File: Distribution.hh

package info (click to toggle)
petsc 3.1.dfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 131,360 kB
  • ctags: 491,710
  • sloc: ansic: 288,064; cpp: 66,909; python: 28,799; fortran: 19,153; makefile: 13,945; sh: 3,502; f90: 1,655; xml: 620; csh: 230; java: 13
file content (1163 lines) | stat: -rw-r--r-- 71,851 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
#ifndef included_ALE_Distribution_hh
#define included_ALE_Distribution_hh

#ifndef  included_ALE_Mesh_hh
#include <Mesh.hh>
#endif

#ifndef  included_ALE_Completion_hh
#include <Completion.hh>
#endif

// Attempt to unify all of the distribution mechanisms:
//   one to many  (distributeMesh)
//   many to one  (unifyMesh)
//   many to many (Numbering)
// as well as things being distributed
//   Section
//   Sieve        (This sends two sections, the points and cones)
//   Numbering    (Should be an integer section)
//   Global Order (should be an integer section with extra methods)
//
// 0) Create the new object to hold the communicated data
//
// 1) Create Overlap
//    There may be special ways to do this based upon what we know at the time
//
// 2) Create send and receive sections over the interface
//    These have a flat topology now, consisting only of the overlap nodes
//    We could make a full topology on the overlap (maybe it is necessary for higher order)
//
// 3) Communication section
//    Create sizer sections on interface (uses constant sizer)
//    Communicate sizes on interface (uses custom filler)
//      Fill send section
//      sendSection->startCommunication();
//      recvSection->startCommunication();
//      sendSection->endCommunication();
//      recvSection->endCommunication();
//
//    Create section on interface (uses previous sizer)
//    Communicate values on interface (uses custom filler)
//      Same stuff as above
//    
// 4) Update new section with old local values (can be done in between the communication?)
//    Loop over patches in new topology
//      Loop over chart from patch in old atlas
//        If this point is in the new sieve from patch
//          Set to old fiber dimension
//    Order and allocate new section
//    Repeat loop, but update values
//
// 5) Update new section with old received values
//    Loop over patches in discrete topology of receive section (these are ranks)
//      Loop over base of discrete sieve (we should transform this to a chart to match above)
//        Get new patch from overlap, or should the receive patches be <rank, patch>?
//        Guaranteed to be in the new sieve from patch (but we could check anyway)
//          Set to recevied fiber dimension
//    Order and allocate new section
//    Repeat loop, but update values
//
// 6) Synchronize PETSc tags (can I get around this?)
namespace ALE {
  template<typename Mesh, typename Partitioner = ALE::Partitioner<> >
  class DistributionNew {
  public:
    typedef Partitioner                                   partitioner_type;
    typedef typename Mesh::point_type                     point_type;
    typedef OrientedPoint<point_type>                     oriented_point_type;
    typedef typename Partitioner::part_type               rank_type;
    typedef ALE::ISection<rank_type, point_type>          partition_type;
    typedef ALE::Section<ALE::Pair<int, point_type>, point_type>          cones_type;
    typedef ALE::Section<ALE::Pair<int, point_type>, oriented_point_type> oriented_cones_type;
  public:
    template<typename Sieve, typename NewSieve, typename Renumbering, typename SendOverlap, typename RecvOverlap>
    static Obj<cones_type> completeCones(const Obj<Sieve>& sieve, const Obj<NewSieve>& newSieve, Renumbering& renumbering, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap) {
      typedef ALE::ConeSection<Sieve> cones_wrapper_type;
      Obj<cones_wrapper_type> cones        = new cones_wrapper_type(sieve);
      Obj<cones_type>         overlapCones = new cones_type(sieve->comm(), sieve->debug());

      ALE::Pullback::SimpleCopy::copy(sendMeshOverlap, recvMeshOverlap, cones, overlapCones);
      if (sieve->debug()) {overlapCones->view("Overlap Cones");}
      // Inserts cones into parallelMesh (must renumber here)
      ALE::Pullback::InsertionBinaryFusion::fuse(overlapCones, recvMeshOverlap, renumbering, newSieve);
      return overlapCones;
    };
    template<typename Sieve, typename NewSieve, typename SendOverlap, typename RecvOverlap>
    static Obj<oriented_cones_type> completeConesV(const Obj<Sieve>& sieve, const Obj<NewSieve>& newSieve, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap) {
      typedef ALE::OrientedConeSectionV<Sieve> oriented_cones_wrapper_type;
      Obj<oriented_cones_wrapper_type> cones        = new oriented_cones_wrapper_type(sieve);
      Obj<oriented_cones_type>         overlapCones = new oriented_cones_type(sieve->comm(), sieve->debug());

      ALE::Pullback::SimpleCopy::copy(sendMeshOverlap, recvMeshOverlap, cones, overlapCones);
      if (sieve->debug()) {overlapCones->view("Overlap Cones");}
      ALE::Pullback::InsertionBinaryFusion::fuse(overlapCones, recvMeshOverlap, newSieve);
      return overlapCones;
    };
    template<typename Sieve, typename NewSieve, typename Renumbering, typename SendOverlap, typename RecvOverlap>
    static Obj<oriented_cones_type> completeConesV(const Obj<Sieve>& sieve, const Obj<NewSieve>& newSieve, Renumbering& renumbering, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap) {
      typedef ALE::OrientedConeSectionV<Sieve> oriented_cones_wrapper_type;
      Obj<oriented_cones_wrapper_type> cones        = new oriented_cones_wrapper_type(sieve);
      Obj<oriented_cones_type>         overlapCones = new oriented_cones_type(sieve->comm(), sieve->debug());

      ALE::Pullback::SimpleCopy::copy(sendMeshOverlap, recvMeshOverlap, cones, overlapCones);
      if (sieve->debug()) {overlapCones->view("Overlap Cones");}
      // Inserts cones into parallelMesh (must renumber here)
      ALE::Pullback::InsertionBinaryFusion::fuse(overlapCones, recvMeshOverlap, renumbering, newSieve);
      return overlapCones;
    };
    // Given a partition of sieve points, copy the mesh pieces to each process and fuse into the new mesh
    //   Return overlaps for the cone communication
    template<typename Renumbering, typename NewMesh, typename SendOverlap, typename RecvOverlap>
    static void completeMesh(const Obj<Mesh>& mesh, const Obj<partition_type>& partition, Renumbering& renumbering, const Obj<NewMesh>& newMesh, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap) {
      typedef ALE::Sifter<rank_type,rank_type,rank_type> part_send_overlap_type;
      typedef ALE::Sifter<rank_type,rank_type,rank_type> part_recv_overlap_type;
      const Obj<part_send_overlap_type> sendOverlap = new part_send_overlap_type(partition->comm());
      const Obj<part_recv_overlap_type> recvOverlap = new part_recv_overlap_type(partition->comm());

      // Create overlap for partition points
      //   TODO: This needs to be generalized for multiple sources
      Partitioner::createDistributionPartOverlap(sendOverlap, recvOverlap);
      // Communicate partition pieces to processes
      Obj<partition_type> overlapPartition = new partition_type(partition->comm(), partition->debug());

      overlapPartition->setChart(partition->getChart());
      ALE::Pullback::SimpleCopy::copy(sendOverlap, recvOverlap, partition, overlapPartition);
      // Create renumbering
      const int         rank           = partition->commRank();
      const point_type *localPoints    = partition->restrictPoint(rank);
      const int         numLocalPoints = partition->getFiberDimension(rank);

      for(point_type p = 0; p < numLocalPoints; ++p) {
        renumbering[localPoints[p]] = p;
      }
      const Obj<typename part_recv_overlap_type::traits::baseSequence> rPoints    = recvOverlap->base();
      point_type                                                       localPoint = numLocalPoints;

      for(typename part_recv_overlap_type::traits::baseSequence::iterator p_iter = rPoints->begin(); p_iter != rPoints->end(); ++p_iter) {
        const Obj<typename part_recv_overlap_type::coneSequence>& ranks           = recvOverlap->cone(*p_iter);
        const rank_type&                                          remotePartPoint = ranks->begin().color();
        const point_type                                         *points          = overlapPartition->restrictPoint(remotePartPoint);
        const int                                                 numPoints       = overlapPartition->getFiberDimension(remotePartPoint);

        for(int i = 0; i < numPoints; ++i) {
          renumbering[points[i]] = localPoint++;
        }
      }
      // Create mesh overlap from partition overlap
      //   TODO: Generalize to redistribution (receive from multiple sources)
      Partitioner::createDistributionMeshOverlap(partition, recvOverlap, renumbering, overlapPartition, sendMeshOverlap, recvMeshOverlap);
      // Send cones
      completeCones(mesh->getSieve(), newMesh->getSieve(), renumbering, sendMeshOverlap, recvMeshOverlap);
    };
    template<typename Renumbering, typename NewMesh, typename SendOverlap, typename RecvOverlap>
    static void completeBaseV(const Obj<Mesh>& mesh, const Obj<partition_type>& partition, Renumbering& renumbering, const Obj<NewMesh>& newMesh, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap) {
      typedef ALE::Sifter<rank_type,rank_type,rank_type> part_send_overlap_type;
      typedef ALE::Sifter<rank_type,rank_type,rank_type> part_recv_overlap_type;
      const Obj<part_send_overlap_type> sendOverlap = new part_send_overlap_type(partition->comm());
      const Obj<part_recv_overlap_type> recvOverlap = new part_recv_overlap_type(partition->comm());

      // Create overlap for partition points
      //   TODO: This needs to be generalized for multiple sources
      Partitioner::createDistributionPartOverlap(sendOverlap, recvOverlap);
      // Communicate partition pieces to processes
      Obj<partition_type> overlapPartition = new partition_type(partition->comm(), partition->debug());

      overlapPartition->setChart(partition->getChart());
      ALE::Pullback::SimpleCopy::copy(sendOverlap, recvOverlap, partition, overlapPartition);
      // Create renumbering
      const int         rank           = partition->commRank();
      const point_type *localPoints    = partition->restrictPoint(rank);
      const int         numLocalPoints = partition->getFiberDimension(rank);

      for(point_type p = 0; p < numLocalPoints; ++p) {
        ///std::cout <<"["<<partition->commRank()<<"]: local renumbering " << localPoints[p] << " --> " << p << std::endl;
        renumbering[localPoints[p]] = p;
      }
      const Obj<typename part_recv_overlap_type::traits::baseSequence> rPoints    = recvOverlap->base();
      point_type                                                       localPoint = numLocalPoints;

      for(typename part_recv_overlap_type::traits::baseSequence::iterator p_iter = rPoints->begin(); p_iter != rPoints->end(); ++p_iter) {
        const Obj<typename part_recv_overlap_type::coneSequence>& ranks           = recvOverlap->cone(*p_iter);
        const rank_type&                                          remotePartPoint = ranks->begin().color();
        const point_type                                         *points          = overlapPartition->restrictPoint(remotePartPoint);
        const int                                                 numPoints       = overlapPartition->getFiberDimension(remotePartPoint);

        for(int i = 0; i < numPoints; ++i) {
          ///std::cout <<"["<<partition->commRank()<<"]: remote renumbering " << points[i] << " --> " << localPoint << std::endl;
          renumbering[points[i]] = localPoint++;
        }
      }
      newMesh->getSieve()->setChart(typename NewMesh::sieve_type::chart_type(0, renumbering.size()));
      // Create mesh overlap from partition overlap
      //   TODO: Generalize to redistribution (receive from multiple sources)
      Partitioner::createDistributionMeshOverlap(partition, recvOverlap, renumbering, overlapPartition, sendMeshOverlap, recvMeshOverlap);
    };
    template<typename NewMesh, typename Renumbering, typename SendOverlap, typename RecvOverlap>
    static Obj<partition_type> distributeMesh(const Obj<Mesh>& mesh, const Obj<NewMesh>& newMesh, Renumbering& renumbering, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap, const int height = 0) {
      const Obj<partition_type> cellPartition = new partition_type(mesh->comm(), 0, mesh->commSize(), mesh->debug());
      const Obj<partition_type> partition     = new partition_type(mesh->comm(), 0, mesh->commSize(), mesh->debug());

      // Create the cell partition
      Partitioner::createPartition(mesh, cellPartition, height);
      if (mesh->debug()) {
        PetscViewer    viewer;
        PetscErrorCode ierr;

        cellPartition->view("Cell Partition");
        ierr = PetscViewerCreate(mesh->comm(), &viewer);CHKERRXX(ierr);
        ierr = PetscViewerSetType(viewer, PETSC_VIEWER_ASCII);CHKERRXX(ierr);
        ierr = PetscViewerFileSetName(viewer, "mesh.vtk");CHKERRXX(ierr);
        ///TODO ierr = MeshView_Sieve_Ascii(mesh, cellPartition, viewer);CHKERRXX(ierr);
        ierr = PetscViewerDestroy(viewer);CHKERRXX(ierr);
      }
      // Close the partition over sieve points
      Partitioner::createPartitionClosure(mesh, cellPartition, partition, height);
      if (mesh->debug()) {partition->view("Partition");}
      // Create the remote meshes
      completeMesh(mesh, partition, renumbering, newMesh, sendMeshOverlap, recvMeshOverlap);
      // Create the local mesh
      Partitioner::createLocalMesh(mesh, partition, renumbering, newMesh, height);
      newMesh->stratify();
      return partition;
    };
    template<typename NewMesh, typename Renumbering, typename SendOverlap, typename RecvOverlap>
    static Obj<partition_type> distributeMeshAndSections(const Obj<Mesh>& mesh, const Obj<NewMesh>& newMesh, Renumbering& renumbering, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap, const int height = 0) {
      Obj<partition_type> partition = distributeMesh(mesh, newMesh, renumbering, sendMeshOverlap, recvMeshOverlap, height);

      // Distribute the coordinates
      const Obj<typename Mesh::real_section_type>& coordinates         = mesh->getRealSection("coordinates");
      const Obj<typename Mesh::real_section_type>& parallelCoordinates = newMesh->getRealSection("coordinates");

      newMesh->setupCoordinates(parallelCoordinates);
      distributeSection(coordinates, partition, renumbering, sendMeshOverlap, recvMeshOverlap, parallelCoordinates);
      // Distribute other sections
      if (mesh->getRealSections()->size() > 1) {
        Obj<std::set<std::string> > names = mesh->getRealSections();

        for(std::set<std::string>::const_iterator n_iter = names->begin(); n_iter != names->end(); ++n_iter) {
          if (*n_iter == "coordinates")   continue;
          distributeSection(mesh->getRealSection(*n_iter), partition, renumbering, sendMeshOverlap, recvMeshOverlap, newMesh->getRealSection(*n_iter));
        }
      }
      if (mesh->getIntSections()->size() > 0) {
        Obj<std::set<std::string> > names = mesh->getIntSections();

        for(std::set<std::string>::const_iterator n_iter = names->begin(); n_iter != names->end(); ++n_iter) {
          distributeSection(mesh->getIntSection(*n_iter), partition, renumbering, sendMeshOverlap, recvMeshOverlap, newMesh->getIntSection(*n_iter));
        }
      }
      if (mesh->getArrowSections()->size() > 1) {
        throw ALE::Exception("Need to distribute more arrow sections");
      }
      // Distribute labels
      const typename Mesh::labels_type& labels = mesh->getLabels();

      for(typename Mesh::labels_type::const_iterator l_iter = labels.begin(); l_iter != labels.end(); ++l_iter) {
        if (newMesh->hasLabel(l_iter->first)) continue;
        const Obj<typename Mesh::label_type>& origLabel = l_iter->second;
        const Obj<typename Mesh::label_type>& newLabel  = newMesh->createLabel(l_iter->first);
        // Get remote labels
        ALE::New::Completion<Mesh,typename Mesh::point_type>::scatterCones(origLabel, newLabel, sendMeshOverlap, recvMeshOverlap, renumbering);
        // Create local label
        newLabel->add(origLabel, newMesh->getSieve(), renumbering);
      }
      return partition;
    };
    template<typename NewMesh, typename Renumbering, typename SendOverlap, typename RecvOverlap>
    static Obj<partition_type> distributeMeshV(const Obj<Mesh>& mesh, const Obj<NewMesh>& newMesh, Renumbering& renumbering, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap, const int height = 0) {
      const Obj<partition_type> cellPartition = new partition_type(mesh->comm(), 0, mesh->commSize(), mesh->debug());
      const Obj<partition_type> partition     = new partition_type(mesh->comm(), 0, mesh->commSize(), mesh->debug());

      PETSc::Log::Event("DistributeMesh").begin();
      // Create the cell partition
      Partitioner::createPartitionV(mesh, cellPartition, height);
      if (mesh->debug()) {
        PetscViewer    viewer;
        PetscErrorCode ierr;

        cellPartition->view("Cell Partition");
        ierr = PetscViewerCreate(mesh->comm(), &viewer);CHKERRXX(ierr);
        ierr = PetscViewerSetType(viewer, PETSC_VIEWER_ASCII);CHKERRXX(ierr);
        ierr = PetscViewerFileSetName(viewer, "mesh.vtk");CHKERRXX(ierr);
        ///TODO ierr = MeshView_Sieve_Ascii(mesh, cellPartition, viewer);CHKERRXX(ierr);
        ierr = PetscViewerDestroy(viewer);CHKERRXX(ierr);
      }
      // Close the partition over sieve points
      Partitioner::createPartitionClosureV(mesh, cellPartition, partition, height);
      if (mesh->debug()) {partition->view("Partition");}
      // Create the remote bases
      completeBaseV(mesh, partition, renumbering, newMesh, sendMeshOverlap, recvMeshOverlap);
      // Size the local mesh
      Partitioner::sizeLocalMeshV(mesh, partition, renumbering, newMesh, height);
      // Create the remote meshes
      completeConesV(mesh->getSieve(), newMesh->getSieve(), renumbering, sendMeshOverlap, recvMeshOverlap);
      // Create the local mesh
      Partitioner::createLocalMeshV(mesh, partition, renumbering, newMesh, height);
      newMesh->getSieve()->symmetrize();
      newMesh->stratify();
      PETSc::Log::Event("DistributeMesh").end();
      return partition;
    };
    // distributeMeshV:
    //   createPartitionV (can be dumb)
    //   createPartitionClosureV (should be low memory)
    //   completeBaseV (???)
    //     Partitioner::createDistributionPartOverlap (low memory)
    //     copy points to partitions (uses small overlap and fake sections)
    //     renumber (map is potentially big, can measure)
    //     Partitioner::createDistributionMeshOverlap (should be large for distribution)
    //       sendMeshOverlap is localPoint--- remotePoint --->remoteRank
    //       recvMeshOverlap is remoteRank--- remotePoint --->localPoint
    //   sizeLocalMeshV (should be low memory)
    //   completeConesV (???)
    //   createLocalMesh (should be low memory)
    //   symmetrize
    //   stratify
    template<typename NewMesh>
    static void distributeMeshAndSectionsV(const Obj<Mesh>& mesh, const Obj<NewMesh>& newMesh) {
      typedef typename Mesh::point_type point_type;

      const Obj<typename Mesh::send_overlap_type> sendMeshOverlap = new typename Mesh::send_overlap_type(mesh->comm(), mesh->debug());
      const Obj<typename Mesh::recv_overlap_type> recvMeshOverlap = new typename Mesh::recv_overlap_type(mesh->comm(), mesh->debug());
      std::map<point_type,point_type>&            renumbering     = newMesh->getRenumbering();
      // Distribute the mesh
      Obj<partition_type> partition = distributeMeshV(mesh, newMesh, renumbering, sendMeshOverlap, recvMeshOverlap);
      if (mesh->debug()) {
        std::cout << "["<<mesh->commRank()<<"]: Mesh Renumbering:" << std::endl;
        for(typename Mesh::renumbering_type::const_iterator r_iter = renumbering.begin(); r_iter != renumbering.end(); ++r_iter) {
          std::cout << "["<<mesh->commRank()<<"]:   global point " << r_iter->first << " --> " << " local point " << r_iter->second << std::endl;
        }
      }
      // Distribute the coordinates
      PETSc::Log::Event("DistributeCoords").begin();
      const Obj<typename Mesh::real_section_type>& coordinates         = mesh->getRealSection("coordinates");
      const Obj<typename Mesh::real_section_type>& parallelCoordinates = newMesh->getRealSection("coordinates");

      newMesh->setupCoordinates(parallelCoordinates);
      distributeSection(coordinates, partition, renumbering, sendMeshOverlap, recvMeshOverlap, parallelCoordinates);
      PETSc::Log::Event("DistributeCoords").end();
      // Distribute other sections
      if (mesh->getRealSections()->size() > 1) {
        PETSc::Log::Event("DistributeRealSec").begin();
        Obj<std::set<std::string> > names = mesh->getRealSections();
        int                         n     = 0;

        for(std::set<std::string>::const_iterator n_iter = names->begin(); n_iter != names->end(); ++n_iter) {
          if (*n_iter == "coordinates")   continue;
          std::cout << "ERROR: Did not distribute real section " << *n_iter << std::endl;
          ++n;
        }
        PETSc::Log::Event("DistributeRealSec").end();
        if (n) {throw ALE::Exception("Need to distribute more real sections");}
      }
      if (mesh->getIntSections()->size() > 0) {
        PETSc::Log::Event("DistributeIntSec").begin();
        Obj<std::set<std::string> > names = mesh->getIntSections();

        for(std::set<std::string>::const_iterator n_iter = names->begin(); n_iter != names->end(); ++n_iter) {
          const Obj<typename Mesh::int_section_type>& section    = mesh->getIntSection(*n_iter);
          const Obj<typename Mesh::int_section_type>& newSection = newMesh->getIntSection(*n_iter);
          
          // We assume all integer sections are complete sections
          newSection->setChart(newMesh->getSieve()->getChart());
          distributeSection(section, partition, renumbering, sendMeshOverlap, recvMeshOverlap, newSection);
        }
        PETSc::Log::Event("DistributeIntSec").end();
      }
      if (mesh->getArrowSections()->size() > 1) {
        throw ALE::Exception("Need to distribute more arrow sections");
      }
      // Distribute labels
      PETSc::Log::Event("DistributeLabels").begin();
      const typename Mesh::labels_type& labels = mesh->getLabels();

      for(typename Mesh::labels_type::const_iterator l_iter = labels.begin(); l_iter != labels.end(); ++l_iter) {
        if (newMesh->hasLabel(l_iter->first)) continue;
        const Obj<typename Mesh::label_type>& origLabel = l_iter->second;
        const Obj<typename Mesh::label_type>& newLabel  = newMesh->createLabel(l_iter->first);

#ifdef IMESH_NEW_LABELS
        newLabel->setChart(newMesh->getSieve()->getChart());
        // Size the local mesh
        Partitioner::sizeLocalSieveV(origLabel, partition, renumbering, newLabel);
        // Create the remote meshes
        completeConesV(origLabel, newLabel, renumbering, sendMeshOverlap, recvMeshOverlap);
        // Create the local mesh
        Partitioner::createLocalSieveV(origLabel, partition, renumbering, newLabel);
        newLabel->symmetrize();
#else
	distributeLabelV(newMesh->getSieve(), origLabel, partition, renumbering, sendMeshOverlap, recvMeshOverlap, newLabel);
#endif
      }
      PETSc::Log::Event("DistributeLabels").end();
      // Create the parallel overlap
      PETSc::Log::Event("CreateOverlap").begin();
      Obj<typename Mesh::send_overlap_type> sendParallelMeshOverlap = newMesh->getSendOverlap();
      Obj<typename Mesh::recv_overlap_type> recvParallelMeshOverlap = newMesh->getRecvOverlap();
      //   Can I figure this out in a nicer way?
      ALE::SetFromMap<std::map<point_type,point_type> > globalPoints(renumbering);

      ALE::OverlapBuilder<>::constructOverlap(globalPoints, renumbering, sendParallelMeshOverlap, recvParallelMeshOverlap);
      newMesh->setCalculatedOverlap(true);
      PETSc::Log::Event("CreateOverlap").end();
    };
    template<typename Label, typename Partition, typename Renumbering, typename SendOverlap, typename RecvOverlap, typename NewLabel>
    static void distributeLabel(const Obj<typename Mesh::sieve_type>& sieve, const Obj<Label>& l, const Obj<Partition>& partition, Renumbering& renumbering, const Obj<SendOverlap>& sendOverlap, const Obj<RecvOverlap>& recvOverlap, const Obj<NewLabel>& newL) {
      Partitioner::createLocalSifter(l, partition, renumbering, newL);
      //completeCones(l, newL, renumbering, sendMeshOverlap, recvMeshOverlap);
      {
        typedef ALE::UniformSection<point_type, int>                cones_type;
        typedef ALE::LabelSection<typename Mesh::sieve_type, Label> cones_wrapper_type;
        Obj<cones_wrapper_type> cones        = new cones_wrapper_type(sieve, l);
        Obj<cones_type>         overlapCones = new cones_type(l->comm(), l->debug());

        ALE::Pullback::SimpleCopy::copy(sendOverlap, recvOverlap, cones, overlapCones);
        if (l->debug()) {overlapCones->view("Overlap Label Values");}
        // Inserts cones into newL (must renumber here)
        //ALE::Pullback::InsertionBinaryFusion::fuse(overlapCones, recvOverlap, renumbering, newSieve);
        {
	  typedef typename cones_type::point_type overlap_point_type;
          const Obj<typename RecvOverlap::traits::baseSequence>      rPoints = recvOverlap->base();
	  const typename RecvOverlap::traits::baseSequence::iterator rEnd    = rPoints->end();

          for(typename RecvOverlap::traits::baseSequence::iterator p_iter = rPoints->begin(); p_iter != rEnd; ++p_iter) {
            const Obj<typename RecvOverlap::coneSequence>& points       = recvOverlap->cone(*p_iter);
            const typename RecvOverlap::target_type&       localPoint   = *p_iter;
            const typename cones_type::point_type&         remotePoint  = points->begin().color();
	    const overlap_point_type                       overlapPoint = overlap_point_type(remotePoint.second, remotePoint.first);
            const int                                      size         = overlapCones->getFiberDimension(overlapPoint);
            const typename cones_type::value_type         *values       = overlapCones->restrictPoint(overlapPoint);

            newL->clearCone(localPoint);
            for(int i = 0; i < size; ++i) {newL->addCone(values[i], localPoint);}
          }
        }
      }
    };
    template<typename Label, typename Partition, typename Renumbering, typename SendOverlap, typename RecvOverlap, typename NewLabel>
    static void distributeLabelV(const Obj<typename Mesh::sieve_type>& sieve, const Obj<Label>& l, const Obj<Partition>& partition, Renumbering& renumbering, const Obj<SendOverlap>& sendOverlap, const Obj<RecvOverlap>& recvOverlap, const Obj<NewLabel>& newL) {
      Partitioner::createLocalSifter(l, partition, renumbering, newL);
      //completeCones(l, newL, renumbering, sendMeshOverlap, recvMeshOverlap);
      {
	typedef typename Label::alloc_type::template rebind<int>::other alloc_type;
	typedef LabelBaseSectionV<typename Mesh::sieve_type, Label, alloc_type> atlas_type;
        typedef ALE::UniformSection<ALE::Pair<int, point_type>, int>            cones_type;
        typedef ALE::LabelSection<typename Mesh::sieve_type, Label, alloc_type, atlas_type> cones_wrapper_type;
        Obj<cones_wrapper_type> cones        = new cones_wrapper_type(sieve, l);
        Obj<cones_type>         overlapCones = new cones_type(l->comm(), l->debug());

        ALE::Pullback::SimpleCopy::copy(sendOverlap, recvOverlap, cones, overlapCones);
        if (l->debug()) {overlapCones->view("Overlap Label Values");}
        // Inserts cones into newL (must renumber here)
        //ALE::Pullback::InsertionBinaryFusion::fuse(overlapCones, recvOverlap, renumbering, newSieve);
        {
	  typedef typename cones_type::point_type overlap_point_type;
          const Obj<typename RecvOverlap::traits::baseSequence> rPoints = recvOverlap->base();

          for(typename RecvOverlap::traits::baseSequence::iterator p_iter = rPoints->begin(); p_iter != rPoints->end(); ++p_iter) {
            const Obj<typename RecvOverlap::coneSequence>& points       = recvOverlap->cone(*p_iter);
            const typename RecvOverlap::target_type&       localPoint   = *p_iter;
            const typename cones_type::point_type&         remotePoint  = points->begin().color();
	    const overlap_point_type                       overlapPoint = overlap_point_type(remotePoint.second, remotePoint.first);
            const int                                      size         = overlapCones->getFiberDimension(overlapPoint);
            const typename cones_type::value_type         *values       = overlapCones->restrictPoint(overlapPoint);

            newL->clearCone(localPoint);
            for(int i = 0; i < size; ++i) {newL->addCone(values[i], localPoint);}
          }
        }
      }
    };
    template<typename Section, typename Partition, typename Renumbering, typename SendOverlap, typename RecvOverlap, typename NewSection>
    static void distributeSection(const Obj<Section>& s, const Obj<Partition>& partition, Renumbering& renumbering, const Obj<SendOverlap>& sendOverlap, const Obj<RecvOverlap>& recvOverlap, const Obj<NewSection>& newS) {
      Partitioner::createLocalSection(s, partition, renumbering, newS);
      ALE::Completion::completeSection(sendOverlap, recvOverlap, s, newS);
    };
    template<typename NewMesh, typename Renumbering, typename SendOverlap, typename RecvOverlap>
    static Obj<partition_type> unifyMesh(const Obj<Mesh>& mesh, const Obj<NewMesh>& newMesh, Renumbering& renumbering, const Obj<SendOverlap>& sendMeshOverlap, const Obj<RecvOverlap>& recvMeshOverlap) {
      const Obj<partition_type> cellPartition = new partition_type(mesh->comm(), 0, mesh->commSize(), mesh->debug());
      const Obj<partition_type> partition     = new partition_type(mesh->comm(), 0, mesh->commSize(), mesh->debug());
      const Obj<typename Mesh::label_sequence>&     cells  = mesh->heightStratum(0);
      const typename Mesh::label_sequence::iterator cEnd   = cells->end();
      typename Mesh::point_type                    *values = new typename Mesh::point_type[cells->size()];
      int                                           c      = 0;

      cellPartition->setFiberDimension(0, cells->size());
      cellPartition->allocatePoint();
      for(typename Mesh::label_sequence::iterator c_iter = cells->begin(); c_iter != cEnd; ++c_iter, ++c) {
        values[c] = *c_iter;
      }
      cellPartition->updatePoint(0, values);
      delete [] values;
      // Close the partition over sieve points
      Partitioner::createPartitionClosure(mesh, cellPartition, partition);
      // Create the remote meshes
      completeMesh(mesh, partition, renumbering, newMesh, sendMeshOverlap, recvMeshOverlap);
      // Create the local mesh
      Partitioner::createLocalMesh(mesh, partition, renumbering, newMesh);
      newMesh->stratify();
      newMesh->view("Unified mesh");
      return partition;
    };
    static Obj<Mesh> unifyMesh(const Obj<Mesh>& mesh) {
      typedef ALE::Sifter<point_type,rank_type,point_type> mesh_send_overlap_type;
      typedef ALE::Sifter<rank_type,point_type,point_type> mesh_recv_overlap_type;
      const Obj<Mesh>                      newMesh         = new Mesh(mesh->comm(), mesh->getDimension(), mesh->debug());
      const Obj<typename Mesh::sieve_type> newSieve        = new typename Mesh::sieve_type(mesh->comm(), mesh->debug());
      const Obj<mesh_send_overlap_type>    sendMeshOverlap = new mesh_send_overlap_type(mesh->comm(), mesh->debug());
      const Obj<mesh_recv_overlap_type>    recvMeshOverlap = new mesh_recv_overlap_type(mesh->comm(), mesh->debug());
      std::map<point_type,point_type>      renumbering;

      newMesh->setSieve(newSieve);
      const Obj<partition_type> partition = unifyMesh(mesh, newMesh, renumbering, sendMeshOverlap, recvMeshOverlap);
      // Unify coordinates
      const Obj<typename Mesh::real_section_type>& coordinates    = mesh->getRealSection("coordinates");
      const Obj<typename Mesh::real_section_type>& newCoordinates = newMesh->getRealSection("coordinates");

      newMesh->setupCoordinates(newCoordinates);
      distributeSection(coordinates, partition, renumbering, sendMeshOverlap, recvMeshOverlap, newCoordinates);
      // Unify labels
      const typename Mesh::labels_type& labels = mesh->getLabels();

      for(typename Mesh::labels_type::const_iterator l_iter = labels.begin(); l_iter != labels.end(); ++l_iter) {
        if (newMesh->hasLabel(l_iter->first)) continue;
        const Obj<typename Mesh::label_type>& label    = l_iter->second;
        const Obj<typename Mesh::label_type>& newLabel = newMesh->createLabel(l_iter->first);

        //completeCones(label, newLabel, renumbering, sendMeshOverlap, recvMeshOverlap);
        {
          typedef ALE::UniformSection<point_type, int> cones_type;
          typedef ALE::LabelSection<typename Mesh::sieve_type,typename Mesh::label_type> cones_wrapper_type;
          Obj<cones_wrapper_type> cones        = new cones_wrapper_type(mesh->getSieve(), label);
          Obj<cones_type>         overlapCones = new cones_type(label->comm(), label->debug());

          ALE::Pullback::SimpleCopy::copy(sendMeshOverlap, recvMeshOverlap, cones, overlapCones);
          if (label->debug()) {overlapCones->view("Overlap Label Values");}
          // Inserts cones into parallelMesh (must renumber here)
          //ALE::Pullback::InsertionBinaryFusion::fuse(overlapCones, recvMeshOverlap, renumbering, newSieve);
          {
            const Obj<typename mesh_recv_overlap_type::traits::baseSequence> rPoints = recvMeshOverlap->base();

            for(typename mesh_recv_overlap_type::traits::baseSequence::iterator p_iter = rPoints->begin(); p_iter != rPoints->end(); ++p_iter) {
              const Obj<typename mesh_recv_overlap_type::coneSequence>& points      = recvMeshOverlap->cone(*p_iter);
              const typename mesh_recv_overlap_type::target_type&       localPoint  = *p_iter;
              const typename cones_type::point_type&                    remotePoint = points->begin().color();
              const int                                                 size        = overlapCones->getFiberDimension(remotePoint);
              const typename cones_type::value_type                    *values      = overlapCones->restrictPoint(remotePoint);

              newLabel->clearCone(localPoint);
              for(int i = 0; i < size; ++i) {newLabel->addCone(values[i], localPoint);}
            }
          }
        }
        //newLabel->add(label, newSieve);
        Partitioner::createLocalSifter(label, partition, renumbering, newLabel);
        newLabel->view(l_iter->first.c_str());
      }
      return newMesh;
    };
  };
  template<typename Bundle_>
  class Distribution {
  public:
    typedef Bundle_                                                                     bundle_type;
    typedef typename bundle_type::sieve_type                                            sieve_type;
    typedef typename bundle_type::point_type                                            point_type;
    typedef typename bundle_type::alloc_type                                            alloc_type;
    typedef typename bundle_type::send_overlap_type                                     send_overlap_type;
    typedef typename bundle_type::recv_overlap_type                                     recv_overlap_type;
    typedef typename ALE::New::Completion<bundle_type, typename sieve_type::point_type>                            sieveCompletion;
    typedef typename ALE::New::SectionCompletion<bundle_type, typename bundle_type::real_section_type::value_type> sectionCompletion;
  public:
    #undef __FUNCT__
    #define __FUNCT__ "createPartitionOverlap"
    static void createPartitionOverlap(const Obj<bundle_type>& bundle, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap) {
      const Obj<send_overlap_type>& topSendOverlap = bundle->getSendOverlap();
      const Obj<recv_overlap_type>& topRecvOverlap = bundle->getRecvOverlap();
      const Obj<typename send_overlap_type::traits::baseSequence> base = topSendOverlap->base();
      const Obj<typename recv_overlap_type::traits::capSequence>  cap  = topRecvOverlap->cap();
      const int rank = bundle->commRank();

      if (base->empty()) {
        if (rank == 0) {
          for(int p = 1; p < bundle->commSize(); p++) {
            // The arrow is from local partition point p (source) to remote partition point p (color) on rank p (target)
            sendOverlap->addCone(p, p, p);
          }
        }
      } else {
        for(typename send_overlap_type::traits::baseSequence::iterator b_iter = base->begin(); b_iter != base->end(); ++b_iter) {
          const int& p = *b_iter;
          // The arrow is from local partition point p (source) to remote partition point p (color) on rank p (target)
          sendOverlap->addCone(p, p, p);
        }
      }
      if (cap->empty()) {
        if (rank != 0) {
          // The arrow is from local partition point rank (color) on rank 0 (source) to remote partition point rank (target)
          recvOverlap->addCone(0, rank, rank);
        }
      } else {
        for(typename recv_overlap_type::traits::capSequence::iterator c_iter = cap->begin(); c_iter != cap->end(); ++c_iter) {
          const int& p = *c_iter;
          // The arrow is from local partition point rank (color) on rank p (source) to remote partition point rank (target)
          recvOverlap->addCone(p, rank, rank);
        }
      }
    };
    #undef __FUNCT__
    #define __FUNCT__ "createAssignment"
    template<typename Partitioner>
    static typename Partitioner::part_type *createAssignment(const Obj<bundle_type>& bundle, const int dim, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap, const int height = 0) {
      // 1) Form partition point overlap a priori
      createPartitionOverlap(bundle, sendOverlap, recvOverlap);
      if (bundle->debug()) {
        sendOverlap->view("Send overlap for partition");
        recvOverlap->view("Receive overlap for partition");
      }
      // 2) Partition the mesh
      if (height == 0) {
        return Partitioner::partitionSieve(bundle, dim);
      } else if (height == 1) {
        return Partitioner::partitionSieveByFace(bundle, dim);
      }
      throw ALE::Exception("Invalid partition height");
    };
    #undef __FUNCT__
    #define __FUNCT__ "scatterBundle"
    // Partition a bundle on process 0 and scatter to all processes
    static void scatterBundle(const Obj<bundle_type>& bundle, const int dim, const Obj<bundle_type>& bundleNew, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap, const std::string& partitioner, const int height = 0, const Obj<bundle_type>& subBundle = NULL, const Obj<bundle_type>& subBundleNew = NULL) {
      if (height == 0) {
        if (partitioner == "chaco") {
#ifdef PETSC_HAVE_CHACO
          typedef typename ALE::New::Chaco::Partitioner<bundle_type> Partitioner;
          typedef typename ALE::New::Partitioner<bundle_type>        GenPartitioner;
          typedef typename Partitioner::part_type                    part_type;

          part_type *assignment = scatterBundle<Partitioner>(bundle, dim, bundleNew, sendOverlap, recvOverlap, height);
          if (!subBundle.isNull() && !subBundleNew.isNull()) {
            part_type *subAssignment = GenPartitioner::subordinatePartition(bundle, 1, subBundle, assignment);
            const Obj<sieve_type>& sieve      = subBundle->getSieve();
            const Obj<sieve_type>& sieveNew   = new Mesh::sieve_type(subBundle->comm(), subBundle->debug());
            const int              numCells   = subBundle->heightStratum(height)->size();

            subBundleNew->setSieve(sieveNew);
            sieveCompletion::scatterSieve(subBundle, sieve, dim, sieveNew, sendOverlap, recvOverlap, height, numCells, subAssignment);
            subBundleNew->stratify();
            if (subAssignment != NULL) delete [] subAssignment;
          }
          if (assignment != NULL) delete [] assignment;
#else
          throw ALE::Exception("Chaco is not installed. Reconfigure with the flag --download-chaco");
#endif
        } else if (partitioner == "parmetis") {
#ifdef PETSC_HAVE_PARMETIS
          typedef typename ALE::New::ParMetis::Partitioner<bundle_type> Partitioner;
          typedef typename ALE::New::Partitioner<bundle_type>           GenPartitioner;
          typedef typename Partitioner::part_type                       part_type;

          part_type *assignment = scatterBundle<Partitioner>(bundle, dim, bundleNew, sendOverlap, recvOverlap, height);
          if (!subBundle.isNull() && !subBundleNew.isNull()) {
            part_type *subAssignment = GenPartitioner::subordinatePartition(bundle, 1, subBundle, assignment);
            const Obj<sieve_type>& sieve      = subBundle->getSieve();
            const Obj<sieve_type>& sieveNew   = new Mesh::sieve_type(subBundle->comm(), subBundle->debug());
            const int              numCells   = subBundle->heightStratum(height)->size();

            subBundleNew->setSieve(sieveNew);
            sieveCompletion::scatterSieve(subBundle, sieve, dim, sieveNew, sendOverlap, recvOverlap, height, numCells, subAssignment);
            subBundleNew->stratify();
            if (subAssignment != NULL) delete [] subAssignment;
          }
          if (assignment != NULL) delete [] assignment;
#else
          throw ALE::Exception("ParMetis is not installed. Reconfigure with the flag --download-parmetis");
#endif
        } else {
          throw ALE::Exception("Unknown partitioner");
        }
      } else if (height == 1) {
        if (partitioner == "zoltan") {
#ifdef PETSC_HAVE_ZOLTAN
          typedef typename ALE::New::Zoltan::Partitioner<bundle_type> Partitioner;
          typedef typename Partitioner::part_type                     part_type;

          part_type *assignment = scatterBundle<Partitioner>(bundle, dim, bundleNew, sendOverlap, recvOverlap, height);
          if (assignment != NULL) delete [] assignment;
#else
          throw ALE::Exception("Zoltan is not installed. Reconfigure with the flag --download-zoltan");
#endif
        } else if (partitioner == "parmetis") {
#ifdef PETSC_HAVE_PARMETIS
          typedef typename ALE::New::ParMetis::Partitioner<bundle_type> Partitioner;
          typedef typename Partitioner::part_type                       part_type;

          part_type *assignment = scatterBundle<Partitioner>(bundle, dim, bundleNew, sendOverlap, recvOverlap, height);
          if (assignment != NULL) delete [] assignment;
#else
          throw ALE::Exception("ParMetis is not installed. Reconfigure with the flag --download-parmetis");
#endif
        } else {
          throw ALE::Exception("Unknown partitioner");
        }
      } else {
        throw ALE::Exception("Invalid partition height");
      }
    };
    template<typename Partitioner>
    static typename Partitioner::part_type *scatterBundle(const Obj<bundle_type>& bundle, const int dim, const Obj<bundle_type>& bundleNew, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap, const int height = 0) {
      typename Partitioner::part_type *assignment = createAssignment<Partitioner>(bundle, dim, sendOverlap, recvOverlap, height);
      const Obj<sieve_type>&           sieve      = bundle->getSieve();
      const Obj<sieve_type>&           sieveNew   = bundleNew->getSieve();
      const int                        numPoints  = bundle->heightStratum(height)->size();

      sieveCompletion::scatterSieve(bundle, sieve, dim, sieveNew, sendOverlap, recvOverlap, height, numPoints, assignment);
      bundleNew->stratify();
      return assignment;
    };
    #undef __FUNCT__
    #define __FUNCT__ "distributeMesh"
    static Obj<ALE::Mesh> distributeMesh(const Obj<ALE::Mesh>& serialMesh, const int height = 0, const std::string& partitioner = "chaco") {
      MPI_Comm                          comm          = serialMesh->comm();
      const int                         dim           = serialMesh->getDimension();
      Obj<ALE::Mesh>                    parallelMesh  = new ALE::Mesh(comm, dim, serialMesh->debug());
      const Obj<ALE::Mesh::sieve_type>& parallelSieve = new ALE::Mesh::sieve_type(comm, serialMesh->debug());

      ALE_LOG_EVENT_BEGIN;
      parallelMesh->setSieve(parallelSieve);
      if (serialMesh->debug()) {serialMesh->view("Serial mesh");}

      // Distribute cones
      Obj<send_overlap_type> sendOverlap = new send_overlap_type(comm, serialMesh->debug());
      Obj<recv_overlap_type> recvOverlap = new recv_overlap_type(comm, serialMesh->debug());
      scatterBundle(serialMesh, dim, parallelMesh, sendOverlap, recvOverlap, partitioner, height);
      parallelMesh->setDistSendOverlap(sendOverlap);
      parallelMesh->setDistRecvOverlap(recvOverlap);

      // Distribute labels
      const typename bundle_type::labels_type& labels = serialMesh->getLabels();

      for(typename bundle_type::labels_type::const_iterator l_iter = labels.begin(); l_iter != labels.end(); ++l_iter) {
        if (parallelMesh->hasLabel(l_iter->first)) continue;
        const Obj<typename bundle_type::label_type>& serialLabel   = l_iter->second;
        const Obj<typename bundle_type::label_type>& parallelLabel = parallelMesh->createLabel(l_iter->first);
        // Create local label
#define NEW_LABEL
#ifdef NEW_LABEL
        parallelLabel->add(serialLabel, parallelSieve);
#else
        const Obj<typename bundle_type::label_type::traits::baseSequence>& base = serialLabel->base();

        for(typename bundle_type::label_type::traits::baseSequence::iterator b_iter = base->begin(); b_iter != base->end(); ++b_iter) {
          if (parallelSieve->capContains(*b_iter) || parallelSieve->baseContains(*b_iter)) {
            parallelLabel->addArrow(*serialLabel->cone(*b_iter)->begin(), *b_iter);
          }
        }
#endif
        // Get remote labels
        sieveCompletion::scatterCones(serialLabel, parallelLabel, sendOverlap, recvOverlap);
      }

      // Distribute sections
      Obj<std::set<std::string> > sections = serialMesh->getRealSections();

      for(std::set<std::string>::iterator name = sections->begin(); name != sections->end(); ++name) {
        parallelMesh->setRealSection(*name, distributeSection(serialMesh->getRealSection(*name), parallelMesh, sendOverlap, recvOverlap));
      }
      sections = serialMesh->getIntSections();
      for(std::set<std::string>::iterator name = sections->begin(); name != sections->end(); ++name) {
        parallelMesh->setIntSection(*name, distributeSection(serialMesh->getIntSection(*name), parallelMesh, sendOverlap, recvOverlap));
      }
      sections = serialMesh->getArrowSections();

      for(std::set<std::string>::iterator name = sections->begin(); name != sections->end(); ++name) {
        parallelMesh->setArrowSection(*name, distributeArrowSection(serialMesh->getArrowSection(*name), serialMesh, parallelMesh, sendOverlap, recvOverlap));
      }
      if (parallelMesh->debug()) {parallelMesh->view("Parallel Mesh");}
      ALE_LOG_EVENT_END;
      return parallelMesh;
    };
    #undef __FUNCT__
    #define __FUNCT__ "updateSectionLocal"
    template<typename Section>
    static void updateSectionLocal(const Obj<Section>& oldSection, const Obj<bundle_type>& newBundle, const Obj<Section>& newSection) {
      const Obj<typename bundle_type::sieve_type>&    newSieve = newBundle->getSieve();
      const typename Section::atlas_type::chart_type& oldChart = oldSection->getChart();

      for(typename Section::atlas_type::chart_type::const_iterator c_iter = oldChart.begin(); c_iter != oldChart.end(); ++c_iter) {
        if (newSieve->capContains(*c_iter) || newSieve->baseContains(*c_iter)) {
          newSection->setFiberDimension(*c_iter, oldSection->getFiberDimension(*c_iter));
        }
      }
      newBundle->allocate(newSection);
      const typename Section::atlas_type::chart_type& newChart = newSection->getChart();

      for(typename Section::atlas_type::chart_type::const_iterator c_iter = newChart.begin(); c_iter != newChart.end(); ++c_iter) {
        newSection->updatePointAll(*c_iter, oldSection->restrictPoint(*c_iter));
      }
    };
    #undef __FUNCT__
    #define __FUNCT__ "updateSectionRemote"
    template<typename RecvSection, typename Section>
    static void updateSectionRemote(const Obj<recv_overlap_type>& recvOverlap, const Obj<RecvSection>& recvSection, const Obj<bundle_type>& newBundle, const Obj<Section>& newSection) {
      Obj<typename recv_overlap_type::traits::baseSequence> recvPoints = recvOverlap->base();

      for(typename recv_overlap_type::traits::baseSequence::iterator r_iter = recvPoints->begin(); r_iter != recvPoints->end(); ++r_iter) {
        const Obj<typename recv_overlap_type::traits::coneSequence>&     recvPatches = recvOverlap->cone(*r_iter);
        const typename recv_overlap_type::traits::coneSequence::iterator end         = recvPatches->end();

        for(typename recv_overlap_type::traits::coneSequence::iterator p_iter = recvPatches->begin(); p_iter != end; ++p_iter) {
          newSection->addPoint(*r_iter, recvSection->getSection(*p_iter)->getFiberDimension(*r_iter));
        }
      }
      newBundle->reallocate(newSection);
      for(typename recv_overlap_type::traits::baseSequence::iterator r_iter = recvPoints->begin(); r_iter != recvPoints->end(); ++r_iter) {
        const Obj<typename recv_overlap_type::traits::coneSequence>&     recvPatches = recvOverlap->cone(*r_iter);
        const typename recv_overlap_type::traits::coneSequence::iterator end         = recvPatches->end();

        for(typename recv_overlap_type::traits::coneSequence::iterator p_iter = recvPatches->begin(); p_iter != end; ++p_iter) {
          if (recvSection->getSection(*p_iter)->getFiberDimension(*r_iter)) {
            newSection->updatePointAll(*r_iter, recvSection->getSection(*p_iter)->restrictPoint(*r_iter));
          }
        }
      }
    };
    #undef __FUNCT__
    #define __FUNCT__ "distributeSection"
    template<typename Section>
    static Obj<Section> distributeSection(const Obj<Section>& serialSection, const Obj<bundle_type>& parallelBundle, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap) {
      if (serialSection->debug()) {
        serialSection->view("Serial Section");
      }
      typedef typename alloc_type::template rebind<typename Section::value_type>::other value_alloc_type;
      typedef ALE::Field<send_overlap_type, int, ALE::Section<point_type, typename Section::value_type, value_alloc_type> > send_section_type;
      typedef ALE::Field<recv_overlap_type, int, ALE::Section<point_type, typename Section::value_type, value_alloc_type> > recv_section_type;
      typedef ALE::New::SizeSection<Section> SectionSizer;
      Obj<Section>                 parallelSection = new Section(serialSection->comm(), serialSection->debug());
      const Obj<send_section_type> sendSection     = new send_section_type(serialSection->comm(), serialSection->debug());
      const Obj<recv_section_type> recvSection     = new recv_section_type(serialSection->comm(), sendSection->getTag(), serialSection->debug());
      const Obj<SectionSizer>      sizer           = new SectionSizer(serialSection);

      updateSectionLocal(serialSection, parallelBundle, parallelSection);
      sectionCompletion::completeSection(sendOverlap, recvOverlap, sizer, serialSection, sendSection, recvSection);
      updateSectionRemote(recvOverlap, recvSection, parallelBundle, parallelSection);
      if (parallelSection->debug()) {
        parallelSection->view("Parallel Section");
      }
      return parallelSection;
    };
    #undef __FUNCT__
    #define __FUNCT__ "updateArrowSectionLocal"
    template<typename Section>
    static void updateArrowSectionLocal(const Obj<Section>& oldSection, const Obj<bundle_type>& newBundle, const Obj<Section>& newSection) {
      const Obj<typename bundle_type::sieve_type>&    newSieve = newBundle->getSieve();
      const typename Section::atlas_type::chart_type& oldChart = oldSection->getChart();

      for(typename Section::atlas_type::chart_type::const_iterator c_iter = oldChart.begin(); c_iter != oldChart.end(); ++c_iter) {
        // Dmitry should provide a Sieve::contains(MinimalArrow) method
        if (newSieve->capContains(c_iter->source) && newSieve->baseContains(c_iter->target)) {
          newSection->setFiberDimension(*c_iter, oldSection->getFiberDimension(*c_iter));
        }
      }
      //newBundle->allocate(newSection);
      const typename Section::atlas_type::chart_type& newChart = newSection->getChart();

      for(typename Section::atlas_type::chart_type::const_iterator c_iter = newChart.begin(); c_iter != newChart.end(); ++c_iter) {
        newSection->updatePointAll(*c_iter, oldSection->restrictPoint(*c_iter));
      }
    };
    #undef __FUNCT__
    #define __FUNCT__ "updateArrowSectionRemote"
    template<typename RecvSection, typename Section>
    static void updateArrowSectionRemote(const Obj<recv_overlap_type>& recvOverlap, const Obj<RecvSection>& recvSection, const Obj<bundle_type>& newBundle, const Obj<Section>& newSection) {
      Obj<typename recv_overlap_type::traits::baseSequence> recvPoints = recvOverlap->base();

      for(typename recv_overlap_type::traits::baseSequence::iterator r_iter = recvPoints->begin(); r_iter != recvPoints->end(); ++r_iter) {
        const Obj<typename bundle_type::sieve_type::traits::coneSequence>&     cone = newBundle->getSieve()->cone(*r_iter);
        const typename bundle_type::sieve_type::traits::coneSequence::iterator end  = cone->end();

        for(typename bundle_type::sieve_type::traits::coneSequence::iterator c_iter = cone->begin(); c_iter != end; ++c_iter) {
          newSection->setFiberDimension(typename Section::point_type(*c_iter, *r_iter), 1);
        }
      }
      //newBundle->reallocate(newSection);
      for(typename recv_overlap_type::traits::baseSequence::iterator r_iter = recvPoints->begin(); r_iter != recvPoints->end(); ++r_iter) {
        const Obj<typename recv_overlap_type::traits::coneSequence>&     recvPatches = recvOverlap->cone(*r_iter);
        const typename recv_overlap_type::traits::coneSequence::iterator recvEnd     = recvPatches->end();

        for(typename recv_overlap_type::traits::coneSequence::iterator p_iter = recvPatches->begin(); p_iter != recvEnd; ++p_iter) {
          const Obj<typename RecvSection::section_type>& section = recvSection->getSection(*p_iter);

          if (section->getFiberDimension(*r_iter)) {
            const Obj<typename bundle_type::sieve_type::traits::coneSequence>&     cone    = newBundle->getSieve()->cone(*r_iter);
            const typename bundle_type::sieve_type::traits::coneSequence::iterator end     = cone->end();
            const typename RecvSection::value_type                                *values  = section->restrictPoint(*r_iter);
            int                                                                    c       = -1;

            for(typename bundle_type::sieve_type::traits::coneSequence::iterator c_iter = cone->begin(); c_iter != end; ++c_iter) {
              newSection->updatePoint(typename Section::point_type(*c_iter, *r_iter), &values[++c]);
            }
          }
        }
      }
    };
    #undef __FUNCT__
    #define __FUNCT__ "distributeArrowSection"
    template<typename Section>
    static Obj<Section> distributeArrowSection(const Obj<Section>& serialSection, const Obj<bundle_type>& serialBundle, const Obj<bundle_type>& parallelBundle, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap) {
      if (serialSection->debug()) {
        serialSection->view("Serial ArrowSection");
      }
      typedef typename alloc_type::template rebind<typename Section::value_type>::other value_alloc_type;
      typedef ALE::Field<send_overlap_type, int, ALE::Section<point_type, typename Section::value_type, value_alloc_type> > send_section_type;
      typedef ALE::Field<recv_overlap_type, int, ALE::Section<point_type, typename Section::value_type, value_alloc_type> > recv_section_type;
      typedef ALE::New::ConeSizeSection<bundle_type, sieve_type> SectionSizer;
      typedef ALE::New::ArrowSection<sieve_type, Section>        ArrowFiller;
      Obj<Section>                 parallelSection = new Section(serialSection->comm(), serialSection->debug());
      const Obj<send_section_type> sendSection     = new send_section_type(serialSection->comm(), serialSection->debug());
      const Obj<recv_section_type> recvSection     = new recv_section_type(serialSection->comm(), sendSection->getTag(), serialSection->debug());
      const Obj<SectionSizer>      sizer           = new SectionSizer(serialBundle, serialBundle->getSieve());
      const Obj<ArrowFiller>       filler          = new ArrowFiller(serialBundle->getSieve(), serialSection);

      updateArrowSectionLocal(serialSection, parallelBundle, parallelSection);
      sectionCompletion::completeSection(sendOverlap, recvOverlap, sizer, filler, sendSection, recvSection);
      updateArrowSectionRemote(recvOverlap, recvSection, parallelBundle, parallelSection);
      if (parallelSection->debug()) {
        parallelSection->view("Parallel ArrowSection");
      }
      return parallelSection;
    };
    static void unifyBundle(const Obj<bundle_type>& bundle, const int dim, const Obj<bundle_type>& bundleNew, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap) {
      typedef int part_type;
      const Obj<sieve_type>& sieve    = bundle->getSieve();
      const Obj<sieve_type>& sieveNew = bundleNew->getSieve();
      const int              rank     = bundle->commRank();
      const int              debug    = bundle->debug();

      // 1) Form partition point overlap a priori
      if (rank == 0) {
        for(int p = 1; p < sieve->commSize(); p++) {
          // The arrow is from remote partition point 0 on rank p to local partition point 0
          recvOverlap->addCone(p, 0, 0);
        }
      } else {
        // The arrow is from local partition point 0 to remote partition point 0 on rank 0
        sendOverlap->addCone(0, 0, 0);
      }
      if (debug) {
        sendOverlap->view("Send overlap for partition");
        recvOverlap->view("Receive overlap for partition");
      }
      // 2) Partition the mesh
      int        numCells   = bundle->heightStratum(0)->size();
      part_type *assignment = new part_type[numCells];

      for(int c = 0; c < numCells; ++c) {
        assignment[c] = 0;
      }
      // 3) Scatter the sieve
      sieveCompletion::scatterSieve(bundle, sieve, dim, sieveNew, sendOverlap, recvOverlap, 0, numCells, assignment);
      bundleNew->stratify();
      // 4) Cleanup
      if (assignment != NULL) delete [] assignment;
    };
    #undef __FUNCT__
    #define __FUNCT__ "unifyMesh"
    static Obj<ALE::Mesh> unifyMesh(const Obj<ALE::Mesh>& parallelMesh) {
      const int                         dim         = parallelMesh->getDimension();
      Obj<ALE::Mesh>                    serialMesh  = new ALE::Mesh(parallelMesh->comm(), dim, parallelMesh->debug());
      const Obj<ALE::Mesh::sieve_type>& serialSieve = new ALE::Mesh::sieve_type(parallelMesh->comm(), parallelMesh->debug());

      ALE_LOG_EVENT_BEGIN;
      serialMesh->setSieve(serialSieve);
      if (parallelMesh->debug()) {
        parallelMesh->view("Parallel topology");
      }

      // Unify cones
      Obj<send_overlap_type> sendOverlap = new send_overlap_type(serialMesh->comm(), serialMesh->debug());
      Obj<recv_overlap_type> recvOverlap = new recv_overlap_type(serialMesh->comm(), serialMesh->debug());
      unifyBundle(parallelMesh, dim, serialMesh, sendOverlap, recvOverlap);
      serialMesh->setDistSendOverlap(sendOverlap);
      serialMesh->setDistRecvOverlap(recvOverlap);

      // Unify labels
      const typename bundle_type::labels_type& labels = parallelMesh->getLabels();

      for(typename bundle_type::labels_type::const_iterator l_iter = labels.begin(); l_iter != labels.end(); ++l_iter) {
        if (serialMesh->hasLabel(l_iter->first)) continue;
        const Obj<typename bundle_type::label_type>& parallelLabel = l_iter->second;
        const Obj<typename bundle_type::label_type>& serialLabel   = serialMesh->createLabel(l_iter->first);

        sieveCompletion::scatterCones(parallelLabel, serialLabel, sendOverlap, recvOverlap);
      }

      // Unify coordinates
      Obj<std::set<std::string> > sections = parallelMesh->getRealSections();

      for(std::set<std::string>::iterator name = sections->begin(); name != sections->end(); ++name) {
        serialMesh->setRealSection(*name, distributeSection(parallelMesh->getRealSection(*name), serialMesh, sendOverlap, recvOverlap));
      }
      sections = parallelMesh->getIntSections();
      for(std::set<std::string>::iterator name = sections->begin(); name != sections->end(); ++name) {
        serialMesh->setIntSection(*name, distributeSection(parallelMesh->getIntSection(*name), serialMesh, sendOverlap, recvOverlap));
      }
      sections = parallelMesh->getArrowSections();
      for(std::set<std::string>::iterator name = sections->begin(); name != sections->end(); ++name) {
        serialMesh->setArrowSection(*name, distributeArrowSection(parallelMesh->getArrowSection(*name), parallelMesh, serialMesh, sendOverlap, recvOverlap));
      }
      if (serialMesh->debug()) {serialMesh->view("Serial Mesh");}
      ALE_LOG_EVENT_END;
      return serialMesh;
    };
  public: // Do not like these
    #undef __FUNCT__
    #define __FUNCT__ "updateOverlap"
    // This is just crappy. We could introduce another phase to find out exactly what
    //   indices people do not have in the global order after communication
    template<typename OrigSendOverlap, typename OrigRecvOverlap, typename SendSection, typename RecvSection>
    static void updateOverlap(const Obj<OrigSendOverlap>& origSendOverlap, const Obj<OrigRecvOverlap>& origRecvOverlap, const Obj<SendSection>& sendSection, const Obj<RecvSection>& recvSection, const Obj<send_overlap_type>& sendOverlap, const Obj<recv_overlap_type>& recvOverlap) {
      const typename SendSection::sheaf_type& sendRanks = sendSection->getPatches();
      const typename RecvSection::sheaf_type& recvRanks = recvSection->getPatches();

      for(typename SendSection::sheaf_type::const_iterator p_iter = sendRanks.begin(); p_iter != sendRanks.end(); ++p_iter) {
        const typename SendSection::patch_type&               rank    = p_iter->first;
        const Obj<typename SendSection::section_type>&        section = p_iter->second;
        const typename SendSection::section_type::chart_type& chart   = section->getChart();

        for(typename SendSection::section_type::chart_type::const_iterator b_iter = chart.begin(); b_iter != chart.end(); ++b_iter) {
          const typename SendSection::value_type *points = section->restrictPoint(*b_iter);
          const int                               size   = section->getFiberDimension(*b_iter);

          for(int p = 0; p < size; p++) {
            if (origSendOverlap->support(points[p])->size() == 0) {
              sendOverlap->addArrow(points[p], rank, points[p]);
            }
          }
        }
      }
      for(typename RecvSection::sheaf_type::const_iterator p_iter = recvRanks.begin(); p_iter != recvRanks.end(); ++p_iter) {
        const typename RecvSection::patch_type&               rank    = p_iter->first;
        const Obj<typename RecvSection::section_type>&        section = p_iter->second;
        const typename RecvSection::section_type::chart_type& chart   = section->getChart();

        for(typename RecvSection::section_type::chart_type::const_iterator b_iter = chart.begin(); b_iter != chart.end(); ++b_iter) {
          const typename RecvSection::value_type *points = section->restrictPoint(*b_iter);
          const int                               size   = section->getFiberDimension(*b_iter);

          for(int p = 0; p < size; p++) {
            if (origRecvOverlap->support(rank, points[p])->size() == 0) {
              recvOverlap->addArrow(rank, points[p], points[p]);
            }
          }
        }
      }
    };
    #undef __FUNCT__
    #define __FUNCT__ "updateSieve"
    template<typename RecvOverlap, typename RecvSection>
    static void updateSieve(const Obj<RecvOverlap>& recvOverlap, const Obj<RecvSection>& recvSection, const Obj<sieve_type>& sieve) {
#if 1
      Obj<typename RecvOverlap::traits::baseSequence> recvPoints = recvOverlap->base();

      for(typename RecvOverlap::traits::baseSequence::iterator p_iter = recvPoints->begin(); p_iter != recvPoints->end(); ++p_iter) {
        const Obj<typename RecvOverlap::traits::coneSequence>& ranks      = recvOverlap->cone(*p_iter);
        const typename RecvOverlap::target_type&               localPoint = *p_iter;

        for(typename RecvOverlap::traits::coneSequence::iterator r_iter = ranks->begin(); r_iter != ranks->end(); ++r_iter) {
          const typename RecvOverlap::target_type&       remotePoint = r_iter.color();
          const int                                      rank        = *r_iter;
          const Obj<typename RecvSection::section_type>& section     = recvSection->getSection(rank);
          const typename RecvSection::value_type        *points      = section->restrictPoint(remotePoint);
          const int                                      size        = section->getFiberDimension(remotePoint);
          int                                            c           = 0;

          ///std::cout << "["<<recvSection->commRank()<<"]: Receiving " << size << " points from rank " << rank << std::endl;
          for(int p = 0; p < size; p++) {
            // rank -- remote point --> local point
            if (recvOverlap->support(rank, points[p])->size()) {
              sieve->addArrow(*recvOverlap->support(rank, points[p])->begin(), localPoint, c);
              ///std::cout << "["<<recvSection->commRank()<<"]:   1Adding arrow " << *recvOverlap->support(rank, points[p])->begin() << "("<<points[p]<<") --> " << localPoint << std::endl;
            } else {
              sieve->addArrow(points[p], localPoint, c);
              ///std::cout << "["<<recvSection->commRank()<<"]:   2Adding arrow " << points[p] << " --> " << localPoint << std::endl;
            }
          }
        }
      }
#else
      const typename RecvSection::sheaf_type& ranks = recvSection->getPatches();

      for(typename RecvSection::sheaf_type::const_iterator p_iter = ranks.begin(); p_iter != ranks.end(); ++p_iter) {
        const Obj<typename RecvSection::section_type>&        section = p_iter->second;
        const typename RecvSection::section_type::chart_type& chart   = section->getChart();

        for(typename RecvSection::section_type::chart_type::const_iterator b_iter = chart.begin(); b_iter != chart.end(); ++b_iter) {
          const typename RecvSection::value_type *points = section->restrictPoint(*b_iter);
          int                                     size   = section->getFiberDimension(*b_iter);
          int                                     c      = 0;

          std::cout << "["<<recvSection->commRank()<<"]: Receiving " << size << " points from rank " << p_iter->first << std::endl;
          for(int p = 0; p < size; p++) {
            //sieve->addArrow(points[p], *b_iter, c++);
            sieve->addArrow(points[p], *b_iter, c);
            std::cout << "["<<recvSection->commRank()<<"]:   Adding arrow " << points[p] << " --> " << *b_iter << std::endl;
          }
        }
      }
#endif
    };
    #undef __FUNCT__
    #define __FUNCT__ "coneCompletion"
    template<typename SendOverlap, typename RecvOverlap, typename SendSection, typename RecvSection>
    static void coneCompletion(const Obj<SendOverlap>& sendOverlap, const Obj<RecvOverlap>& recvOverlap, const Obj<bundle_type>& bundle, const Obj<SendSection>& sendSection, const Obj<RecvSection>& recvSection) {
      if (sendOverlap->commSize() == 1) return;
      // Distribute cones
      const Obj<sieve_type>&                                 sieve           = bundle->getSieve();
      const Obj<typename sieveCompletion::topology_type>     secTopology     = sieveCompletion::completion::createSendTopology(sendOverlap);
      const Obj<typename sieveCompletion::cone_size_section> coneSizeSection = new typename sieveCompletion::cone_size_section(bundle, sieve);
      const Obj<typename sieveCompletion::cone_section>      coneSection     = new typename sieveCompletion::cone_section(sieve);
      sieveCompletion::completion::completeSection(sendOverlap, recvOverlap, coneSizeSection, coneSection, sendSection, recvSection);
      // Update cones
      updateSieve(recvOverlap, recvSection, sieve);
    };
    #undef __FUNCT__
    #define __FUNCT__ "completeSection"
    template<typename Section>
    static void completeSection(const Obj<bundle_type>& bundle, const Obj<Section>& section) {
      typedef typename Distribution<bundle_type>::sieveCompletion sieveCompletion;
      typedef typename bundle_type::send_overlap_type             send_overlap_type;
      typedef typename bundle_type::recv_overlap_type             recv_overlap_type;
      typedef typename Section::value_type                        value_type;
      typedef typename alloc_type::template rebind<typename Section::value_type>::other value_alloc_type;
      typedef typename ALE::Field<send_overlap_type, int, ALE::Section<point_type, value_type, value_alloc_type> > send_section_type;
      typedef typename ALE::Field<recv_overlap_type, int, ALE::Section<point_type, value_type, value_alloc_type> > recv_section_type;
      typedef ALE::New::SizeSection<Section>                                SectionSizer;
      const int debug = section->debug();

      bundle->constructOverlap();
      const Obj<send_overlap_type> sendOverlap = bundle->getSendOverlap();
      const Obj<recv_overlap_type> recvOverlap = bundle->getRecvOverlap();
      const Obj<send_section_type> sendSection = new send_section_type(section->comm(), section->debug());
      const Obj<recv_section_type> recvSection = new recv_section_type(section->comm(), sendSection->getTag(), section->debug());
      const Obj<SectionSizer>      sizer       = new SectionSizer(section);

      sectionCompletion::completeSection(sendOverlap, recvOverlap, sizer, section, sendSection, recvSection);
      // Update section with remote data
      const Obj<typename recv_overlap_type::traits::baseSequence> recvPoints = bundle->getRecvOverlap()->base();

      for(typename recv_overlap_type::traits::baseSequence::iterator r_iter = recvPoints->begin(); r_iter != recvPoints->end(); ++r_iter) {
        const Obj<typename recv_overlap_type::traits::coneSequence>&     recvPatches = recvOverlap->cone(*r_iter);
        const typename recv_overlap_type::traits::coneSequence::iterator end         = recvPatches->end();

        for(typename recv_overlap_type::traits::coneSequence::iterator p_iter = recvPatches->begin(); p_iter != end; ++p_iter) {
          if (recvSection->getSection(*p_iter)->getFiberDimension(p_iter.color())) {
            if (debug) {std::cout << "["<<section->commRank()<<"]Completed point " << *r_iter << std::endl;}
            section->updateAddPoint(*r_iter, recvSection->getSection(*p_iter)->restrictPoint(p_iter.color()));
          }
        }
      }
    };
  };
}
#endif