1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
<html>
<title>DMDA</title><body bgcolor="FFFFFF">
<div id="version" align=right><b>petsc-3.14.5 2021-03-03</b></div>
<div id="bugreport" align=right><a href="mailto:petsc-maint@mcs.anl.gov?subject=Typo or Error in Documentation &body=Please describe the typo or error in the documentation: petsc-3.14.5 v3.14.5 docs/manualpages/concepts/dmda.html "><small>Report Typos and Errors</small></a></div>
<h2>DMDA</h2>
<menu>
<LI><A HREF="../../../src/snes/tutorials/ex14.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Bratu nonlinear PDE in 3d.<BR>We solve the Bratu (SFI - solid fuel ignition) problem in a 3D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/tutorials/ex19.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear driven cavity with multigrid in 2d.<BR> <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
-lidvelocity &ltlid&gt, where &ltlid&gt = dimensionless velocity of lid<BR>
-grashof &ltgr&gt, where &ltgr&gt = dimensionless temperature gradent<BR>
-prandtl &ltpr&gt, where &ltpr&gt = dimensionless thermal/momentum diffusity ratio<BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/tutorials/ex35.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
J) {<BR>
single<BR>
single<BR>
single<BR>
</menu>
<LI><A HREF="../../../src/snes/tutorials/ex46.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Surface processes in geophysics.<BR></menu>
<LI><A HREF="../../../src/snes/tutorials/ex5.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Bratu nonlinear PDE in 2d.<BR>We solve the Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/tutorials/ex5f.F90.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
<BR>
Description: This example solves a nonlinear system in parallel with SNES.<BR>
We solve the Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/tutorials/ex5f90.F90.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
<BR>
Description: Solves a nonlinear system in parallel with SNES.<BR>
We solve the Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/tutorials/ex5f90t.F90.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
<BR>
Description: Solves a nonlinear system in parallel with SNES.<BR>
We solve the Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/tutorials/ex18.c.html"><CONCEPT>using distributed arrays</CONCEPT></A>
<menu>
Nonlinear Radiative Transport PDE with multigrid in 2d.<BR>Uses 2-dimensional distributed arrays.<BR>
A 2-dim simplified Radiative Transport test problem is used, with analytic Jacobian. <BR>
<BR>
Solves the linear systems via multilevel methods <BR>
<BR>
The command line<BR>
options are:<BR>
-tleft <tl>, where <tl> indicates the left Diriclet BC <BR>
-tright <tr>, where <tr> indicates the right Diriclet BC <BR>
-beta <beta>, where <beta> indicates the exponent in T <BR>
</menu>
<LI><A HREF="../../../src/snes/tutorials/ex25.c.html"><CONCEPT>using distributed arrays</CONCEPT></A>
</menu>
</body>
</html>
|