
<A HREF="../Viewer/PetscViewerBinaryOpen.html#PetscViewerBinaryOpen">PetscViewerBinaryOpen</A>(), <A HREF="../Mat/MatView.html#MatView">MatView</A>(), <A HREF="../Vec/VecLoad.html#VecLoad">VecLoad</A>()
<BR>
<P>
<P><B><P><B><FONT COLOR="#CC3333">Level:</FONT></B>beginner
<BR><FONT COLOR="#CC3333">Location:</FONT></B><A HREF="../../../src/mat/utils/matio.c.html#MatLoad">src/mat/utils/matio.c</A>
<BR><A HREF="./index.html">Index of all Mat routines</A>
<BR><A HREF="../../index.html">Table of Contents for all manual pages</A>
<BR><A HREF="../singleindex.html">Index of all manual pages</A>
<P><H3><FONT COLOR="#CC3333">Examples</FONT></H3>
<A HREF="../../../src/mat/examples/tutorials/ex1.c.html">src/mat/examples/tutorials/ex1.c.html</A><BR>
<A HREF="../../../src/mat/examples/tutorials/ex4.c.html">src/mat/examples/tutorials/ex4.c.html</A><BR>
<A HREF="../../../src/ksp/ksp/examples/tutorials/ex10.c.html">src/ksp/ksp/examples/tutorials/ex10.c.html</A><BR>
<A HREF="../../../src/ksp/ksp/examples/tutorials/ex27.c.html">src/ksp/ksp/examples/tutorials/ex27.c.html</A><BR>
</BODY></HTML>
|