File: VecSFischer.html

package info (click to toggle)
petsc 3.10.3%2Bdfsg1-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 209,064 kB
  • sloc: ansic: 587,333; python: 29,696; makefile: 12,445; fortran: 11,626; f90: 9,677; cpp: 8,768; sh: 1,027; xml: 621; objc: 445; csh: 194; java: 13
file content (67 lines) | stat: -rw-r--r-- 3,668 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML3.2 EN">
<HTML>
<HEAD> <link rel="canonical" href="http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Tao/VecSFischer.html" />
<META NAME="GENERATOR" CONTENT="DOCTEXT">
<TITLE>VecSFischer</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFFF">
   <div id="version" align=right><b>petsc-3.10.3 2018-12-18</b></div>
   <div id="bugreport" align=right><a href="mailto:petsc-maint@mcs.anl.gov?subject=Typo or Error in Documentation &body=Please describe the typo or error in the documentation: petsc-3.10.3 v3.10.3 docs/manualpages/Tao/VecSFischer.html "><small>Report Typos and Errors</small></a></div>
<A NAME="VecSFischer"><H1>VecSFischer</H1></A>
Evaluates the Smoothed Fischer-Burmeister function for complementarity problems. 
<H3><FONT COLOR="#CC3333">Synopsis</FONT></H3>
<PRE>
#include "petsctao.h" 
<A HREF="../Sys/PetscErrorCode.html#PetscErrorCode">PetscErrorCode</A> <A HREF="../Tao/VecSFischer.html#VecSFischer">VecSFischer</A>(<A HREF="../Vec/Vec.html#Vec">Vec</A> X, <A HREF="../Vec/Vec.html#Vec">Vec</A> F, <A HREF="../Vec/Vec.html#Vec">Vec</A> L, <A HREF="../Vec/Vec.html#Vec">Vec</A> U, <A HREF="../Sys/PetscReal.html#PetscReal">PetscReal</A> mu, <A HREF="../Vec/Vec.html#Vec">Vec</A> FB)
</PRE>
Logically Collective on vectors
<P>
<H3><FONT COLOR="#CC3333">Input Parameters</FONT></H3>
<TABLE border="0" cellpadding="0" cellspacing="0">
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>X </B></TD><TD>- current point
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>F </B></TD><TD>- function evaluated at x
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>L </B></TD><TD>- lower bounds
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>U </B></TD><TD>- upper bounds
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>mu </B></TD><TD>- smoothing parameter
</TD></TR></TABLE>
<P>
<H3><FONT COLOR="#CC3333">Output Parameters</FONT></H3>
<DT><B>FB </B> -The Smoothed Fischer-Burmeister function vector
<br>
<P>
<H3><FONT COLOR="#CC3333">Notes</FONT></H3>
The Smoothed Fischer-Burmeister function is defined as
<pre>
       phi(a,b) := sqrt(a*a + b*b + 2*mu*mu) - a - b
</pre>
and is used reformulate a complementarity problem as a semismooth
system of equations.
<P>
<H3><FONT COLOR="#CC3333">The result of this function is done by cases</FONT></H3>
<TABLE border="0" cellpadding="0" cellspacing="0">
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>l[i] == </B></TD><TD>- infinity, u[i] == infinity  -- fb[i] = -f[i] - 2*mu*x[i]
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>l[i] == </B></TD><TD>- infinity, u[i] finite       -- fb[i] = phi(u[i]-x[i], -f[i], mu)
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>l[i] finite,       u[i] == infinity  </B></TD><TD>- - fb[i] = phi(x[i]-l[i],  f[i], mu)
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>l[i] finite &lt; u[i] finite </B></TD><TD>- - fb[i] = phi(x[i]-l[i], phi(u[i]-x[i], -f[u], mu), mu)
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>otherwise l[i] == u[i] </B></TD><TD>- - fb[i] = l[i] - x[i]
</TD></TR></TABLE>
<P>

<P>
<H3><FONT COLOR="#CC3333">See Also</FONT></H3>
 <A HREF="../Tao/VecFischer.html#VecFischer">VecFischer</A>()
<BR><P><B></B><H3><FONT COLOR="#CC3333">Level</FONT></H3>developer<BR>
<H3><FONT COLOR="#CC3333">Location</FONT></H3>
</B><A HREF="../../../src/tao/util/tao_util.c.html#VecSFischer">src/tao/util/tao_util.c</A>
<BR><A HREF="./index.html">Index of all Tao routines</A>
<BR><A HREF="../../index.html">Table of Contents for all manual pages</A>
<BR><A HREF="../singleindex.html">Index of all manual pages</A>
</BODY></HTML>