File: FEMProblem.hh

package info (click to toggle)
petsc 3.1.dfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 131,360 kB
  • ctags: 491,710
  • sloc: ansic: 288,064; cpp: 66,909; python: 28,799; fortran: 19,153; makefile: 13,945; sh: 3,502; f90: 1,655; xml: 620; csh: 230; java: 13
file content (1106 lines) | stat: -rw-r--r-- 47,650 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
#ifndef __FEMProblem
#define __FEMProblem

/*
  
  Framework for solving a FEM problem using sieve.
  
  The Discretization objects are WAY too embedded into the way things are done; we will have to create ways of 

This includes derived types doing what indicesExcluded does for all things marked with a boundary marker.

*/

#include <Mesh.hh>

namespace ALE { 
  namespace Problem {

    /*
      This class defines a basic interface to a subproblem; all data the type needs will be set at initialization and be
      members of the derived types

      The recommended use for a given problem is to define a subproblem class for doing the data initialization for the
      form, as well as the postprocessing one for doing the boundary handling and setting, and one for dealing with the
      process of the solve.  Work can be broken up as needed; however for the sake of simplicity one should probably
      have various forms in various subproblems to assemble.  This could of course include facet integrals or problems
      over part of the domain.  Look at the examples provided in UFCProblem, which use the UFC form compiler to assemble
      subproblems of a form.

     */

    class SubProblem : public ParallelObject {
    public:

      typedef std::string name_type;      

      SubProblem(MPI_Comm comm, const int debug = 0) : ParallelObject(comm, debug) {};
      virtual ~SubProblem() {};

    };

    /*
      Below is a helper derived class of subproblem; the persistently limiting and annoying discretization object in
      Sieve must be excised; Here are subproblem objects containing the helper functions that are presently in the
      monster called PETSC_MESH_TYPE, but with references to the discretization object stolen.  virtual functions to be
      filled in in further derived classes are marked.  This is meant to be a stepping stone towards generalized use of
      problem creation objects with multiple fields and interesting boundary conditions.  This type can be branched into

    */

    //creates a discretization-like thing for this particular case; from this we can use the helper functions in the
    //generalformsubproblem to set up the discretization across the mesh as one might expect in the case of a


#if 0

    //we really can't use this for finite elements with UFC

    class GeneralCell : public ParallelObject {
    private:
      int _embedded_dimension;           //the fiberdimension of the coordinate section
      int closureSize;                   //the size of the closure
      std::map<int, int> _closure_order; //all that really matters; assume interpolated as the order should be the same
      int _num_vertices;                 //necessary to allocate the coordinate array.
      double * _coordinates;             //the coordinate array in order based upon the local topology

      GeneralCell() {
	_num_vertices = 0;
	_coordinates = PETSC_NULL;
      }

      GeneralCell(int embedded_dimension, int num_vertices) {
	_embedded_dimension = embedded_dimension;
	_num_vertices = _num_vertices;
	_coordinates = new double[_embedded_dimension*_num_vertices];
      }

      virtual ~GeneralCell() {
	if (_coordinates)
	  delete _coordinates;
      }

      virtual void setMeshCell(Obj<PETSC_MESH_TYPE> mesh, PETSC_MESH_TYPE::point_type cell) {
	throw Exception("GeneralCell->setCell(): Unimplemented base class");
        return;
      }
      virtual void setClosureOrder(int subcell, int map) {
	_closure_order[subcell] = map;
      }
      virtual int getClosureOrder(int subcell) {
	return _closure_order[subcell];
      }
    };

#endif

    class GeneralBoundaryCondition : ParallelObject {
    protected:

      std::string     _labelName;
      int             _marker;

    public:
      GeneralBoundaryCondition(MPI_Comm comm, const int debug = 0) : ParallelObject(comm, debug) {};
      virtual ~GeneralBoundaryCondition() {};
    public:
      virtual const std::string& getLabelName() const {return this->_labelName;};
      virtual void setLabelName(const std::string& name) {this->_labelName = name;};
      virtual int getMarker() const {return this->_marker;};
      virtual void setMarker(const int marker) {this->_marker = marker;};
      
    public:

      virtual double integrateDual(unsigned int dof) {
	//when implementing this one should have some notion of what the dof number is built into the BC; this would constitute having some cell or something known
	//by the object such that that cell can be set and integrated within.
	throw Exception("GeneralBoundaryCondition->integrateDual: Nonimplemented base-class version called.");
	return 3.;
      };
      
      virtual void setReorder(int * reorder) {
	throw Exception("GeneralBoundaryCondition->setReorder(): Unimplemented base class version called.");
      }

      virtual const int * getReorder() {
	throw Exception("GeneralBoundaryCondition->getReorder(): Unimplemented base class version called.");
	return PETSC_NULL;
      }

    };
    
    /*
      Include at least counts of all the part of the triple, as well as all the information for the cell.
     */

#if 0

    class GeneralFiniteElement : public ParallelObject {
    private:
    public:
      virtual double integrateDual(unsigned int dof) {
	//evaluate a degree of freedom 
	return 0.;
      }
      virtual int closureIndex(unsigned int dof) {
	return 0;
      }
      virtual int dataIndex(unsigned int dof) {
	return 0;
      }
    };

#endif

    //we almost, ALMOST need an overall view of a local reference topology for this kind of stuff (and the boundary conditions).

    class GeneralIntegral : public ParallelObject {
    public:
      typedef std::string name_type;
    private: 
      //the integral should only apply to the labeled points in some way, probably over the closure(support(point));


      //the integrals will have some set of cells or cell-like objects they act on; this includes potentially internal faces.
      //But, for cell integrals these should be set to "height" and "0"

      name_type _label_name;
      int _label_marker;     //We could use this if there's only a certain label and marker that the given integral applies to

      int _num_coefficients; //for the linear forms

      int _space_dimension;       //the number of DoFs we're dealing with here.
      int _tensor_rank;           //the tensor rank; it BETTER be one or two.
      int _topological_dimension; //the topological dimension of the given mesh item -- tells us if it's a cell or facet integral

      int * _closure2data;  //if there is some API-level data storage, this maps the unknowns for the WHOLE CLOSURE onto the unknowns for the API

    public:
      
      GeneralIntegral (MPI_Comm comm, int debug = 0) : ParallelObject(comm, debug) {
	_tensor_rank = 0;
	_space_dimension = 0;
	_topological_dimension = 0;
	_label_marker = 0;
      }

      GeneralIntegral (MPI_Comm comm, name_type labelname, int labelmarker, int nCoefficients = 0, int debug = 0) : ParallelObject(comm, debug) {
	_num_coefficients = nCoefficients;
	_label_name = labelname;
	_label_marker = labelmarker;
      }

      virtual ~GeneralIntegral () {};


      int getNumCoefficients() {
	return _num_coefficients;
      }

      void setNumCoefficients(int nc) {
	_num_coefficients = nc;
      }


      name_type getLabelName() {
	return _label_name;
      }

      int getLabelMarker() {
	return _label_marker;
      }

      void setLabelName(name_type newName) {
	_label_name = newName;
      }

      void setLabelMarker(int newMarker) {
	_label_marker = newMarker;
      }
      

      virtual void setSpaceDimension(int dim) {
	_space_dimension = dim;
      }
      
      virtual int getSpaceDimension() {
	return _space_dimension;
      }

      virtual void setTensorRank(int rank) {
	_tensor_rank = rank;
      }
      
      virtual int getTensorRank() {
	return _tensor_rank; 
      }

      
      
      virtual const int * getReorder() {
	return _closure2data;
      }

      virtual void setReorder(int * reorder) {
	_closure2data = reorder;
      }

      //use the UFC lingo here
      //have some notion of the cell initialized and in-state in the eventual implementation.
      virtual void tabulateTensor(double * tensor, const double * coefficients = PETSC_NULL) {
	throw Exception("GeneralIntegral->tabulateTensor: Nonimplemented Base class version called.");
	return;
      }
    };

    class GeneralDiscretization : ParallelObject { //this should largely resemble the old form of the discretizations, only with specifics of evaluation to FIAT removed.
      typedef std::map<std::string, Obj<GeneralBoundaryCondition> > boundaryConditions_type;
    protected:
      boundaryConditions_type _boundaryConditions;
      Obj<GeneralBoundaryCondition> _exactSolution;
      std::map<int,int> _dim2dof; //not good enough for tensor product assembly.... however we can generalize this into some sort of "getClosureItemDofs" or something per cell
      std::map<int,int> _dim2class;
      int           _quadSize;
      int           _basisSize;
      const int *         _indices;
      std::map<int, const int *> _exclusionIndices;
      const int * _closure2data; //local index reordering

    public:

      typedef std::set<std::string> names_type;

      GeneralDiscretization(MPI_Comm comm, const int debug = 0) : ParallelObject(comm, debug), _quadSize(0), _basisSize(0), _indices(NULL) {};
      virtual ~GeneralDiscretization() {
	if (this->_indices) {delete [] this->_indices;}
	for(std::map<int, const int *>::iterator i_iter = _exclusionIndices.begin(); i_iter != _exclusionIndices.end(); ++i_iter) {
	  delete [] i_iter->second;
	}
	if (_closure2data) {
	  delete _closure2data;
	}
      };
    public:
      virtual const bool hasBoundaryCondition() {return (this->_boundaryConditions.find("default") != this->_boundaryConditions.end());};
      virtual Obj<GeneralBoundaryCondition> getBoundaryCondition() {return this->getBoundaryCondition("default");};
      virtual void setBoundaryCondition(const Obj<GeneralBoundaryCondition>& boundaryCondition) {this->setBoundaryCondition("default", boundaryCondition);};
      virtual Obj<GeneralBoundaryCondition> getBoundaryCondition(const std::string& name) {return this->_boundaryConditions[name];};
      virtual void setBoundaryCondition(const std::string& name, const Obj<GeneralBoundaryCondition>& boundaryCondition) {this->_boundaryConditions[name] = boundaryCondition;};
      virtual names_type getBoundaryConditions() const {
	Obj<names_type> names = names_type();
	for(boundaryConditions_type::const_iterator d_iter = this->_boundaryConditions.begin(); d_iter != this->_boundaryConditions.end(); ++d_iter) {
	  names->insert(d_iter->first);
	}
	return names;
      };

      //eh?
      //virtual const Obj<BoundaryCondition>& getExactSolution() {return this->_exactSolution;};
      //virtual void setExactSolution(const Obj<GeneralBoundaryCondition>& exactSolution) {this->_exactSolution = exactSolution;};
      virtual const int     getQuadratureSize() {return this->_quadSize;};
      virtual void          setQuadratureSize(const int size) {this->_quadSize = size;};
      virtual const int     getBasisSize() {return this->_basisSize;};
      virtual void          setBasisSize(const int size) {this->_basisSize = size;};

      //eh, until they get this together in UFC keep these around.

      virtual int           getNumDof(const int dim) {return this->_dim2dof[dim];};
      virtual void          setNumDof(const int dim, const int numDof) {this->_dim2dof[dim] = numDof;};
      virtual int           getDofClass(const int dim) {return this->_dim2class[dim];};
      virtual void          setDofClass(const int dim, const int dofClass) {this->_dim2class[dim] = dofClass;};
    public:

      /*
	
      Functions for interacting with external libraries for handling finite element assembly that might have different cell layout.
      
       */

      virtual void createReorder() {
	throw Exception("GeneralDiscretization->createReorderings: Unimplemented base function");
	return;
      }

      virtual const int * getReorder() {
	return _closure2data;
      }

      virtual void setReorder(int * reorder) {
	_closure2data = reorder;
      }

      //Yeah... not messing with this part.

      virtual const int *getIndices() {return this->_indices;};
      virtual const int *getIndices(const int marker) {

	if (!marker) return this->getIndices();
	return this->_exclusionIndices[marker];
      };
      virtual void       setIndices(const int *indices) {this->_indices = indices;};
      virtual void       setIndices(const int *indices, const int marker) {
	if (!marker) this->_indices = indices;
	this->_exclusionIndices[marker] = indices;
      };

      //return the size of the space
      virtual int size() {
	throw Exception("GeneralDiscretization->size(): Nonimplemented base class function called.");
	return 0;
      }
      virtual double evaluateRHS(int dof) {
	throw Exception("GeneralDiscretization->evaluateRHS: Nonimplemented base class function called.");
      }
    };

    //The GenericFormSubProblem shown here should basically contain the whole problem as it does the discretization-like setup, which might break
    //if you define multiple ones right now.  Set the multiple different spaces using different discretizations.

    class GenericFormSubProblem : SubProblem { //takes information from some abstract notion of a problem and sets up the thing.
    public:
      typedef std::map<std::string, Obj<GeneralDiscretization> > discretizations_type;
      typedef std::map<std::string, Obj<GeneralIntegral> > integral_type;
      typedef std::set<std::string> names_type;

      GenericFormSubProblem(MPI_Comm comm, int debug = 1) : SubProblem(comm, debug) {};

      ~GenericFormSubProblem(){};

    private:
      
      name_type _solutionSectionName;
      name_type _forcingSectionName;
      discretizations_type _discretizations;
      integral_type _integrals;
      Obj<GeneralBoundaryCondition> _exactSolution; //evaluates a function over all unknowns on the form containing an exact solution.  Per discretization later.
      int * _closure2data;                          //a mapping from closure indices to data indices for the overall element 


      //helper functions, stolen directly from Mesh.hh with slight modifications to remove FIAT dependence and instead use stuff from GeneralDiscretization

    public: 
      
      const Obj<GeneralDiscretization>& getDiscretization() {return this->getDiscretization("default");};
      const Obj<GeneralDiscretization>& getDiscretization(const std::string& name) {return this->_discretizations[name];};
      
      void setDiscretization(const Obj<GeneralDiscretization>& disc) {this->setDiscretization("default", disc);};
      void setDiscretization(const std::string& name, const Obj<GeneralDiscretization>& disc) {this->_discretizations[name] = disc;};

      const Obj<GeneralIntegral>& getIntegral() {return this->getIntegral("default");};
      const Obj<GeneralIntegral>& getIntegral(const std::string& name) {return this->_integrals[name];};

      void setIntegral(const Obj<GeneralIntegral>& integral) {this->setIntegral("default", integral);};
      void setIntegral(const std::string& name, const Obj<GeneralIntegral> integral) {this->_integrals[name] = integral;};

      //FAIL! this won't be used.
      void setExactSolution(Obj<GeneralBoundaryCondition> exactsol) {
	_exactSolution = exactsol;
      }

      Obj<GeneralBoundaryCondition> getExactSolution(){return _exactSolution;};

      Obj<names_type> getDiscretizations() const {
	Obj<names_type> names = names_type();
	
	for(discretizations_type::const_iterator d_iter = this->_discretizations.begin(); d_iter != this->_discretizations.end(); ++d_iter) {
	  names->insert(d_iter->first);
	}
	return names;
      };

      Obj<names_type> getIntegrals() const {
	Obj<names_type> names = names_type();
	for (integral_type::const_iterator i_iter = this->_integrals.begin(); i_iter != this->_integrals.end(); ++i_iter) {
	  names->insert(i_iter->first);
	}
	return names;
      }

      //TODO: Implement a cell interface class towards flexible handling of reordering between various parts of this thing.

      virtual void setCell(Obj<PETSC_MESH_TYPE> mesh, PETSC_MESH_TYPE::point_type c) const { //implementations should set some state of the derived type to the present cell
	throw Exception("Using the unimplemented base class version of setCell in GeneralDiscretization.");
	return;
      };

      virtual int localSpaceDimension() {
	throw Exception("GeneralDiscretization->localSpaceDimension(): using the unimplemented base class version.");
	return 0;
      }
      
      /*
	Functions handling the creation and application of reordering from element libraries and sieve.
       */

      virtual void createReorder() {
	throw Exception("GeneralFormSubProblem->buildOrderings(): nonimplemented base function");
	return;
      }

      virtual const int * getReorder() {
	return _closure2data;
      }

      virtual void setReorder(int * order) {
	_closure2data = order;
      }

      /*
	Functions handling the mesh data layout from the overall subproblem
       */

      int setFiberDimensions(const Obj<PETSC_MESH_TYPE> mesh, const Obj<PETSC_MESH_TYPE::real_section_type> s, const Obj<names_type>& discs, names_type& bcLabels) {
	const int debug  = this->debug();
	int       maxDof = 0;
	
	for(names_type::const_iterator f_iter = discs->begin(); f_iter != discs->end(); ++f_iter) {
	  s->addSpace();
	}
	for(int d = 0; d <= mesh->getDimension(); ++d) {
	  int numDof = 0;
	  int f      = 0;
	  
	  for(names_type::const_iterator f_iter = discs->begin(); f_iter != discs->end(); ++f_iter, ++f) {
	    const Obj<GeneralDiscretization>& disc = this->getDiscretization(*f_iter);
	    const int                       sDof = disc->getNumDof(d);
	    
	    numDof += sDof;
	    if (sDof) s->setFiberDimension(mesh->depthStratum(d), sDof, f);
	  }
	  if (numDof) s->setFiberDimension(mesh->depthStratum(d), numDof);
	  maxDof = std::max(maxDof, numDof);
	}
	// Process exclusions
	typedef ISieveVisitor::PointRetriever<PETSC_MESH_TYPE::sieve_type> Visitor;
	int f = 0;
	
	for(names_type::const_iterator f_iter = discs->begin(); f_iter != discs->end(); ++f_iter, ++f) {
	  const Obj<GeneralDiscretization>& disc      = this->getDiscretization(*f_iter);
	  std::string                     labelName = "exclude-"+*f_iter;
	  std::set<PETSC_MESH_TYPE::point_type>            seen;
	  Visitor pV((int) pow(mesh->getSieve()->getMaxConeSize(), mesh->depth()), true);
	  
	  if (mesh->hasLabel(labelName)) {
	    const Obj<PETSC_MESH_TYPE::label_type>&         label     = mesh->getLabel(labelName);
	    const Obj<PETSC_MESH_TYPE::label_sequence>&     exclusion = mesh->getLabelStratum(labelName, 1);
	    const PETSC_MESH_TYPE::label_sequence::iterator end       = exclusion->end();
	    if (debug > 1) {label->view(labelName.c_str());}
	    
	    for(PETSC_MESH_TYPE::label_sequence::iterator e_iter = exclusion->begin(); e_iter != end; ++e_iter) {
	      ISieveTraversal<PETSC_MESH_TYPE::sieve_type>::orientedClosure(*mesh->getSieve(), *e_iter, pV);
	      const Visitor::point_type *oPoints = pV.getPoints();
	      const int                  oSize   = pV.getSize();
	      
	      for(int cl = 0; cl < oSize; ++cl) {
		if (seen.find(oPoints[cl]) != seen.end()) continue;
		if (mesh->getValue(label, oPoints[cl]) == 1) {
		  seen.insert(oPoints[cl]);
		  s->setFiberDimension(oPoints[cl], 0, f);
		  s->addFiberDimension(oPoints[cl], -disc->getNumDof(mesh->depth(oPoints[cl])));
		  if (debug > 1) {std::cout << "  point: " << oPoints[cl] << " dim: " << disc->getNumDof(mesh->depth(oPoints[cl])) << std::endl;}
		}
	      }
	      pV.clear();
	    }
	  }
	}
	// Process constraints
	f = 0;
	for(std::set<std::string>::const_iterator f_iter = discs->begin(); f_iter != discs->end(); ++f_iter, ++f) {
	  const Obj<GeneralDiscretization>&    disc        = this->getDiscretization(*f_iter);
	  const Obj<std::set<std::string> >  bcs         = disc->getBoundaryConditions();
	  std::string                        excludeName = "exclude-"+*f_iter;
	  
	  for(std::set<std::string>::const_iterator bc_iter = bcs->begin(); bc_iter != bcs->end(); ++bc_iter) {
	    const Obj<GeneralBoundaryCondition>& bc       = disc->getBoundaryCondition(*bc_iter);
	    const Obj<PETSC_MESH_TYPE::label_sequence>&         boundary = mesh->getLabelStratum(bc->getLabelName(), bc->getMarker());
	    
	    bcLabels.insert(bc->getLabelName());
	    if (mesh->hasLabel(excludeName)) {
	      const Obj<PETSC_MESH_TYPE::label_type>& label = mesh->getLabel(excludeName);
	      
	      for(PETSC_MESH_TYPE::label_sequence::iterator e_iter = boundary->begin(); e_iter != boundary->end(); ++e_iter) {
		if (!mesh->getValue(label, *e_iter)) {
		  const int numDof = disc->getNumDof(mesh->depth(*e_iter));
		  
		  if (numDof) s->addConstraintDimension(*e_iter, numDof);
		  if (numDof) s->setConstraintDimension(*e_iter, numDof, f);
		}
	      }
	    } else {
	      for(PETSC_MESH_TYPE::label_sequence::iterator e_iter = boundary->begin(); e_iter != boundary->end(); ++e_iter) {
		const int numDof = disc->getNumDof(mesh->depth(*e_iter));
		
		if (numDof) s->addConstraintDimension(*e_iter, numDof);
		if (numDof) s->setConstraintDimension(*e_iter, numDof, f);
	      }
	    }
	  }
	}
	return maxDof;
      };
      void calculateIndices(Obj<PETSC_MESH_TYPE> mesh) {
	typedef ISieveVisitor::PointRetriever<PETSC_MESH_TYPE::sieve_type> Visitor;
	// Should have an iterator over the whole tree
	Obj<names_type> discs = this->getDiscretizations();
	const int       debug = this->debug();
	std::map<std::string, std::pair<int, int*> > indices;
	
	for(names_type::const_iterator d_iter = discs->begin(); d_iter != discs->end(); ++d_iter) {
	  const Obj<GeneralDiscretization>& disc = this->getDiscretization(*d_iter);
	  indices[*d_iter] = std::pair<int, int*>(0, new int[disc->size()]);  //size isn't a function of the mesh it's a function of the local function space
	  disc->setIndices(indices[*d_iter].second);
	}
	const Obj<PETSC_MESH_TYPE::label_sequence>& cells   = mesh->heightStratum(0);
	Visitor pV((int) pow(mesh->getSieve()->getMaxConeSize(), mesh->depth())+1, true);
	ISieveTraversal<PETSC_MESH_TYPE::sieve_type>::orientedClosure(*mesh->getSieve(), *cells->begin(), pV);
	const Visitor::point_type *oPoints = pV.getPoints();
	const int                  oSize   = pV.getSize();
	int                        offset  = 0;
	
	if (debug > 1) {std::cout << "Closure for first element" << std::endl;}
	for(int cl = 0; cl < oSize; ++cl) {
	  const int dim = mesh->depth(oPoints[cl]);
	  
	  if (debug > 1) {std::cout << "  point " << oPoints[cl] << " depth " << dim << std::endl;}
	  for(names_type::const_iterator d_iter = discs->begin(); d_iter != discs->end(); ++d_iter) {
	    const Obj<GeneralDiscretization>& disc = this->getDiscretization(*d_iter);
	    const int                  num  = disc->getNumDof(dim);
	    
	    //if (debug > 1) {std::cout << "    disc " << disc->getName() << " numDof " << num << std::endl;}
	    for(int o = 0; o < num; ++o) {
	      indices[*d_iter].second[indices[*d_iter].first++] = offset++;
	    }
	  }
	}
	pV.clear();
	if (debug > 1) {
	  for(names_type::const_iterator d_iter = discs->begin(); d_iter != discs->end(); ++d_iter) {
	    //const Obj<GeneralDiscretization>& disc = this->getDiscretization(*d_iter);
	    
	    //std::cout << "Discretization " << disc->getName() << " indices:";
	    for(int i = 0; i < indices[*d_iter].first; ++i) {
	      std::cout << " " << indices[*d_iter].second[i];
	    }
	    std::cout << std::endl;
	  }
	}
      };

      void calculateIndicesExcluded(const Obj<PETSC_MESH_TYPE> mesh, const Obj<PETSC_MESH_TYPE::real_section_type>& s, const Obj<names_type>& discs) {
	typedef ISieveVisitor::PointRetriever<PETSC_MESH_TYPE::sieve_type> Visitor;
	typedef std::map<std::string, std::pair<int, indexSet> > indices_type;
	const Obj<PETSC_MESH_TYPE::label_type>& indexLabel = mesh->createLabel("cellExclusion");
	const int debug  = this->debug();
	int       marker = 0;
	std::map<indices_type, int> indexMap;
	indices_type                indices;
	Visitor pV((int) pow(mesh->getSieve()->getMaxConeSize(), mesh->depth())+1, true);
	
	for(names_type::const_iterator d_iter = discs->begin(); d_iter != discs->end(); ++d_iter) {
	  const Obj<GeneralDiscretization>& disc = this->getDiscretization(*d_iter);
	  const int                  size = disc->size();
	  
	  indices[*d_iter].second.resize(size);
	}
	const names_type::const_iterator dBegin = discs->begin();
	const names_type::const_iterator dEnd   = discs->end();
	std::set<PETSC_MESH_TYPE::point_type> seen;
	int f = 0;
	
	for(names_type::const_iterator f_iter = dBegin; f_iter != dEnd; ++f_iter, ++f) {
	  std::string labelName = "exclude-"+*f_iter;
	  
	  if (mesh->hasLabel(labelName)) {
	    const Obj<PETSC_MESH_TYPE::label_sequence>&     exclusion = mesh->getLabelStratum(labelName, 1);
	    const PETSC_MESH_TYPE::label_sequence::iterator end       = exclusion->end();
	    
	    if (debug > 1) {std::cout << "Processing exclusion " << labelName << std::endl;}
	    for(PETSC_MESH_TYPE::label_sequence::iterator e_iter = exclusion->begin(); e_iter != end; ++e_iter) {
	      if (mesh->height(*e_iter)) continue;
	      ISieveTraversal<PETSC_MESH_TYPE::sieve_type>::orientedClosure(*mesh->getSieve(), *e_iter, pV);
	      const Visitor::point_type *oPoints = pV.getPoints();
	      const int                  oSize   = pV.getSize();
	      int                        offset  = 0;
	      
	      if (debug > 1) {std::cout << "  Closure for cell " << *e_iter << std::endl;}
	      for(int cl = 0; cl < oSize; ++cl) {
		int g = 0;
		
		if (debug > 1) {std::cout << "    point " << oPoints[cl] << std::endl;}
		for(names_type::const_iterator g_iter = dBegin; g_iter != dEnd; ++g_iter, ++g) {
		  const int fDim = s->getFiberDimension(oPoints[cl], g);
		  
		  if (debug > 1) {std::cout << "      disc " << *g_iter << " numDof " << fDim << std::endl;}
		  for(int d = 0; d < fDim; ++d) {
		    indices[*g_iter].second[indices[*g_iter].first++] = offset++;
		  }
		}
	      }
	      pV.clear();
	      const std::map<indices_type, int>::iterator entry = indexMap.find(indices);
	      
	      if (debug > 1) {
		for(std::map<indices_type, int>::iterator i_iter = indexMap.begin(); i_iter != indexMap.end(); ++i_iter) {
		  for(names_type::const_iterator g_iter = discs->begin(); g_iter != discs->end(); ++g_iter) {
		    std::cout << "Discretization (" << i_iter->second << ") " << *g_iter << " indices:";
		    for(int i = 0; i < ((indices_type) i_iter->first)[*g_iter].first; ++i) {
		      std::cout << " " << ((indices_type) i_iter->first)[*g_iter].second[i];
		    }
		    std::cout << std::endl;
		  }
		  std::cout << "Comparison: " << (indices == i_iter->first) << std::endl;
		}
		for(names_type::const_iterator g_iter = discs->begin(); g_iter != discs->end(); ++g_iter) {
		  std::cout << "Discretization " << *g_iter << " indices:";
		  for(int i = 0; i < indices[*g_iter].first; ++i) {
		    std::cout << " " << indices[*g_iter].second[i];
		  }
		  std::cout << std::endl;
		}
	      }
	      if (entry != indexMap.end()) {
		mesh->setValue(indexLabel, *e_iter, entry->second);
		if (debug > 1) {std::cout << "  Found existing indices with marker " << entry->second << std::endl;}
	      } else {
		indexMap[indices] = ++marker;
		mesh->setValue(indexLabel, *e_iter, marker);
		if (debug > 1) {std::cout << "  Created new indices with marker " << marker << std::endl;}
	      }
	      for(names_type::const_iterator g_iter = discs->begin(); g_iter != discs->end(); ++g_iter) {
		indices[*g_iter].first  = 0;
		for(unsigned int i = 0; i < indices[*g_iter].second.size(); ++i) indices[*g_iter].second[i] = 0;
	      }
	    }
	  }
	}
	if (debug > 1) {indexLabel->view("cellExclusion");}
	for(std::map<indices_type, int>::iterator i_iter = indexMap.begin(); i_iter != indexMap.end(); ++i_iter) {
	  if (debug > 1) {std::cout << "Setting indices for marker " << i_iter->second << std::endl;}
	  for(names_type::const_iterator g_iter = discs->begin(); g_iter != discs->end(); ++g_iter) {
	    const Obj<GeneralDiscretization>& disc = this->getDiscretization(*g_iter);
	    const indexSet  indSet   = ((indices_type) i_iter->first)[*g_iter].second;
	    const int       size     = indSet.size();
	    int            *_indices = new int[size];
	    
	    if (debug > 1) {std::cout << "  field " << *g_iter << std::endl;}
	    for(int i = 0; i < size; ++i) {
	      _indices[i] = indSet[i];
	      if (debug > 1) {std::cout << "    indices["<<i<<"] = " << _indices[i] << std::endl;}
	    }
	    disc->setIndices(_indices, i_iter->second);
	  }
	}
      };
    public:
      void setupField(const Obj<PETSC_MESH_TYPE> mesh, const Obj<PETSC_MESH_TYPE::real_section_type>& s, const int cellMarker = 2, const bool noUpdate = false, const bool setAll = false) {
	typedef ISieveVisitor::PointRetriever<PETSC_MESH_TYPE::sieve_type> Visitor;
	const Obj<names_type>& discs  = this->getDiscretizations();
	const int              debug  = s->debug();
	names_type             bcLabels;
	
	s->setChart(mesh->getSieve()->getChart());
	int maxDof = this->setFiberDimensions(mesh, s, discs, bcLabels);
	this->calculateIndices(mesh);
	this->calculateIndicesExcluded(mesh, s, discs);
	this->createReorder();
	mesh->allocate(s);
	s->defaultConstraintDof();
	const Obj<PETSC_MESH_TYPE::label_type>& cellExclusion = mesh->getLabel("cellExclusion");
	
	if (debug > 1) {std::cout << "Setting boundary values to " << std::endl;}
	for(names_type::const_iterator n_iter = bcLabels.begin(); n_iter != bcLabels.end(); ++n_iter) {
	  Obj<PETSC_MESH_TYPE::label_sequence> boundaryCells = mesh->getLabelStratum(*n_iter, cellMarker);
	  if (setAll) boundaryCells = mesh->heightStratum(0);
	  //const Obj<PETSC_MESH_TYPE::real_section_type>&  coordinates   = mesh->getRealSection("coordinates");
	  const Obj<names_type>&         discs         = this->getDiscretizations();
	  const PETSC_MESH_TYPE::point_type               firstCell     = *boundaryCells->begin();
	  const int                      numFields     = discs->size();
	  PETSC_MESH_TYPE::real_section_type::value_type *values        = new PETSC_MESH_TYPE::real_section_type::value_type[mesh->sizeWithBC(s, firstCell)];
	  int                           *dofs          = new int[maxDof];
	  int                           *v             = new int[numFields];
	  Visitor pV((int) pow(mesh->getSieve()->getMaxConeSize(), mesh->depth())+1, true);
	  
	  for(PETSC_MESH_TYPE::label_sequence::iterator c_iter = boundaryCells->begin(); c_iter != boundaryCells->end(); ++c_iter) {
	    ISieveTraversal<PETSC_MESH_TYPE::sieve_type>::orientedClosure(*mesh->getSieve(), *c_iter, pV);
	    const Visitor::point_type *oPoints = pV.getPoints();
	    const int                  oSize   = pV.getSize();
	    
	    if (debug > 1) {std::cout << "  Boundary cell " << *c_iter << std::endl;}
	    //mesh->computeElementGeometry(coordinates, *c_iter, v0, J, PETSC_NULL, detJ);
	    this->setCell(mesh, *c_iter);
	    for(int f = 0; f < numFields; ++f) v[f] = 0;
	    for(int cl = 0; cl < oSize; ++cl) {
	      //if (*c_iter == 0) std::cout << oPoints[cl] << std::endl;
	      const int cDim = s->getConstraintDimension(oPoints[cl]);
	      int       off  = 0;
	      int       f    = 0;
	      int       i    = -1;
	      
	      if (debug > 1) {std::cout << "    point " << oPoints[cl] << std::endl;}
	      if (cDim || setAll) {
		if (debug > 1) {std::cout << "      constrained excMarker: " << mesh->getValue(cellExclusion, *c_iter) << std::endl;}
		for(names_type::const_iterator f_iter = discs->begin(); f_iter != discs->end(); ++f_iter, ++f) {
		  const Obj<GeneralDiscretization>& disc    = this->getDiscretization(*f_iter);
		  const Obj<names_type>           bcs     = disc->getBoundaryConditions();
		  const int                       fDim    = s->getFiberDimension(oPoints[cl], f);//disc->getNumDof(this->depth(oPoints[cl]));
		  const int                      *indices = disc->getIndices(mesh->getValue(cellExclusion, *c_iter));
		  int                             b       = 0;
		  
		  for(names_type::const_iterator bc_iter = bcs->begin(); bc_iter != bcs->end(); ++bc_iter, ++b) {
		    const Obj<GeneralBoundaryCondition>& bc    = disc->getBoundaryCondition(*bc_iter);
		    const int                          value = mesh->getValue(mesh->getLabel(bc->getLabelName()), oPoints[cl]);
		    if (b > 0) v[f] -= fDim;
		    if (value == bc->getMarker()) {
		      if (debug > 1) {std::cout << "      field " << *f_iter << " marker " << value << std::endl;}
		      for(int d = 0; d < fDim; ++d, ++v[f]) {
			dofs[++i] = off+d;
			//if (!noUpdate) values[indices[v[f]]] = (*bc->getDualIntegrator())(v0, J, v[f], bc->getFunction());
			if (!noUpdate) {
			  values[indices[v[f]]] = bc->integrateDual(v[f]);
			}
			if (debug > 1) {std::cout << "      setting values["<<indices[v[f]]<<"] = " << values[indices[v[f]]] << std::endl;}
		      }
		      // Allow only one condition per point
		      ++b;
		      break;
		    } else {
		      if (debug > 1) {std::cout << "      field " << *f_iter << std::endl;}
		      for(int d = 0; d < fDim; ++d, ++v[f]) {
			if (!setAll) {
			  values[indices[v[f]]] = 0.0;
			} else {
			  //TODO: do strides of the rank of the unknown space; we need a natural way of handling vectors in a single discretization.
			  values[indices[v[f]]] = bc->integrateDual(v[f]);
			}
			if (debug > 1) {std::cout << "      setting values["<<indices[v[f]]<<"] = " << values[indices[v[f]]] << std::endl;}
		      }
		    }
		  }
		  if (b == 0) {
		    if (debug > 1) {std::cout << "      field " << *f_iter << std::endl;}
		    for(int d = 0; d < fDim; ++d, ++v[f]) {
		      values[indices[v[f]]] = 0.0;
		      if (debug > 1) {std::cout << "      setting values["<<indices[v[f]]<<"] = " << values[indices[v[f]]] << std::endl;}
		    }
		  }
		  off += fDim;
		}
		if (i != cDim-1) {throw ALE::Exception("Invalid constraint initialization");}
		s->setConstraintDof(oPoints[cl], dofs);
	      } else {
		if (debug > 1) {std::cout << "      unconstrained" << std::endl;}
		for(names_type::const_iterator f_iter = discs->begin(); f_iter != discs->end(); ++f_iter, ++f) {
		  const Obj<GeneralDiscretization>& disc    = this->getDiscretization(*f_iter);
		  const int                       fDim    = s->getFiberDimension(oPoints[cl], f);//disc->getNumDof(this->depth(oPoints[cl]));
		  const int                      *indices = disc->getIndices(mesh->getValue(cellExclusion, *c_iter));
		  
		  if (debug > 1) {std::cout << "      field " << *f_iter << std::endl;}
		  for(int d = 0; d < fDim; ++d, ++v[f]) {
		    values[indices[v[f]]] = 0.0;
		    if (debug > 1) {std::cout << "      setting values["<<indices[v[f]]<<"] = " << values[indices[v[f]]] << std::endl;}
		  }
		}
	      }
	    }
	    if (debug > 1) {
	      for(int f = 0; f < numFields; ++f) v[f] = 0;
	      for(int cl = 0; cl < oSize; ++cl) {
		int f = 0;
		for(names_type::const_iterator f_iter = discs->begin(); f_iter != discs->end(); ++f_iter, ++f) {
		  const Obj<GeneralDiscretization>& disc    = this->getDiscretization(*f_iter);
		  const int                       fDim    = s->getFiberDimension(oPoints[cl], f);
		  const int                      *indices = disc->getIndices(mesh->getValue(cellExclusion, *c_iter));
		  
		  for(int d = 0; d < fDim; ++d, ++v[f]) {
		    std::cout << "    "<<*f_iter<<"-value["<<indices[v[f]]<<"] " << values[indices[v[f]]] << std::endl;
		  }
		}
	      }
	    }
	    if (!noUpdate) {
	      mesh->updateAll(s, *c_iter, values);
	    }
	    pV.clear();
	  }
	  delete [] dofs;
	  delete [] values;
	}
	if (debug > 1) {s->view("");}
      };
    };
    /*

    Jacobian and RHS assembly functions to pass to DMMG which depend on a GenericFormSubProblem rather than on some options.
    

    */

#undef __FUNCT__
#define __FUNCT__ "RHS_FEMProblem"

    PetscErrorCode RHS_FEMProblem(::Mesh mesh, SectionReal X, SectionReal section,  void * ctx) {
      GenericFormSubProblem * subproblem = (GenericFormSubProblem *)ctx;
      Obj<PETSC_MESH_TYPE> m;
      PetscErrorCode ierr;
      
      PetscFunctionBegin;
      ierr = MeshGetMesh(mesh, m);CHKERRQ(ierr);
      ierr = SectionRealZero(section);CHKERRQ(ierr);
      Obj<PETSC_MESH_TYPE::real_section_type> s;
      ierr = SectionRealGetSection(section, s);CHKERRQ(ierr);
      // Loop over cells
      //loop over integrals;
      
      GenericFormSubProblem::names_type integral_names = subproblem->getIntegrals();
      GenericFormSubProblem::names_type::const_iterator n_iter = integral_names.begin();
      GenericFormSubProblem::names_type::const_iterator n_iter_end = integral_names.end();
      //const Obj<PETSC_MESH_TYPE::order_type>& order = m->getFactory()->getGlobalOrder(m, "default", s);
      while (n_iter != n_iter_end) {
	Obj<GeneralIntegral> cur_integral = subproblem->getIntegral(*n_iter);
	//get the integral's topological objects.
	std::string cur_marker_name = cur_integral->getLabelName(); 
	int cur_marker_num = cur_integral->getLabelMarker();
	int cur_rank = cur_integral->getTensorRank();
	int cur_dimension = cur_integral->getSpaceDimension();
	Obj<PETSC_MESH_TYPE::label_sequence> integral_cells = m->getLabelStratum(cur_marker_name, cur_marker_num);
	PETSC_MESH_TYPE::label_sequence::iterator ic_iter = integral_cells->begin();
	PETSC_MESH_TYPE::label_sequence::iterator ic_iter_end = integral_cells->end();
	if (cur_rank == 1) {
	  PetscScalar * values;
	  PetscMalloc(cur_dimension*sizeof(PetscScalar), &values);
	  PetscScalar * elemVec;	  
	  PetscMalloc(cur_dimension*sizeof(PetscScalar), &elemVec);
	  Obj<GenericFormSubProblem::names_type> discs = subproblem->getDiscretizations();
	  //loop over cells
	  while (ic_iter != ic_iter_end) {
	    subproblem->setCell(m, *ic_iter);
	    //loop over discretizations
	    GenericFormSubProblem::names_type::iterator d_iter = discs->begin();
	    GenericFormSubProblem::names_type::iterator d_iter_end = discs->end();
	    while (d_iter != d_iter_end) {
	      Obj<GeneralDiscretization> disc = subproblem->getDiscretization(*d_iter);
	      //evaluate the RHS at each index point
	      for (int i = 0; i < disc->size(); i++) {
		values[disc->getIndices()[i]] = -1.*disc->evaluateRHS(i);
	      }
	      d_iter++;
	    }
	    cur_integral->tabulateTensor(elemVec, values);
	    ierr = SectionRealUpdateAdd(section, *ic_iter, elemVec);CHKERRQ(ierr);
	    ic_iter++;
	  }
	  ierr = SectionRealGetSection(section, s);CHKERRQ(ierr);
	} else if (cur_rank == 2) {
	  //cancel out BCs if necessary... this doesn't require any knowledge of the discretization form (if handled right).
	  PetscScalar * full_tensor;
	  PetscMalloc(cur_dimension*cur_dimension*sizeof(PetscScalar), &full_tensor);
	  PetscScalar * elemVec;	  
	  PetscMalloc(cur_dimension*sizeof(PetscScalar), &elemVec);
	  while (ic_iter != ic_iter_end) {
	    subproblem->setCell(m, *ic_iter);
	    cur_integral->tabulateTensor(full_tensor);
	    //create the linear contribution from the BCs
	    PetscScalar * xValues;
	    ierr = SectionRealRestrict(X, *ic_iter, &xValues);CHKERRQ(ierr); //get the coefficients -- BUG: setCell restricts as well; static
	    for(int f = 0; f < cur_dimension; f++) {
	      elemVec[f] = 0.;
	      for(int g = 0; g < cur_dimension; g++) {
		elemVec[f] += full_tensor[f*cur_dimension+g]*xValues[g];
	      }
	    } 
	    ierr = SectionRealUpdateAdd(section, *ic_iter, elemVec);CHKERRQ(ierr);
	    ic_iter++;
	  }
	  //delete full_tensor;
	  //delete elemVec;
	} else {
	  throw Exception("RHS_FEMProblem: Unsupported tensor rank");
	}
	n_iter++;
	ierr = SectionRealGetSection(section, s);CHKERRQ(ierr);
      }
      // Exchange neighbors
      ierr = SectionRealComplete(section);CHKERRQ(ierr);
      // Subtract the constant
      if (m->hasRealSection("constant")) {
	const Obj<PETSC_MESH_TYPE::real_section_type>& constant = m->getRealSection("constant");
	Obj<PETSC_MESH_TYPE::real_section_type>        s;
	
	ierr = SectionRealGetSection(section, s);CHKERRQ(ierr);
	s->axpy(-1.0, constant);
      }
      PetscTruth flag;
      PetscOptionsHasName(PETSC_NULL, "-vec_view", &flag);
      if (flag) {
	ierr = SectionRealGetSection(section, s);CHKERRQ(ierr);
	s->view("RHS");
      }
      PetscFunctionReturn(0);
    }

#undef __FUNCT__
#define __FUNCT__ "Jac_FEMProblem"

    PetscErrorCode Jac_FEMProblem(::Mesh mesh, SectionReal section, Mat A, void * ctx) {
      PetscFunctionBegin;
      GenericFormSubProblem * subproblem = (GenericFormSubProblem *)ctx;
      Obj<PETSC_MESH_TYPE::real_section_type> s;
      Obj<PETSC_MESH_TYPE> m;
      PetscErrorCode ierr;
      ierr = MatZeroEntries(A);CHKERRQ(ierr);
      ierr = MeshGetMesh(mesh, m);CHKERRQ(ierr);
      ierr = SectionRealGetSection(section, s);CHKERRQ(ierr);
      //loop over integrals; for now.
      GenericFormSubProblem::names_type integral_names = subproblem->getIntegrals();
      GenericFormSubProblem::names_type::iterator n_iter = integral_names.begin();
      GenericFormSubProblem::names_type::iterator n_iter_end = integral_names.end();
      const Obj<PETSC_MESH_TYPE::order_type>&        order         = m->getFactory()->getGlobalOrder(m, "default", s);
      while (n_iter != n_iter_end) {
	Obj<GeneralIntegral> cur_integral = subproblem->getIntegral(*n_iter);
	//get the integral's topological objects.
	std::string cur_marker_name = cur_integral->getLabelName(); 
	int cur_marker_num = cur_integral->getLabelMarker();
	int cur_rank = cur_integral->getTensorRank();
	int cur_dimension = cur_integral->getSpaceDimension();
	//GOOD LORD >:(
	m->setMaxDof(subproblem->localSpaceDimension());

	//divide here; ignore integral ranks that aren't 2 in the jacobian construction.
	if (cur_rank == 2) {
	  Obj<PETSC_MESH_TYPE::label_sequence> integral_cells = m->getLabelStratum(cur_marker_name, cur_marker_num);
	  PETSC_MESH_TYPE::label_sequence::iterator ic_iter = integral_cells->begin();
	  PETSC_MESH_TYPE::label_sequence::iterator ic_iter_end = integral_cells->end();
	  PetscScalar * tensor;
	  PetscMalloc(cur_dimension*cur_dimension*sizeof(PetscScalar), &tensor);
	  while (ic_iter != ic_iter_end) {
	    subproblem->setCell(m, *ic_iter);
	    cur_integral->tabulateTensor(tensor);
	    ierr = updateOperator(A, m, s, order, *ic_iter, tensor, ADD_VALUES);CHKERRQ(ierr);
	    ic_iter++;
	  }
	}
	n_iter++;
      }
      ierr = MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
      ierr = MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
      //ierr = MatView(A, PETSC_VIEWER_STDOUT_SELF);
      PetscFunctionReturn(0);	
    }

#undef __FUNCT__
#define __FUNCT__ "SubProblemView"

    PetscErrorCode SubProblemView(SectionReal section, std::string name, PetscViewer viewer, int firstField = 0, int lastField = 0) {
      //"vectorize" takes the first n discretizations and writes them out as a vector
      PetscErrorCode ierr;
      
      PetscFunctionBegin;
      Obj<PETSC_MESH_TYPE> m;
      Obj<PETSC_MESH_TYPE::real_section_type> field;
      ierr = SectionRealGetBundle(section, m);
      ierr = SectionRealGetSection(section, field);
      const ALE::Obj<PETSC_MESH_TYPE::numbering_type>& numbering = m->getFactory()->getNumbering(m, 0);
      ierr = PetscViewerASCIIPrintf(viewer, "POINT_DATA %d\n", numbering->getGlobalSize());CHKERRQ(ierr);
      
      if (lastField - firstField > 0) {
	ierr = PetscViewerASCIIPrintf(viewer, "VECTORS %s double\n", name.c_str());CHKERRQ(ierr);
	
      } else {
	if (name == "") {
	  ierr = PetscViewerASCIIPrintf(viewer, "SCALARS Unknown double %d\n", 1);CHKERRQ(ierr);
	} else {
	  ierr = PetscViewerASCIIPrintf(viewer, "SCALARS %s double %d\n", name.c_str(), 1);CHKERRQ(ierr);
	}
	ierr = PetscViewerASCIIPrintf(viewer, "LOOKUP_TABLE default\n");CHKERRQ(ierr);
      }
      typedef PETSC_MESH_TYPE::real_section_type::value_type value_type;
      const Obj<PETSC_MESH_TYPE::real_section_type::chart_type>& chart   = field->getChart();
      const MPI_Datatype                  mpiType = ALE::New::ParallelFactory<value_type>::singleton(field->debug())->getMPIType();
      int enforceDim;
      int fiberDim = lastField - firstField + 1;
      if (lastField - firstField > 0) {
	enforceDim = 3;  //we need at least three vector components to be written out
      } else {
	enforceDim = 0;
      }
      if (field->commRank() == 0) {
	for(PETSC_MESH_TYPE::real_section_type::chart_type::const_iterator p_iter = chart->begin(); p_iter != chart->end(); ++p_iter) {
	  if (!numbering->hasPoint(*p_iter)) continue;
	  const value_type *array = field->restrictPoint(*p_iter);
	  const int&        dim   = field->getFiberDimension(*p_iter);
	  ostringstream     line;
	  
	  // Perhaps there should be a flag for excluding boundary values
	  if (dim != 0) {
	    for(int d = firstField; d <= lastField; d++) {
	      if (d > 0) {
		line << " ";
	      }
	      line << array[d];
	    }
	    for(int d = fiberDim; d < enforceDim; d++) {
	      line << " 0.0";
	    }
	    line << std::endl;
	    ierr = PetscViewerASCIIPrintf(viewer, "%s", line.str().c_str());CHKERRQ(ierr);
	  }
	}
	for(int p = 1; p < field->commSize(); p++) {
	  value_type *remoteValues;
	  int         numLocalElementsAndFiberDim[2];
	  int         size;
	  MPI_Status  status;
	  
	  ierr = MPI_Recv(numLocalElementsAndFiberDim, 2, MPI_INT, p, 1, field->comm(), &status);CHKERRQ(ierr);
	  size = numLocalElementsAndFiberDim[0]*numLocalElementsAndFiberDim[1];
	  ierr = PetscMalloc(size * sizeof(value_type), &remoteValues);CHKERRQ(ierr);
	  ierr = MPI_Recv(remoteValues, size, mpiType, p, 1, field->comm(), &status);CHKERRQ(ierr);
	  
	  for(int e = 0; e < numLocalElementsAndFiberDim[0]; e++) {
	    for(int d = 0; d < fiberDim; d++) {
	      if (mpiType == MPI_INT) {
		ierr = PetscViewerASCIIPrintf(viewer, "%d", remoteValues[e*numLocalElementsAndFiberDim[1]+d]);CHKERRQ(ierr);
	      } else {
		ierr = PetscViewerASCIIPrintf(viewer, "%G", remoteValues[e*numLocalElementsAndFiberDim[1]+d]);CHKERRQ(ierr);
	      }
	    }
	    for(int d = fiberDim; d < enforceDim; d++) {
	      ierr = PetscViewerASCIIPrintf(viewer, " 0.0");CHKERRQ(ierr);
	    }
	    ierr = PetscViewerASCIIPrintf(viewer, "\n");CHKERRQ(ierr);
	  }
	  ierr = PetscFree(remoteValues);CHKERRQ(ierr);
	}
      } else {
	value_type *localValues;
	int         numLocalElements = numbering->getLocalSize();
	const int   size = numLocalElements*fiberDim;
	int         k = 0;
	
	ierr = PetscMalloc(size * sizeof(value_type), &localValues);CHKERRQ(ierr);
	for(PETSC_MESH_TYPE::real_section_type::chart_type::const_iterator p_iter = chart->begin(); p_iter != chart->end(); ++p_iter) {
	  if (!numbering->hasPoint(*p_iter)) continue;
	  if (numbering->isLocal(*p_iter)) {
	    const value_type *array = field->restrictPoint(*p_iter);
	    //const int&        dim   = field->getFiberDimension(*p_iter);
	    
	    for(int i = firstField; i <= lastField; ++i) {
	      localValues[k++] = array[i];
	    }
	  }
	}
	if (k != size) {
	  SETERRQ2(PETSC_ERR_PLIB, "Invalid number of values to send for field, %d should be %d", k, size);
	}
	int numLocalElementsAndFiberDim[2] = {numLocalElements, fiberDim};
	ierr = MPI_Send(numLocalElementsAndFiberDim, 2, MPI_INT, 0, 1, field->comm());CHKERRQ(ierr);
	ierr = MPI_Send(localValues, size, mpiType, 0, 1, field->comm());CHKERRQ(ierr);
	ierr = PetscFree(localValues);CHKERRQ(ierr);
      }
      PetscFunctionReturn(0);
    }
  }  //namespace Problem
} //namespace ALE

#endif