1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
|
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head> <link rel="canonical" href="http://www.mcs.anl.gov/petsc/petsc-current/docs/sphinx_docs/html/manual/ksp.html" />
<meta charset="utf-8" />
<title>KSP: Linear System Solvers — PETSc 3.14.5 documentation</title>
<link rel="stylesheet" href="../_static/sphinxdoc.css" type="text/css" />
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../_static/graphviz.css" />
<link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/npm/katex@0.12.0/dist/katex.min.css" />
<link rel="stylesheet" type="text/css" href="../_static/katex-math.css" />
<script id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
<script src="../_static/underscore.js"></script>
<script src="../_static/doctools.js"></script>
<script src="../_static/language_data.js"></script>
<script src="https://cdn.jsdelivr.net/npm/katex@0.12.0/dist/katex.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/katex@0.12.0/dist/contrib/auto-render.min.js"></script>
<script src="../_static/katex_autorenderer.js"></script>
<link rel="shortcut icon" href="../_static/PETSc_RGB-logo.png"/>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="SNES: Nonlinear Solvers" href="snes.html" />
<link rel="prev" title="Matrices" href="mat.html" />
</head><body>
<div id="version" align=right><b>petsc-3.14.5 2021-03-03</b></div>
<div id="bugreport" align=right><a href="mailto:petsc-maint@mcs.anl.gov?subject=Typo or Error in Documentation &body=Please describe the typo or error in the documentation: petsc-3.14.5 v3.14.5 docs/sphinx_docs/html/manual/ksp.html "><small>Report Typos and Errors</small></a></div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="../genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="snes.html" title="SNES: Nonlinear Solvers"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="mat.html" title="Matrices"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="../index.html">PETSc 3.14.5 documentation</a> »</li>
<li class="nav-item nav-item-1"><a href="index.html" >PETSc Users Manual</a> »</li>
<li class="nav-item nav-item-2"><a href="programming.html" accesskey="U">Programming with PETSc</a> »</li>
</ul>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<p class="logo"><a href="../index.html">
<img class="logo" src="../_static/PETSc-TAO_RGB.svg" alt="Logo"/>
</a></p>
<h3><a href="../index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">KSP: Linear System Solvers</a><ul>
<li><a class="reference internal" href="#using-ksp">Using KSP</a></li>
<li><a class="reference internal" href="#solving-successive-linear-systems">Solving Successive Linear Systems</a></li>
<li><a class="reference internal" href="#krylov-methods">Krylov Methods</a><ul>
<li><a class="reference internal" href="#preconditioning-within-ksp">Preconditioning within KSP</a></li>
<li><a class="reference internal" href="#convergence-tests">Convergence Tests</a></li>
<li><a class="reference internal" href="#convergence-monitoring">Convergence Monitoring</a></li>
<li><a class="reference internal" href="#understanding-the-operators-spectrum">Understanding the Operator’s Spectrum</a></li>
<li><a class="reference internal" href="#other-ksp-options">Other KSP Options</a></li>
</ul>
</li>
<li><a class="reference internal" href="#preconditioners">Preconditioners</a><ul>
<li><a class="reference internal" href="#ilu-and-icc-preconditioners">ILU and ICC Preconditioners</a></li>
<li><a class="reference internal" href="#sor-and-ssor-preconditioners">SOR and SSOR Preconditioners</a></li>
<li><a class="reference internal" href="#lu-factorization">LU Factorization</a></li>
<li><a class="reference internal" href="#block-jacobi-and-overlapping-additive-schwarz-preconditioners">Block Jacobi and Overlapping Additive Schwarz Preconditioners</a></li>
<li><a class="reference internal" href="#algebraic-multigrid-amg-preconditioners">Algebraic Multigrid (AMG) Preconditioners</a></li>
<li><a class="reference internal" href="#balancing-domain-decomposition-by-constraints">Balancing Domain Decomposition by Constraints</a></li>
<li><a class="reference internal" href="#shell-preconditioners">Shell Preconditioners</a></li>
<li><a class="reference internal" href="#combining-preconditioners">Combining Preconditioners</a></li>
<li><a class="reference internal" href="#multigrid-preconditioners">Multigrid Preconditioners</a></li>
</ul>
</li>
<li><a class="reference internal" href="#solving-block-matrices">Solving Block Matrices</a></li>
<li><a class="reference internal" href="#solving-singular-systems">Solving Singular Systems</a></li>
<li><a class="reference internal" href="#using-external-linear-solvers">Using External Linear Solvers</a></li>
</ul>
</li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="mat.html"
title="previous chapter">Matrices</a></p>
<h4>Next topic</h4>
<p class="topless"><a href="snes.html"
title="next chapter">SNES: Nonlinear Solvers</a></p>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="../_sources/manual/ksp.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="../search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" />
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>$('#searchbox').show(0);</script>
</div>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="ksp-linear-system-solvers">
<span id="chapter-ksp"></span><h1>KSP: Linear System Solvers<a class="headerlink" href="#ksp-linear-system-solvers" title="Permalink to this headline">¶</a></h1>
<p>The <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> object is the heart of PETSc, because it provides uniform
and efficient access to all of the package’s linear system solvers,
including parallel and sequential, direct and iterative. <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> is
intended for solving systems of the form</p>
<div class="math" id="equation-eq-axeqb">
<span class="eqno">(1)<a class="headerlink" href="#equation-eq-axeqb" title="Permalink to this equation">¶</a></span>\[ A x = b,\]</div>
<p>where <span class="math">\(A\)</span> denotes the matrix representation of a linear operator,
<span class="math">\(b\)</span> is the right-hand-side vector, and <span class="math">\(x\)</span> is the solution
vector. <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> uses the same calling sequence for both direct and
iterative solution of a linear system. In addition, particular solution
techniques and their associated options can be selected at runtime.</p>
<p>The combination of a Krylov subspace method and a preconditioner is at
the center of most modern numerical codes for the iterative solution of
linear systems. Many textbooks (e.g. <span id="id1">[<a class="reference internal" href="#id273"><span>FGN92</span></a>]</span> <span id="id2">[<a class="reference internal" href="#id1274"><span>vdV03</span></a>]</span>, or <span id="id3">[<a class="reference internal" href="#id389"><span>Saa03</span></a>]</span>) provide an
overview of the theory of such methods.
The <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> package, discussed in
<a class="reference internal" href="#sec-ksp"><span class="std std-ref">Krylov Methods</span></a>, provides many popular Krylov subspace
iterative methods; the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span></code> module, described in
<a class="reference internal" href="#sec-pc"><span class="std std-ref">Preconditioners</span></a>, includes a variety of preconditioners.</p>
<div class="section" id="using-ksp">
<span id="sec-usingksp"></span><h2>Using KSP<a class="headerlink" href="#using-ksp" title="Permalink to this headline">¶</a></h2>
<p>To solve a linear system with <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code>, one must first create a solver
context with the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPCreate.html#KSPCreate">KSPCreate</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/MPI_Comm.html#MPI_Comm">MPI_Comm</a></span> <span class="n">comm</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="o">*</span><span class="n">ksp</span><span class="p">);</span>
</pre></div>
</div>
<p>Here <code class="docutils literal notranslate"><span class="pre">comm</span></code> is the MPI communicator and <code class="docutils literal notranslate"><span class="pre">ksp</span></code> is the newly formed
solver context. Before actually solving a linear system with <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code>,
the user must call the following routine to set the matrices associated
with the linear system:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetOperators.html#KSPSetOperators">KSPSetOperators</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span> <span class="n">Amat</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span> <span class="n">Pmat</span><span class="p">);</span>
</pre></div>
</div>
<p>The argument <code class="docutils literal notranslate"><span class="pre">Amat</span></code>, representing the matrix that defines the linear
system, is a symbolic placeholder for any kind of matrix or operator. In
particular, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> <em>does</em> support matrix-free methods. The routine
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatCreateShell.html#MatCreateShell">MatCreateShell</a>()</span></code> in <a class="reference internal" href="mat.html#sec-matrixfree"><span class="std std-ref">Matrix-Free Matrices</span></a>
provides further information regarding matrix-free methods. Typically,
the matrix from which the preconditioner is to be constructed, <code class="docutils literal notranslate"><span class="pre">Pmat</span></code>,
is the same as the matrix that defines the linear system, <code class="docutils literal notranslate"><span class="pre">Amat</span></code>;
however, occasionally these matrices differ (for instance, when a
preconditioning matrix is obtained from a lower order method than that
employed to form the linear system matrix).</p>
<p>Much of the power of <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> can be accessed through the single routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetFromOptions.html#KSPSetFromOptions">KSPSetFromOptions</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">);</span>
</pre></div>
</div>
<p>This routine accepts the option <code class="docutils literal notranslate"><span class="pre">-help</span></code> as well as any of
the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> and <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span></code> options discussed below. To solve a linear
system, one sets the rhs and solution vectors using and executes the
command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSolve.html#KSPSolve">KSPSolve</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="n">b</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="n">x</span><span class="p">);</span>
</pre></div>
</div>
<p>where <code class="docutils literal notranslate"><span class="pre">b</span></code> and <code class="docutils literal notranslate"><span class="pre">x</span></code> respectively denote the right-hand-side and
solution vectors. On return, the iteration number at which the iterative
process stopped can be obtained using</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGetIterationNumber.html#KSPGetIterationNumber">KSPGetIterationNumber</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span> <span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="o">*</span><span class="n">its</span><span class="p">);</span>
</pre></div>
</div>
<p>Note that this does not state that the method converged at this
iteration: it can also have reached the maximum number of iterations, or
have diverged.</p>
<p><a class="reference internal" href="#sec-convergencetests"><span class="std std-ref">Convergence Tests</span></a> gives more details
regarding convergence testing. Note that multiple linear solves can be
performed by the same <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> context. Once the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> context is no
longer needed, it should be destroyed with the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPDestroy.html#KSPDestroy">KSPDestroy</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="o">*</span><span class="n">ksp</span><span class="p">);</span>
</pre></div>
</div>
<p>The above procedure is sufficient for general use of the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code>
package. One additional step is required for users who wish to customize
certain preconditioners (e.g., see <a class="reference internal" href="#sec-bjacobi"><span class="std std-ref">Block Jacobi and Overlapping Additive Schwarz Preconditioners</span></a>) or
to log certain performance data using the PETSc profiling facilities (as
discussed in <a class="reference internal" href="profiling.html#ch-profiling"><span class="std std-ref">Profiling</span></a>). In this case, the user can
optionally explicitly call</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetUp.html#KSPSetUp">KSPSetUp</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">);</span>
</pre></div>
</div>
<p>before calling <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSolve.html#KSPSolve">KSPSolve</a>()</span></code> to perform any setup required for the
linear solvers. The explicit call of this routine enables the separate
monitoring of any computations performed during the set up phase, such
as incomplete factorization for the ILU preconditioner.</p>
<p>The default solver within <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> is restarted GMRES, preconditioned for
the uniprocess case with ILU(0), and for the multiprocess case with the
block Jacobi method (with one block per process, each of which is solved
with ILU(0)). A variety of other solvers and options are also available.
To allow application programmers to set any of the preconditioner or
Krylov subspace options directly within the code, we provide routines
that extract the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span></code> and <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> contexts,</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGetPC.html#KSPGetPC">KSPGetPC</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="o">*</span><span class="n">pc</span><span class="p">);</span>
</pre></div>
</div>
<p>The application programmer can then directly call any of the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span></code> or
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> routines to modify the corresponding default options.</p>
<p>To solve a linear system with a direct solver (currently supported by
PETSc for sequential matrices, and by several external solvers through
PETSc interfaces (see <a class="reference internal" href="#sec-externalsol"><span class="std std-ref">Using External Linear Solvers</span></a>)) one may use
the options <code class="docutils literal notranslate"><span class="pre">-ksp_type</span></code> <code class="docutils literal notranslate"><span class="pre">preonly</span></code> <code class="docutils literal notranslate"><span class="pre">-pc_type</span></code> <code class="docutils literal notranslate"><span class="pre">lu</span></code> (see below).</p>
<p>By default, if a direct solver is used, the factorization is <em>not</em> done
in-place. This approach prevents the user from the unexpected surprise
of having a corrupted matrix after a linear solve. The routine
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFactorSetUseInPlace.html#PCFactorSetUseInPlace">PCFactorSetUseInPlace</a>()</span></code>, discussed below, causes factorization to be
done in-place.</p>
</div>
<div class="section" id="solving-successive-linear-systems">
<h2>Solving Successive Linear Systems<a class="headerlink" href="#solving-successive-linear-systems" title="Permalink to this headline">¶</a></h2>
<p>When solving multiple linear systems of the same size with the same
method, several options are available. To solve successive linear
systems having the <em>same</em> preconditioner matrix (i.e., the same data
structure with exactly the same matrix elements) but different
right-hand-side vectors, the user should simply call <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSolve.html#KSPSolve">KSPSolve</a>()</span></code>,
multiple times. The preconditioner setup operations (e.g., factorization
for ILU) will be done during the first call to <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSolve.html#KSPSolve">KSPSolve</a>()</span></code> only; such
operations will <em>not</em> be repeated for successive solves.</p>
<p>To solve successive linear systems that have <em>different</em> preconditioner
matrices (i.e., the matrix elements and/or the matrix data structure
change), the user <em>must</em> call <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetOperators.html#KSPSetOperators">KSPSetOperators</a>()</span></code> and <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSolve.html#KSPSolve">KSPSolve</a>()</span></code>
for each solve. See <a class="reference internal" href="#sec-usingksp"><span class="std std-ref">Using KSP</span></a> for a description
of various flags for <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetOperators.html#KSPSetOperators">KSPSetOperators</a>()</span></code> that can save work for such
cases.</p>
</div>
<div class="section" id="krylov-methods">
<span id="sec-ksp"></span><h2>Krylov Methods<a class="headerlink" href="#krylov-methods" title="Permalink to this headline">¶</a></h2>
<p>The Krylov subspace methods accept a number of options, many of which
are discussed below. First, to set the Krylov subspace method that is to
be used, one calls the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetType.html#KSPSetType">KSPSetType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPType.html#KSPType">KSPType</a></span> <span class="n">method</span><span class="p">);</span>
</pre></div>
</div>
<p>The type can be one of <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPRICHARDSON.html#KSPRICHARDSON">KSPRICHARDSON</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPCHEBYSHEV.html#KSPCHEBYSHEV">KSPCHEBYSHEV</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPCG.html#KSPCG">KSPCG</a></span></code>,
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGMRES.html#KSPGMRES">KSPGMRES</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPTCQMR.html#KSPTCQMR">KSPTCQMR</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPBCGS.html#KSPBCGS">KSPBCGS</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPCGS.html#KSPCGS">KSPCGS</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPTFQMR.html#KSPTFQMR">KSPTFQMR</a></span></code>,
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPCR.html#KSPCR">KSPCR</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPLSQR.html#KSPLSQR">KSPLSQR</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPBICG.html#KSPBICG">KSPBICG</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPPREONLY.html#KSPPREONLY">KSPPREONLY</a></span></code>. or others; see
<a class="reference internal" href="#tab-kspdefaults"><span class="std std-ref">KSP Objects</span></a> or the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPType.html#KSPType">KSPType</a></span></code> man page for more.
The <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> method can also be set with the options database command
<code class="docutils literal notranslate"><span class="pre">-ksp_type</span></code>, followed by one of the options <code class="docutils literal notranslate"><span class="pre">richardson</span></code>,
<code class="docutils literal notranslate"><span class="pre">chebyshev</span></code>, <code class="docutils literal notranslate"><span class="pre">cg</span></code>, <code class="docutils literal notranslate"><span class="pre">gmres</span></code>, <code class="docutils literal notranslate"><span class="pre">tcqmr</span></code>, <code class="docutils literal notranslate"><span class="pre">bcgs</span></code>, <code class="docutils literal notranslate"><span class="pre">cgs</span></code>,
<code class="docutils literal notranslate"><span class="pre">tfqmr</span></code>, <code class="docutils literal notranslate"><span class="pre">cr</span></code>, <code class="docutils literal notranslate"><span class="pre">lsqr</span></code>, <code class="docutils literal notranslate"><span class="pre">bicg</span></code>, <code class="docutils literal notranslate"><span class="pre">preonly.</span></code>, or others (see
<a class="reference internal" href="#tab-kspdefaults"><span class="std std-ref">KSP Objects</span></a> or the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPType.html#KSPType">KSPType</a></span></code> man page) There are
method-specific options. For instance, for the Richardson, Chebyshev, and
GMRES methods:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPRichardsonSetScale.html#KSPRichardsonSetScale">KSPRichardsonSetScale</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="n">scale</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPChebyshevSetEigenvalues.html#KSPChebyshevSetEigenvalues">KSPChebyshevSetEigenvalues</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="n">emax</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="n">emin</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGMRESSetRestart.html#KSPGMRESSetRestart">KSPGMRESSetRestart</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">max_steps</span><span class="p">);</span>
</pre></div>
</div>
<p>The default parameter values are
<code class="docutils literal notranslate"><span class="pre">damping_factor=1.0,</span> <span class="pre">emax=0.01,</span> <span class="pre">emin=100.0</span></code>, and <code class="docutils literal notranslate"><span class="pre">max_steps=30</span></code>. The
GMRES restart and Richardson damping factor can also be set with the
options <code class="docutils literal notranslate"><span class="pre">-ksp_gmres_restart</span> <span class="pre"><n></span></code> and
<code class="docutils literal notranslate"><span class="pre">-ksp_richardson_scale</span> <span class="pre"><factor></span></code>.</p>
<p>The default technique for orthogonalization of the Hessenberg matrix in
GMRES is the unmodified (classical) Gram-Schmidt method, which can be
set with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGMRESSetOrthogonalization.html#KSPGMRESSetOrthogonalization">KSPGMRESSetOrthogonalization</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGMRESClassicalGramSchmidtOrthogonalization.html#KSPGMRESClassicalGramSchmidtOrthogonalization">KSPGMRESClassicalGramSchmidtOrthogonalization</a></span><span class="p">);</span>
</pre></div>
</div>
<p>or the options database command <code class="docutils literal notranslate"><span class="pre">-ksp_gmres_classicalgramschmidt</span></code>. By
default this will <em>not</em> use iterative refinement to improve the
stability of the orthogonalization. This can be changed with the option</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGMRESSetCGSRefinementType.html#KSPGMRESSetCGSRefinementType">KSPGMRESSetCGSRefinementType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGMRESCGSRefinementType.html#KSPGMRESCGSRefinementType">KSPGMRESCGSRefinementType</a></span> <span class="n">type</span><span class="p">)</span>
</pre></div>
</div>
<p>or via the options database with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="o">-</span><span class="n">ksp_gmres_cgs_refinement_type</span> <span class="n">none</span><span class="p">,</span><span class="n">ifneeded</span><span class="p">,</span><span class="n">always</span>
</pre></div>
</div>
<p>The values for <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGMRESCGSRefinementType.html#KSPGMRESCGSRefinementType">KSPGMRESCGSRefinementType</a>()</span></code> are
<code class="docutils literal notranslate"><span class="pre">KSP_GMRES_CGS_REFINEMENT_NONE</span></code>, <code class="docutils literal notranslate"><span class="pre">KSP_GMRES_CGS_REFINEMENT_IFNEEDED</span></code>
and <code class="docutils literal notranslate"><span class="pre">KSP_GMRES_CGS_REFINEMENT_ALWAYS</span></code>.</p>
<p>One can also use modified Gram-Schmidt, by using the orthogonalization
routine <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGMRESModifiedGramSchmidtOrthogonalization.html#KSPGMRESModifiedGramSchmidtOrthogonalization">KSPGMRESModifiedGramSchmidtOrthogonalization</a>()</span></code> or by using
the command line option <code class="docutils literal notranslate"><span class="pre">-ksp_gmres_modifiedgramschmidt</span></code>.</p>
<p>For the conjugate gradient method with complex numbers, there are two
slightly different algorithms depending on whether the matrix is
Hermitian symmetric or truly symmetric (the default is to assume that it
is Hermitian symmetric). To indicate that it is symmetric, one uses the
command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPCGSetType.html#KSPCGSetType">KSPCGSetType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPCGType.html#KSPCGType">KSPCGType</a></span> <span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPCGType.html#KSPCGType">KSP_CG_SYMMETRIC</a></span><span class="p">);</span>
</pre></div>
</div>
<p>Note that this option is not valid for all matrices.</p>
<p>The LSQR algorithm does not involve a preconditioner; any preconditioner
set to work with the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> object is ignored if <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPLSQR.html#KSPLSQR">KSPLSQR</a></span></code> was
selected.</p>
<p>By default, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> assumes an initial guess of zero by zeroing the
initial value for the solution vector that is given; this zeroing is
done at the call to <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSolve.html#KSPSolve">KSPSolve</a>()</span></code>. To use a nonzero initial guess, the
user <em>must</em> call</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetInitialGuessNonzero.html#KSPSetInitialGuessNonzero">KSPSetInitialGuessNonzero</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscBool.html#PetscBool">PetscBool</a></span> <span class="n">flg</span><span class="p">);</span>
</pre></div>
</div>
<div class="section" id="preconditioning-within-ksp">
<span id="sec-ksppc"></span><h3>Preconditioning within KSP<a class="headerlink" href="#preconditioning-within-ksp" title="Permalink to this headline">¶</a></h3>
<p>Since the rate of convergence of Krylov projection methods for a
particular linear system is strongly dependent on its spectrum,
preconditioning is typically used to alter the spectrum and hence
accelerate the convergence rate of iterative techniques. Preconditioning
can be applied to the system <a class="reference internal" href="#equation-eq-axeqb">(1)</a> by</p>
<div class="math" id="equation-eq-prec">
<span class="eqno">(2)<a class="headerlink" href="#equation-eq-prec" title="Permalink to this equation">¶</a></span>\[ (M_L^{-1} A M_R^{-1}) \, (M_R x) = M_L^{-1} b,\]</div>
<p>where <span class="math">\(M_L\)</span> and <span class="math">\(M_R\)</span> indicate preconditioning matrices (or,
matrices from which the preconditioner is to be constructed). If
<span class="math">\(M_L = I\)</span> in <a class="reference internal" href="#equation-eq-prec">(2)</a>, right preconditioning
results, and the residual of <a class="reference internal" href="#equation-eq-axeqb">(1)</a>,</p>
<div class="math">
\[r \equiv b - Ax = b - A M_R^{-1} \, M_R x,
\]</div>
<p>is preserved. In contrast, the residual is altered for left
(<span class="math">\(M_R = I\)</span>) and symmetric preconditioning, as given by</p>
<div class="math">
\[r_L \equiv M_L^{-1} b - M_L^{-1} A x = M_L^{-1} r.
\]</div>
<p>By default, most KSP implementations use left preconditioning. Some more
naturally use other options, though. For instance, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPQCG.html#KSPQCG">KSPQCG</a></span></code> defaults
to use symmetric preconditioning and <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPFGMRES.html#KSPFGMRES">KSPFGMRES</a></span></code> uses right
preconditioning by default. Right preconditioning can be activated for
some methods by using the options database command
<code class="docutils literal notranslate"><span class="pre">-ksp_pc_side</span> <span class="pre">right</span></code> or calling the routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetPCSide.html#KSPSetPCSide">KSPSetPCSide</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSide.html#PCSide">PCSide</a></span> <span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSide.html#PCSide">PC_RIGHT</a></span><span class="p">);</span>
</pre></div>
</div>
<p>Attempting to use right preconditioning for a method that does not
currently support it results in an error message of the form</p>
<div class="highlight-none notranslate"><div class="highlight"><pre><span></span>KSPSetUp_Richardson:No right preconditioning for <a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPRICHARDSON.html#KSPRICHARDSON">KSPRICHARDSON</a>
</pre></div>
</div>
<p>We summarize the defaults for the residuals used in KSP convergence
monitoring within <a class="reference internal" href="#tab-kspdefaults"><span class="std std-ref">KSP Objects</span></a>. Details regarding
specific convergence tests and monitoring routines are presented in the
following sections. The preconditioned residual is used by default for
convergence testing of all left-preconditioned <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> methods. For the
conjugate gradient, Richardson, and Chebyshev methods the true residual
can be used by the options database command
<code class="docutils literal notranslate"><span class="pre">ksp_norm_type</span> <span class="pre">unpreconditioned</span></code> or by calling the routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetNormType.html#KSPSetNormType">KSPSetNormType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP_NORM_UNPRECONDITIONED.html#KSP_NORM_UNPRECONDITIONED">KSP_NORM_UNPRECONDITIONED</a></span><span class="p">);</span>
</pre></div>
</div>
<table class="docutils align-default" id="tab-kspdefaults">
<caption><span class="caption-number">Table 4 </span><span class="caption-text">KSP Objects</span><a class="headerlink" href="#tab-kspdefaults" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 33%" />
<col style="width: 33%" />
<col style="width: 33%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>Method</p></th>
<th class="head"><p>KSPType</p></th>
<th class="head"><p>Options Database Name</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>Richardson</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPRICHARDSON.html#KSPRICHARDSON">KSPRICHARDSON</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">richardson</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Chebyshev</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPCHEBYSHEV.html#KSPCHEBYSHEV">KSPCHEBYSHEV</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">chebyshev</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Conjugate Gradient <span id="id4">[<a class="reference internal" href="#id318"><span>HS52</span></a>]</span></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPCG.html#KSPCG">KSPCG</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">cg</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Pipelined Conjugate Gradients <span id="id5">[<a class="reference internal" href="#id839"><span>GV14</span></a>]</span></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPPIPECG.html#KSPPIPECG">KSPPIPECG</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">pipecg</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Pipelined Conjugate Gradients (Gropp)</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGROPPCG.html#KSPGROPPCG">KSPGROPPCG</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">groppcg</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Pipelined Conjugate Gradients with Residual Replacement</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPPIPECGRR.html#KSPPIPECGRR">KSPPIPECGRR</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">pipecgrr</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Conjugate Gradients for the Normal Equations</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPCGNE.html#KSPCGNE">KSPCGNE</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">cgne</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Flexible Conjugate Gradients <span id="id6">[<a class="reference internal" href="#id918"><span>Not00</span></a>]</span></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPFCG.html#KSPFCG">KSPFCG</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">fcg</span></code></p></td>
</tr>
<tr class="row-even"><td><p> Pipelined, Flexible Conjugate Gradients <span id="id7">[<a class="reference internal" href="#id2112"><span>SSM16</span></a>]</span></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPPIPEFCG.html#KSPPIPEFCG">KSPPIPEFCG</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">pipefcg</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Conjugate Gradients for Least Squares</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPCGLS.html#KSPCGLS">KSPCGLS</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">cgls</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Conjugate Gradients with Constraint (1)</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPNASH.html#KSPNASH">KSPNASH</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">nash</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Conjugate Gradients with Constraint (2)</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSTCG.html#KSPSTCG">KSPSTCG</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">stcg</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Conjugate Gradients with Constraint (3)</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGLTR.html#KSPGLTR">KSPGLTR</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">gltr</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Conjugate Gradients with Constraint (4)</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPQCG.html#KSPQCG">KSPQCG</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">qcg</span></code></p></td>
</tr>
<tr class="row-even"><td><p>BiConjugate Gradient</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPBICG.html#KSPBICG">KSPBICG</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">bicg</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>BiCGSTAB <span id="id8">[<a class="reference internal" href="#id321"><span>vandVorst92</span></a>]</span></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPBCGS.html#KSPBCGS">KSPBCGS</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">bcgs</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Improved BiCGSTAB</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPIBCGS.html#KSPIBCGS">KSPIBCGS</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">ibcgs</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Flexible BiCGSTAB</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPFBCGS.html#KSPFBCGS">KSPFBCGS</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">fbcgs</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Flexible BiCGSTAB (variant)</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPFBCGSR.html#KSPFBCGSR">KSPFBCGSR</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">fbcgsr</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Enhanced BiCGSTAB(L)</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPBCGSL.html#KSPBCGSL">KSPBCGSL</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">bcgsl</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Minimal Residual Method <span id="id9">[<a class="reference internal" href="#id1126"><span>PS75</span></a>]</span></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPMINRES.html#KSPMINRES">KSPMINRES</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">minres</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Generalized Minimal Residual <span id="id10">[<a class="reference internal" href="#id319"><span>SS86</span></a>]</span></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGMRES.html#KSPGMRES">KSPGMRES</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">gmres</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Flexible Generalized Minimal Residual <span id="id11">[<a class="reference internal" href="#id713"><span>Saa93</span></a>]</span></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPFGMRES.html#KSPFGMRES">KSPFGMRES</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">fgmres</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Deflated Generalized Minimal Residual</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPDGMRES.html#KSPDGMRES">KSPDGMRES</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">dgmres</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Pipelined Generalized Minimal Residual <span id="id12">[<a class="reference internal" href="#id838"><span>GAMV13</span></a>]</span></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPPGMRES.html#KSPPGMRES">KSPPGMRES</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">pgmres</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Pipelined, Flexible Generalized Minimal Residual <span id="id13">[<a class="reference internal" href="#id2112"><span>SSM16</span></a>]</span></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPPIPEFGMRES.html#KSPPIPEFGMRES">KSPPIPEFGMRES</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">pipefgmres</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Generalized Minimal Residual with Accelerated Restart</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPLGMRES.html#KSPLGMRES">KSPLGMRES</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lgmres</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Conjugate Residual <span id="id14">[<a class="reference internal" href="#id726"><span>EES83</span></a>]</span></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPCR.html#KSPCR">KSPCR</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">cr</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Generalized Conjugate Residual</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGCR.html#KSPGCR">KSPGCR</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">gcr</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Pipelined Conjugate Residual</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPPIPECR.html#KSPPIPECR">KSPPIPECR</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">pipecr</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Pipelined, Flexible Conjugate Residual <span id="id15">[<a class="reference internal" href="#id2112"><span>SSM16</span></a>]</span></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPPIPEGCR.html#KSPPIPEGCR">KSPPIPEGCR</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">pipegcr</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>FETI-DP</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPFETIDP.html#KSPFETIDP">KSPFETIDP</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">fetidp</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Conjugate Gradient Squared <span id="id16">[<a class="reference internal" href="#id320"><span>Son89</span></a>]</span></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPCGS.html#KSPCGS">KSPCGS</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">cgs</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Transpose-Free Quasi-Minimal Residual (1) <span id="id17">[<a class="reference internal" href="#id322"><span>Fre93</span></a>]</span></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPTFQMR.html#KSPTFQMR">KSPTFQMR</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">tfqmr</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Transpose-Free Quasi-Minimal Residual (2)</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPTCQMR.html#KSPTCQMR">KSPTCQMR</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">tcqmr</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Least Squares Method</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPLSQR.html#KSPLSQR">KSPLSQR</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lsqr</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Symmetric LQ Method <span id="id18">[<a class="reference internal" href="#id1126"><span>PS75</span></a>]</span></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSYMMLQ.html#KSPSYMMLQ">KSPSYMMLQ</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">symmlq</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>TSIRM</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPTSIRM.html#KSPTSIRM">KSPTSIRM</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">tsirm</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Python Shell</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">KSPPYTHON</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">python</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Shell for no <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> method</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPPREONLY.html#KSPPREONLY">KSPPREONLY</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">preonly</span></code></p></td>
</tr>
</tbody>
</table>
<p>Note: the bi-conjugate gradient method requires application of both the
matrix and its transpose plus the preconditioner and its transpose.
Currently not all matrices and preconditioners provide this support and
thus the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPBICG.html#KSPBICG">KSPBICG</a></span></code> cannot always be used.</p>
<p>Note: PETSc implements the FETI-DP (Finite Element Tearing and
Interconnecting Dual-Primal) method as an implementation of <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> since it recasts the
original problem into a contstrained minimization one with Lagrange
multipliers. The only matrix type supported is <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATIS.html#MATIS">MATIS</a></span></code>. Support for
saddle point problems is provided. See the man page for <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPFETIDP.html#KSPFETIDP">KSPFETIDP</a></span></code> for
further details.</p>
</div>
<div class="section" id="convergence-tests">
<span id="sec-convergencetests"></span><h3>Convergence Tests<a class="headerlink" href="#convergence-tests" title="Permalink to this headline">¶</a></h3>
<p>The default convergence test, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPConvergedDefault.html#KSPConvergedDefault">KSPConvergedDefault</a>()</span></code>, is based on the
<span class="math">\(l_2\)</span>-norm of the residual. Convergence (or divergence) is decided
by three quantities: the decrease of the residual norm relative to the
norm of the right hand side, <code class="docutils literal notranslate"><span class="pre">rtol</span></code>, the absolute size of the residual
norm, <code class="docutils literal notranslate"><span class="pre">atol</span></code>, and the relative increase in the residual, <code class="docutils literal notranslate"><span class="pre">dtol</span></code>.
Convergence is detected at iteration <span class="math">\(k\)</span> if</p>
<div class="math">
\[\| r_k \|_2 < {\rm max} ( \text{rtol} * \| b \|_2, \text{atol}),
\]</div>
<p>where <span class="math">\(r_k = b - A x_k\)</span>. Divergence is detected if</p>
<div class="math">
\[\| r_k \|_2 > \text{dtol} * \| b \|_2.
\]</div>
<p>These parameters, as well as the maximum number of allowable iterations,
can be set with the routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetTolerances.html#KSPSetTolerances">KSPSetTolerances</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="n">rtol</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="n">atol</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="n">dtol</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">maxits</span><span class="p">);</span>
</pre></div>
</div>
<p>The user can retain the default value of any of these parameters by
specifying <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PETSC_DEFAULT.html#PETSC_DEFAULT">PETSC_DEFAULT</a></span></code> as the corresponding tolerance; the
defaults are <code class="docutils literal notranslate"><span class="pre">rtol=1e-5</span></code>, <code class="docutils literal notranslate"><span class="pre">atol=1e-50</span></code>, <code class="docutils literal notranslate"><span class="pre">dtol=1e5</span></code>, and
<code class="docutils literal notranslate"><span class="pre">maxits=1e4</span></code>. These parameters can also be set from the options
database with the commands <code class="docutils literal notranslate"><span class="pre">-ksp_rtol</span></code> <code class="docutils literal notranslate"><span class="pre"><rtol></span></code>, <code class="docutils literal notranslate"><span class="pre">-ksp_atol</span></code>
<code class="docutils literal notranslate"><span class="pre"><atol></span></code>, <code class="docutils literal notranslate"><span class="pre">-ksp_divtol</span></code> <code class="docutils literal notranslate"><span class="pre"><dtol></span></code>, and <code class="docutils literal notranslate"><span class="pre">-ksp_max_it</span></code> <code class="docutils literal notranslate"><span class="pre"><its></span></code>.</p>
<p>In addition to providing an interface to a simple convergence test,
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> allows the application programmer the flexibility to provide
customized convergence-testing routines. The user can specify a
customized routine with the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetConvergenceTest.html#KSPSetConvergenceTest">KSPSetConvergenceTest</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode">PetscErrorCode</a></span> <span class="p">(</span><span class="o">*</span><span class="n">test</span><span class="p">)(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">it</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="n">rnorm</span><span class="p">,</span> <span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPConvergedReason.html#KSPConvergedReason">KSPConvergedReason</a></span> <span class="o">*</span><span class="n">reason</span><span class="p">,</span><span class="kt">void</span> <span class="o">*</span><span class="n">ctx</span><span class="p">),</span><span class="kt">void</span> <span class="o">*</span><span class="n">ctx</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode">PetscErrorCode</a></span> <span class="p">(</span><span class="o">*</span><span class="n">destroy</span><span class="p">)(</span><span class="kt">void</span> <span class="o">*</span><span class="n">ctx</span><span class="p">));</span>
</pre></div>
</div>
<p>The final routine argument, <code class="docutils literal notranslate"><span class="pre">ctx</span></code>, is an optional context for private
data for the user-defined convergence routine, <code class="docutils literal notranslate"><span class="pre">test</span></code>. Other <code class="docutils literal notranslate"><span class="pre">test</span></code>
routine arguments are the iteration number, <code class="docutils literal notranslate"><span class="pre">it</span></code>, and the residual’s
<span class="math">\(l_2\)</span> norm, <code class="docutils literal notranslate"><span class="pre">rnorm</span></code>. The routine for detecting convergence,
<code class="docutils literal notranslate"><span class="pre">test</span></code>, should set <code class="docutils literal notranslate"><span class="pre">reason</span></code> to positive for convergence, 0 for no
convergence, and negative for failure to converge. A full list of
possible values for <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPConvergedReason.html#KSPConvergedReason">KSPConvergedReason</a></span></code> is given in
<code class="docutils literal notranslate"><span class="pre">include/petscksp.h</span></code>. You can use <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGetConvergedReason.html#KSPGetConvergedReason">KSPGetConvergedReason</a>()</span></code> after
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSolve.html#KSPSolve">KSPSolve</a>()</span></code> to see why convergence/divergence was detected.</p>
</div>
<div class="section" id="convergence-monitoring">
<span id="sec-kspmonitor"></span><h3>Convergence Monitoring<a class="headerlink" href="#convergence-monitoring" title="Permalink to this headline">¶</a></h3>
<p>By default, the Krylov solvers run silently without displaying
information about the iterations. The user can indicate that the norms
of the residuals should be displayed by using <code class="docutils literal notranslate"><span class="pre">-ksp_monitor</span></code> within
the options database. To display the residual norms in a graphical
window (running under X Windows), one should use
<code class="docutils literal notranslate"><span class="pre">-ksp_monitor_lg_residualnorm</span></code> <code class="docutils literal notranslate"><span class="pre">[x,y,w,h]</span></code>, where either all or none
of the options must be specified. Application programmers can also
provide their own routines to perform the monitoring by using the
command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPMonitorSet.html#KSPMonitorSet">KSPMonitorSet</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode">PetscErrorCode</a></span> <span class="p">(</span><span class="o">*</span><span class="n">mon</span><span class="p">)(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">it</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="n">rnorm</span><span class="p">,</span><span class="kt">void</span> <span class="o">*</span><span class="n">ctx</span><span class="p">),</span><span class="kt">void</span> <span class="o">*</span><span class="n">ctx</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode">PetscErrorCode</a></span> <span class="p">(</span><span class="o">*</span><span class="n">mondestroy</span><span class="p">)(</span><span class="kt">void</span><span class="o">**</span><span class="p">));</span>
</pre></div>
</div>
<p>The final routine argument, <code class="docutils literal notranslate"><span class="pre">ctx</span></code>, is an optional context for private
data for the user-defined monitoring routine, <code class="docutils literal notranslate"><span class="pre">mon</span></code>. Other <code class="docutils literal notranslate"><span class="pre">mon</span></code>
routine arguments are the iteration number (<code class="docutils literal notranslate"><span class="pre">it</span></code>) and the residual’s
<span class="math">\(l_2\)</span> norm (<code class="docutils literal notranslate"><span class="pre">rnorm</span></code>). A helpful routine within user-defined
monitors is <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscObjectGetComm.html#PetscObjectGetComm">PetscObjectGetComm</a>((<a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscObject.html#PetscObject">PetscObject</a>)ksp,<a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/MPI_Comm.html#MPI_Comm">MPI_Comm</a></span> <span class="pre">*comm)</span></code>,
which returns in <code class="docutils literal notranslate"><span class="pre">comm</span></code> the MPI communicator for the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> context.
See <a class="reference internal" href="getting_started.html#sec-writing"><span class="std std-ref">Writing PETSc Programs</span></a> for more discussion of the use of
MPI communicators within PETSc.</p>
<p>Several monitoring routines are supplied with PETSc, including</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPMonitorDefault.html#KSPMonitorDefault">KSPMonitorDefault</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span><span class="p">,</span> <span class="kt">void</span> <span class="o">*</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPMonitorSingularValue.html#KSPMonitorSingularValue">KSPMonitorSingularValue</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span><span class="p">,</span><span class="kt">void</span> <span class="o">*</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPMonitorTrueResidualNorm.html#KSPMonitorTrueResidualNorm">KSPMonitorTrueResidualNorm</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span><span class="p">,</span> <span class="kt">void</span> <span class="o">*</span><span class="p">);</span>
</pre></div>
</div>
<p>The default monitor simply prints an estimate of the <span class="math">\(l_2\)</span>-norm of
the residual at each iteration. The routine
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPMonitorSingularValue.html#KSPMonitorSingularValue">KSPMonitorSingularValue</a>()</span></code> is appropriate only for use with the
conjugate gradient method or GMRES, since it prints estimates of the
extreme singular values of the preconditioned operator at each
iteration. Since <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPMonitorTrueResidualNorm.html#KSPMonitorTrueResidualNorm">KSPMonitorTrueResidualNorm</a>()</span></code> prints the true
residual at each iteration by actually computing the residual using the
formula <span class="math">\(r = b - Ax\)</span>, the routine is slow and should be used only
for testing or convergence studies, not for timing. These monitors may
be accessed with the command line options <code class="docutils literal notranslate"><span class="pre">-ksp_monitor</span></code>,
<code class="docutils literal notranslate"><span class="pre">-ksp_monitor_singular_value</span></code>, and <code class="docutils literal notranslate"><span class="pre">-ksp_monitor_true_residual</span></code>.</p>
<p>To employ the default graphical monitor, one should use the commands</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Draw/PetscDrawLG.html#PetscDrawLG">PetscDrawLG</a></span> <span class="n">lg</span><span class="p">;</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPMonitorLGResidualNormCreate.html#KSPMonitorLGResidualNormCreate">KSPMonitorLGResidualNormCreate</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/MPI_Comm.html#MPI_Comm">MPI_Comm</a></span> <span class="n">comm</span><span class="p">,</span><span class="kt">char</span> <span class="o">*</span><span class="n">display</span><span class="p">,</span><span class="kt">char</span> <span class="o">*</span><span class="n">title</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">x</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">y</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">w</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">h</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Draw/PetscDrawLG.html#PetscDrawLG">PetscDrawLG</a></span> <span class="o">*</span><span class="n">lg</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPMonitorSet.html#KSPMonitorSet">KSPMonitorSet</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n">KSPMonitorLGResidualNorm</span><span class="p">,</span><span class="n">lg</span><span class="p">,</span><span class="mi">0</span><span class="p">);</span>
</pre></div>
</div>
<p>When no longer needed, the line graph should be destroyed with the
command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Draw/PetscDrawLGDestroy.html#PetscDrawLGDestroy">PetscDrawLGDestroy</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Draw/PetscDrawLG.html#PetscDrawLG">PetscDrawLG</a></span> <span class="o">*</span><span class="n">lg</span><span class="p">);</span>
</pre></div>
</div>
<p>The user can change aspects of the graphs with the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Draw/PetscDrawLG.html#PetscDrawLG">PetscDrawLG</a>*()</span></code>
and <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Draw/PetscDrawAxis.html#PetscDrawAxis">PetscDrawAxis</a>*()</span></code> routines. One can also access this
functionality from the options database with the command
<code class="docutils literal notranslate"><span class="pre">-ksp_monitor_lg_residualnorm</span></code> <code class="docutils literal notranslate"><span class="pre">[x,y,w,h]</span></code>. , where <code class="docutils literal notranslate"><span class="pre">x,</span> <span class="pre">y,</span> <span class="pre">w,</span> <span class="pre">h</span></code>
are the optional location and size of the window.</p>
<p>One can cancel hardwired monitoring routines for KSP at runtime with
<code class="docutils literal notranslate"><span class="pre">-ksp_monitor_cancel</span></code>.</p>
<p>Unless the Krylov method converges so that the residual norm is small,
say <span class="math">\(10^{-10}\)</span>, many of the final digits printed with the
<code class="docutils literal notranslate"><span class="pre">-ksp_monitor</span></code> option are meaningless. Worse, they are different on
different machines; due to different round-off rules used by, say, the
IBM RS6000 and the Sun SPARC. This makes testing between different
machines difficult. The option <code class="docutils literal notranslate"><span class="pre">-ksp_monitor_short</span></code> causes PETSc to
print fewer of the digits of the residual norm as it gets smaller; thus
on most of the machines it will always print the same numbers making
cross system testing easier.</p>
</div>
<div class="section" id="understanding-the-operators-spectrum">
<h3>Understanding the Operator’s Spectrum<a class="headerlink" href="#understanding-the-operators-spectrum" title="Permalink to this headline">¶</a></h3>
<p>Since the convergence of Krylov subspace methods depends strongly on the
spectrum (eigenvalues) of the preconditioned operator, PETSc has
specific routines for eigenvalue approximation via the Arnoldi or
Lanczos iteration. First, before the linear solve one must call</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetComputeEigenvalues.html#KSPSetComputeEigenvalues">KSPSetComputeEigenvalues</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PETSC_TRUE.html#PETSC_TRUE">PETSC_TRUE</a></span><span class="p">);</span>
</pre></div>
</div>
<p>Then after the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> solve one calls</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPComputeEigenvalues.html#KSPComputeEigenvalues">KSPComputeEigenvalues</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">n</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="o">*</span><span class="n">realpart</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="o">*</span><span class="n">complexpart</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="o">*</span><span class="n">neig</span><span class="p">);</span>
</pre></div>
</div>
<p>Here, <code class="docutils literal notranslate"><span class="pre">n</span></code> is the size of the two arrays and the eigenvalues are
inserted into those two arrays. <code class="docutils literal notranslate"><span class="pre">neig</span></code> is the number of eigenvalues
computed; this number depends on the size of the Krylov space generated
during the linear system solution, for GMRES it is never larger than the
restart parameter. There is an additional routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPComputeEigenvaluesExplicitly.html#KSPComputeEigenvaluesExplicitly">KSPComputeEigenvaluesExplicitly</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span> <span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">n</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="o">*</span><span class="n">realpart</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="o">*</span><span class="n">complexpart</span><span class="p">);</span>
</pre></div>
</div>
<p>that is useful only for very small problems. It explicitly computes the
full representation of the preconditioned operator and calls LAPACK to
compute its eigenvalues. It should be only used for matrices of size up
to a couple hundred. The <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Draw/PetscDrawSP.html#PetscDrawSP">PetscDrawSP</a>*()</span></code> routines are very useful for
drawing scatter plots of the eigenvalues.</p>
<p>The eigenvalues may also be computed and displayed graphically with the
options data base commands <code class="docutils literal notranslate"><span class="pre">-ksp_view_eigenvalues</span> <span class="pre">draw</span></code> and
<code class="docutils literal notranslate"><span class="pre">-ksp_view_eigenvalues_explicitly</span> <span class="pre">draw</span></code>. Or they can be dumped to the
screen in ASCII text via <code class="docutils literal notranslate"><span class="pre">-ksp_view_eigenvalues</span></code> and
<code class="docutils literal notranslate"><span class="pre">-ksp_view_eigenvalues_explicitly</span></code>.</p>
</div>
<div class="section" id="other-ksp-options">
<h3>Other KSP Options<a class="headerlink" href="#other-ksp-options" title="Permalink to this headline">¶</a></h3>
<p>To obtain the solution vector and right hand side from a <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code>
context, one uses</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGetSolution.html#KSPGetSolution">KSPGetSolution</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="o">*</span><span class="n">x</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGetRhs.html#KSPGetRhs">KSPGetRhs</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="o">*</span><span class="n">rhs</span><span class="p">);</span>
</pre></div>
</div>
<p>During the iterative process the solution may not yet have been
calculated or it may be stored in a different location. To access the
approximate solution during the iterative process, one uses the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPBuildSolution.html#KSPBuildSolution">KSPBuildSolution</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="n">w</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="o">*</span><span class="n">v</span><span class="p">);</span>
</pre></div>
</div>
<p>where the solution is returned in <code class="docutils literal notranslate"><span class="pre">v</span></code>. The user can optionally provide
a vector in <code class="docutils literal notranslate"><span class="pre">w</span></code> as the location to store the vector; however, if <code class="docutils literal notranslate"><span class="pre">w</span></code>
is <code class="docutils literal notranslate"><span class="pre">NULL</span></code>, space allocated by PETSc in the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> context is used.
One should not destroy this vector. For certain <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> methods, (e.g.,
GMRES), the construction of the solution is expensive, while for many
others it doesn’t evenrequire a vector copy.</p>
<p>Access to the residual is done in a similar way with the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPBuildResidual.html#KSPBuildResidual">KSPBuildResidual</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="n">t</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="n">w</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="o">*</span><span class="n">v</span><span class="p">);</span>
</pre></div>
</div>
<p>Again, for GMRES and certain other methods this is an expensive
operation.</p>
</div>
</div>
<div class="section" id="preconditioners">
<span id="sec-pc"></span><h2>Preconditioners<a class="headerlink" href="#preconditioners" title="Permalink to this headline">¶</a></h2>
<p>As discussed in <a class="reference internal" href="#sec-ksppc"><span class="std std-ref">Preconditioning within KSP</span></a>, Krylov subspace methods
are typically used in conjunction with a preconditioner. To employ a
particular preconditioning method, the user can either select it from
the options database using input of the form <code class="docutils literal notranslate"><span class="pre">-pc_type</span> <span class="pre"><methodname></span></code>
or set the method with the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSetType.html#PCSetType">PCSetType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCType.html#PCType">PCType</a></span> <span class="n">method</span><span class="p">);</span>
</pre></div>
</div>
<p>In <a class="reference internal" href="#tab-pcdefaults"><span class="std std-ref">PETSc Preconditioners (partial list)</span></a> we summarize the basic
preconditioning methods supported in PETSc. See the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCType.html#PCType">PCType</a></span></code> manual
page for a complete list. The <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSHELL.html#PCSHELL">PCSHELL</a></span></code> preconditioner uses a
specific, application-provided preconditioner. The direct
preconditioner, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCLU.html#PCLU">PCLU</a></span></code> , is, in fact, a direct solver for the linear
system that uses LU factorization. <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCLU.html#PCLU">PCLU</a></span></code> is included as a
preconditioner so that PETSc has a consistent interface among direct and
iterative linear solvers.</p>
<table class="docutils align-default" id="tab-pcdefaults">
<caption><span class="caption-number">Table 5 </span><span class="caption-text">PETSc Preconditioners (partial list)</span><a class="headerlink" href="#tab-pcdefaults" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 33%" />
<col style="width: 33%" />
<col style="width: 33%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>Method</p></th>
<th class="head"><p>PCType</p></th>
<th class="head"><p>Options Database Name</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>Jacobi</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCJACOBI.html#PCJACOBI">PCJACOBI</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">jacobi</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Block Jacobi</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBJACOBI.html#PCBJACOBI">PCBJACOBI</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">bjacobi</span></code></p></td>
</tr>
<tr class="row-even"><td><p>SOR (and SSOR)</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSOR.html#PCSOR">PCSOR</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">sor</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>SOR with Eisenstat trick</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCEISENSTAT.html#PCEISENSTAT">PCEISENSTAT</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">eisenstat</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Incomplete Cholesky</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCICC.html#PCICC">PCICC</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">icc</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Incomplete LU</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCILU.html#PCILU">PCILU</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">ilu</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Additive Schwarz</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASM.html#PCASM">PCASM</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">asm</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Generalized Additive Schwarz</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASM.html#PCGASM">PCGASM</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">gasm</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Algebraic Multigrid</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGAMG.html#PCGAMG">PCGAMG</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">gamg</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Balancing Domain Decomposition by Constraints</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDC.html#PCBDDC">PCBDDC</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">bddc</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Linear solver</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCKSP.html#PCKSP">PCKSP</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">ksp</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Combination of preconditioners</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCCOMPOSITE.html#PCCOMPOSITE">PCCOMPOSITE</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">composite</span></code></p></td>
</tr>
<tr class="row-even"><td><p>LU</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCLU.html#PCLU">PCLU</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Cholesky</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCCHOLESKY.html#PCCHOLESKY">PCCHOLESKY</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">cholesky</span></code></p></td>
</tr>
<tr class="row-even"><td><p>No preconditioning</p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCNONE.html#PCNONE">PCNONE</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">none</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Shell for user-defined <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSHELL.html#PCSHELL">PCSHELL</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">shell</span></code></p></td>
</tr>
</tbody>
</table>
<p>Each preconditioner may have associated with it a set of options, which
can be set with routines and options database commands provided for this
purpose. Such routine names and commands are all of the form
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a><TYPE><Option></span></code> and <code class="docutils literal notranslate"><span class="pre">-pc_<type>_<option></span> <span class="pre">[value]</span></code>. A complete
list can be found by consulting the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCType.html#PCType">PCType</a></span></code> manual page; we discuss
just a few in the sections below.</p>
<div class="section" id="ilu-and-icc-preconditioners">
<span id="sec-ilu-icc"></span><h3>ILU and ICC Preconditioners<a class="headerlink" href="#ilu-and-icc-preconditioners" title="Permalink to this headline">¶</a></h3>
<p>Some of the options for ILU preconditioner are</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFactorSetLevels.html#PCFactorSetLevels">PCFactorSetLevels</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">levels</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFactorSetReuseOrdering.html#PCFactorSetReuseOrdering">PCFactorSetReuseOrdering</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscBool.html#PetscBool">PetscBool</a></span> <span class="n">flag</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFactorSetDropTolerance.html#PCFactorSetDropTolerance">PCFactorSetDropTolerance</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="n">dt</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="n">dtcol</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">dtcount</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFactorSetReuseFill.html#PCFactorSetReuseFill">PCFactorSetReuseFill</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscBool.html#PetscBool">PetscBool</a></span> <span class="n">flag</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFactorSetUseInPlace.html#PCFactorSetUseInPlace">PCFactorSetUseInPlace</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscBool.html#PetscBool">PetscBool</a></span> <span class="n">flg</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFactorSetAllowDiagonalFill.html#PCFactorSetAllowDiagonalFill">PCFactorSetAllowDiagonalFill</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscBool.html#PetscBool">PetscBool</a></span> <span class="n">flg</span><span class="p">);</span>
</pre></div>
</div>
<p>When repeatedly solving linear systems with the same <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> context,
one can reuse some information computed during the first linear solve.
In particular, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFactorSetReuseOrdering.html#PCFactorSetReuseOrdering">PCFactorSetReuseOrdering</a>()</span></code> causes the ordering (for
example, set with <code class="docutils literal notranslate"><span class="pre">-pc_factor_mat_ordering_type</span></code> <code class="docutils literal notranslate"><span class="pre">order</span></code>) computed
in the first factorization to be reused for later factorizations.
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFactorSetUseInPlace.html#PCFactorSetUseInPlace">PCFactorSetUseInPlace</a>()</span></code> is often used with <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASM.html#PCASM">PCASM</a></span></code> or
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBJACOBI.html#PCBJACOBI">PCBJACOBI</a></span></code> when zero fill is used, since it reuses the matrix space
to store the incomplete factorization it saves memory and copying time.
Note that in-place factorization is not appropriate with any ordering
besides natural and cannot be used with the drop tolerance
factorization. These options may be set in the database with</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">-pc_factor_levels</span> <span class="pre"><levels></span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">-pc_factor_reuse_ordering</span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">-pc_factor_reuse_fill</span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">-pc_factor_in_place</span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">-pc_factor_nonzeros_along_diagonal</span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">-pc_factor_diagonal_fill</span></code></p></li>
</ul>
<p>See <a class="reference internal" href="performance.html#sec-symbolfactor"><span class="std std-ref">Memory Allocation for Sparse Matrix Factorization</span></a> for information on
preallocation of memory for anticipated fill during factorization. By
alleviating the considerable overhead for dynamic memory allocation,
such tuning can significantly enhance performance.</p>
<p>PETSc supports incomplete factorization preconditioners
for several matrix types for sequential matrices (for example
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSEQAIJ.html#MATSEQAIJ">MATSEQAIJ</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSEQBAIJ.html#MATSEQBAIJ">MATSEQBAIJ</a></span></code>, and <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSEQSBAIJ.html#MATSEQSBAIJ">MATSEQSBAIJ</a></span></code>).</p>
</div>
<div class="section" id="sor-and-ssor-preconditioners">
<h3>SOR and SSOR Preconditioners<a class="headerlink" href="#sor-and-ssor-preconditioners" title="Permalink to this headline">¶</a></h3>
<p>PETSc only provides only a sequential SOR preconditioner; it can only be
used with sequential matrices or as the subblock preconditioner when
using block Jacobi or ASM preconditioning (see below).</p>
<p>The options for SOR preconditioning with <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSOR.html#PCSOR">PCSOR</a></span></code> are</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSORSetOmega.html#PCSORSetOmega">PCSORSetOmega</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="n">omega</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSORSetIterations.html#PCSORSetIterations">PCSORSetIterations</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">its</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">lits</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSORSetSymmetric.html#PCSORSetSymmetric">PCSORSetSymmetric</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSORType.html#MatSORType">MatSORType</a></span> <span class="n">type</span><span class="p">);</span>
</pre></div>
</div>
<p>The first of these commands sets the relaxation factor for successive
over (under) relaxation. The second command sets the number of inner
iterations <code class="docutils literal notranslate"><span class="pre">its</span></code> and local iterations <code class="docutils literal notranslate"><span class="pre">lits</span></code> (the number of
smoothing sweeps on a process before doing a ghost point update from the
other processes) to use between steps of the Krylov space method. The
total number of SOR sweeps is given by <code class="docutils literal notranslate"><span class="pre">its*lits</span></code>. The third command
sets the kind of SOR sweep, where the argument <code class="docutils literal notranslate"><span class="pre">type</span></code> can be one of
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSORType.html#MatSORType">SOR_FORWARD_SWEEP</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSORType.html#MatSORType">SOR_BACKWARD_SWEEP</a></span></code> or
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSORType.html#MatSORType">SOR_SYMMETRIC_SWEEP</a></span></code>, the default being <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSORType.html#MatSORType">SOR_FORWARD_SWEEP</a></span></code>.
Setting the type to be <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSORType.html#MatSORType">SOR_SYMMETRIC_SWEEP</a></span></code> produces the SSOR method.
In addition, each process can locally and independently perform the
specified variant of SOR with the types <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSORType.html#MatSORType">SOR_LOCAL_FORWARD_SWEEP</a></span></code>,
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSORType.html#MatSORType">SOR_LOCAL_BACKWARD_SWEEP</a></span></code>, and <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSORType.html#MatSORType">SOR_LOCAL_SYMMETRIC_SWEEP</a></span></code>. These
variants can also be set with the options <code class="docutils literal notranslate"><span class="pre">-pc_sor_omega</span> <span class="pre"><omega></span></code>,
<code class="docutils literal notranslate"><span class="pre">-pc_sor_its</span> <span class="pre"><its></span></code>, <code class="docutils literal notranslate"><span class="pre">-pc_sor_lits</span> <span class="pre"><lits></span></code>, <code class="docutils literal notranslate"><span class="pre">-pc_sor_backward</span></code>,
<code class="docutils literal notranslate"><span class="pre">-pc_sor_symmetric</span></code>, <code class="docutils literal notranslate"><span class="pre">-pc_sor_local_forward</span></code>,
<code class="docutils literal notranslate"><span class="pre">-pc_sor_local_backward</span></code>, and <code class="docutils literal notranslate"><span class="pre">-pc_sor_local_symmetric</span></code>.</p>
<p>The Eisenstat trick <span id="id19">[<a class="reference internal" href="#id278"><span>Eis81</span></a>]</span> for SSOR
preconditioning can be employed with the method <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCEISENSTAT.html#PCEISENSTAT">PCEISENSTAT</a></span></code>
(<code class="docutils literal notranslate"><span class="pre">-pc_type</span></code> <code class="docutils literal notranslate"><span class="pre">eisenstat</span></code>). By using both left and right
preconditioning of the linear system, this variant of SSOR requires
about half of the floating-point operations for conventional SSOR. The
option <code class="docutils literal notranslate"><span class="pre">-pc_eisenstat_no_diagonal_scaling</span></code>) (or the routine
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCEisenstatSetNoDiagonalScaling.html#PCEisenstatSetNoDiagonalScaling">PCEisenstatSetNoDiagonalScaling</a>()</span></code>) turns off diagonal scaling in
conjunction with Eisenstat SSOR method, while the option
<code class="docutils literal notranslate"><span class="pre">-pc_eisenstat_omega</span> <span class="pre"><omega></span></code> (or the routine
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCEisenstatSetOmega.html#PCEisenstatSetOmega">PCEisenstatSetOmega</a>(<a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="pre">pc,<a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="pre">omega)</span></code>) sets the SSOR relaxation
coefficient, <code class="docutils literal notranslate"><span class="pre">omega</span></code>, as discussed above.</p>
</div>
<div class="section" id="lu-factorization">
<span id="sec-factorization"></span><h3>LU Factorization<a class="headerlink" href="#lu-factorization" title="Permalink to this headline">¶</a></h3>
<p>The LU preconditioner provides several options. The first, given by the
command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFactorSetUseInPlace.html#PCFactorSetUseInPlace">PCFactorSetUseInPlace</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscBool.html#PetscBool">PetscBool</a></span> <span class="n">flg</span><span class="p">);</span>
</pre></div>
</div>
<p>causes the factorization to be performed in-place and hence destroys the
original matrix. The options database variant of this command is
<code class="docutils literal notranslate"><span class="pre">-pc_factor_in_place</span></code>. Another direct preconditioner option is
selecting the ordering of equations with the command
<code class="docutils literal notranslate"><span class="pre">-pc_factor_mat_ordering_type</span> <span class="pre"><ordering></span></code>. The possible orderings are</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">MATORDERINGNATURAL</span></code> - Natural</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">MATORDERINGND</span></code> - Nested Dissection</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">MATORDERING1WD</span></code> - One-way Dissection</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">MATORDERINGRCM</span></code> - Reverse Cuthill-McKee</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">MATORDERINGQMD</span></code> - Quotient Minimum Degree</p></li>
</ul>
<p>These orderings can also be set through the options database by
specifying one of the following: <code class="docutils literal notranslate"><span class="pre">-pc_factor_mat_ordering_type</span></code>
<code class="docutils literal notranslate"><span class="pre">natural</span></code>, or <code class="docutils literal notranslate"><span class="pre">nd</span></code>, or <code class="docutils literal notranslate"><span class="pre">1wd</span></code>, or <code class="docutils literal notranslate"><span class="pre">rcm</span></code>, or <code class="docutils literal notranslate"><span class="pre">qmd</span></code>. In addition,
see <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/MatOrderings/MatGetOrdering.html#MatGetOrdering">MatGetOrdering</a>()</span></code>, discussed in <a class="reference internal" href="advanced.html#sec-matfactor"><span class="std std-ref">Matrix Factorization</span></a>.</p>
<p>The sparse LU factorization provided in PETSc does not perform pivoting
for numerical stability (since they are designed to preserve nonzero
structure), and thus occasionally a LU factorization will fail with a
zero pivot when, in fact, the matrix is non-singular. The option
<code class="docutils literal notranslate"><span class="pre">-pc_factor_nonzeros_along_diagonal</span> <span class="pre"><tol></span></code> will often help eliminate
the zero pivot, by preprocessing the column ordering to remove small
values from the diagonal. Here, <code class="docutils literal notranslate"><span class="pre">tol</span></code> is an optional tolerance to
decide if a value is nonzero; by default it is <code class="docutils literal notranslate"><span class="pre">1.e-10</span></code>.</p>
<p>In addition, <a class="reference internal" href="performance.html#sec-symbolfactor"><span class="std std-ref">Memory Allocation for Sparse Matrix Factorization</span></a> provides information
on preallocation of memory for anticipated fill during factorization.
Such tuning can significantly enhance performance, since it eliminates
the considerable overhead for dynamic memory allocation.</p>
</div>
<div class="section" id="block-jacobi-and-overlapping-additive-schwarz-preconditioners">
<span id="sec-bjacobi"></span><h3>Block Jacobi and Overlapping Additive Schwarz Preconditioners<a class="headerlink" href="#block-jacobi-and-overlapping-additive-schwarz-preconditioners" title="Permalink to this headline">¶</a></h3>
<p>The block Jacobi and overlapping additive Schwarz methods in PETSc are
supported in parallel; however, only the uniprocess version of the block
Gauss-Seidel method is currently in place. By default, the PETSc
implementations of these methods employ ILU(0) factorization on each
individual block (that is, the default solver on each subblock is
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCType.html#PCType">PCType</a>=<a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCILU.html#PCILU">PCILU</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPType.html#KSPType">KSPType</a>=<a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPPREONLY.html#KSPPREONLY">KSPPREONLY</a></span></code>); the user can set alternative
linear solvers via the options <code class="docutils literal notranslate"><span class="pre">-sub_ksp_type</span></code> and <code class="docutils literal notranslate"><span class="pre">-sub_pc_type</span></code>.
In fact, all of the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> and <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span></code> options can be applied to the
subproblems by inserting the prefix <code class="docutils literal notranslate"><span class="pre">-sub_</span></code> at the beginning of the
option name. These options database commands set the particular options
for <em>all</em> of the blocks within the global problem. In addition, the
routines</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBJacobiGetSubKSP.html#PCBJacobiGetSubKSP">PCBJacobiGetSubKSP</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="o">*</span><span class="n">n_local</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="o">*</span><span class="n">first_local</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="o">**</span><span class="n">subksp</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMGetSubKSP.html#PCASMGetSubKSP">PCASMGetSubKSP</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="o">*</span><span class="n">n_local</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="o">*</span><span class="n">first_local</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="o">**</span><span class="n">subksp</span><span class="p">);</span>
</pre></div>
</div>
<p>extract the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> context for each local block. The argument
<code class="docutils literal notranslate"><span class="pre">n_local</span></code> is the number of blocks on the calling process, and
<code class="docutils literal notranslate"><span class="pre">first_local</span></code> indicates the global number of the first block on the
process. The blocks are numbered successively by processes from zero
through <span class="math">\(b_g-1\)</span>, where <span class="math">\(b_g\)</span> is the number of global blocks.
The array of <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> contexts for the local blocks is given by
<code class="docutils literal notranslate"><span class="pre">subksp</span></code>. This mechanism enables the user to set different solvers for
the various blocks. To set the appropriate data structures, the user
<em>must</em> explicitly call <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetUp.html#KSPSetUp">KSPSetUp</a>()</span></code> before calling
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBJacobiGetSubKSP.html#PCBJacobiGetSubKSP">PCBJacobiGetSubKSP</a>()</span></code> or <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMGetSubKSP.html#PCASMGetSubKSP">PCASMGetSubKSP</a>(</span></code>). For further details,
see
<a class="reference external" href="https://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/tutorials/ex7.c.html">KSP Tutorial ex7</a>
or
<a class="reference external" href="https://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/tutorials/ex8.c.html">KSP Tutorial ex8</a>.</p>
<p>The block Jacobi, block Gauss-Seidel, and additive Schwarz
preconditioners allow the user to set the number of blocks into which
the problem is divided. The options database commands to set this value
are <code class="docutils literal notranslate"><span class="pre">-pc_bjacobi_blocks</span></code> <code class="docutils literal notranslate"><span class="pre">n</span></code> and <code class="docutils literal notranslate"><span class="pre">-pc_bgs_blocks</span></code> <code class="docutils literal notranslate"><span class="pre">n</span></code>, and,
within a program, the corresponding routines are</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBJacobiSetTotalBlocks.html#PCBJacobiSetTotalBlocks">PCBJacobiSetTotalBlocks</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">blocks</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="o">*</span><span class="n">size</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMSetTotalSubdomains.html#PCASMSetTotalSubdomains">PCASMSetTotalSubdomains</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">n</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/IS/IS.html#IS">IS</a></span> <span class="o">*</span><span class="n">is</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/IS/IS.html#IS">IS</a></span> <span class="o">*</span><span class="n">islocal</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMSetType.html#PCASMSetType">PCASMSetType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMType.html#PCASMType">PCASMType</a></span> <span class="n">type</span><span class="p">);</span>
</pre></div>
</div>
<p>The optional argument <code class="docutils literal notranslate"><span class="pre">size</span></code> is an array indicating the size of each
block. Currently, for certain parallel matrix formats, only a single
block per process is supported. However, the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATMPIAIJ.html#MATMPIAIJ">MATMPIAIJ</a></span></code> and
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATMPIBAIJ.html#MATMPIBAIJ">MATMPIBAIJ</a></span></code> formats support the use of general blocks as long as no
blocks are shared among processes. The <code class="docutils literal notranslate"><span class="pre">is</span></code> argument contains the
index sets that define the subdomains.</p>
<p>The object <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMType.html#PCASMType">PCASMType</a></span></code> is one of <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMType.html#PCASMType">PC_ASM_BASIC</a></span></code>,
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMType.html#PCASMType">PC_ASM_INTERPOLATE</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMType.html#PCASMType">PC_ASM_RESTRICT</a></span></code>, or<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMType.html#PCASMType">PC_ASM_NONE</a></span></code> and may
also be set with the options database <code class="docutils literal notranslate"><span class="pre">-pc_asm_type</span></code> <code class="docutils literal notranslate"><span class="pre">[basic</span></code>,
<code class="docutils literal notranslate"><span class="pre">interpolate</span></code>, <code class="docutils literal notranslate"><span class="pre">restrict</span></code>, <code class="docutils literal notranslate"><span class="pre">none]</span></code>. The type <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMType.html#PCASMType">PC_ASM_BASIC</a></span></code> (or
<code class="docutils literal notranslate"><span class="pre">-pc_asm_type</span></code> <code class="docutils literal notranslate"><span class="pre">basic</span></code>) corresponds to the standard additive Schwarz
method that uses the full restriction and interpolation operators. The
type <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMType.html#PCASMType">PC_ASM_RESTRICT</a></span></code> (or <code class="docutils literal notranslate"><span class="pre">-pc_asm_type</span></code> <code class="docutils literal notranslate"><span class="pre">restrict</span></code>) uses a full
restriction operator, but during the interpolation process ignores the
off-process values. Similarly, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMType.html#PCASMType">PC_ASM_INTERPOLATE</a></span></code> (or
<code class="docutils literal notranslate"><span class="pre">-pc_asm_type</span></code> <code class="docutils literal notranslate"><span class="pre">interpolate</span></code>) uses a limited restriction process in
conjunction with a full interpolation, while <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMType.html#PCASMType">PC_ASM_NONE</a></span></code> (or
<code class="docutils literal notranslate"><span class="pre">-pc_asm_type</span></code> <code class="docutils literal notranslate"><span class="pre">none</span></code>) ignores off-process values for both
restriction and interpolation. The ASM types with limited restriction or
interpolation were suggested by Xiao-Chuan Cai and Marcus Sarkis
<span id="id20">[<a class="reference internal" href="#id218"><span>CS97</span></a>]</span>. <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMType.html#PCASMType">PC_ASM_RESTRICT</a></span></code> is the PETSc default, as
it saves substantial communication and for many problems has the added
benefit of requiring fewer iterations for convergence than the standard
additive Schwarz method.</p>
<p>The user can also set the number of blocks and sizes on a per-process
basis with the commands</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBJacobiSetLocalBlocks.html#PCBJacobiSetLocalBlocks">PCBJacobiSetLocalBlocks</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">blocks</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="o">*</span><span class="n">size</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMSetLocalSubdomains.html#PCASMSetLocalSubdomains">PCASMSetLocalSubdomains</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">N</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/IS/IS.html#IS">IS</a></span> <span class="o">*</span><span class="n">is</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/IS/IS.html#IS">IS</a></span> <span class="o">*</span><span class="n">islocal</span><span class="p">);</span>
</pre></div>
</div>
<p>For the ASM preconditioner one can use the following command to set the
overlap to compute in constructing the subdomains.</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMSetOverlap.html#PCASMSetOverlap">PCASMSetOverlap</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">overlap</span><span class="p">);</span>
</pre></div>
</div>
<p>The overlap defaults to 1, so if one desires that no additional overlap
be computed beyond what may have been set with a call to
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMSetTotalSubdomains.html#PCASMSetTotalSubdomains">PCASMSetTotalSubdomains</a>()</span></code> or <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMSetLocalSubdomains.html#PCASMSetLocalSubdomains">PCASMSetLocalSubdomains</a>()</span></code>, then
<code class="docutils literal notranslate"><span class="pre">overlap</span></code> must be set to be 0. In particular, if one does <em>not</em>
explicitly set the subdomains in an application code, then all overlap
would be computed internally by PETSc, and using an overlap of 0 would
result in an ASM variant that is equivalent to the block Jacobi
preconditioner. Note that one can define initial index sets <code class="docutils literal notranslate"><span class="pre">is</span></code> with
<em>any</em> overlap via <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMSetTotalSubdomains.html#PCASMSetTotalSubdomains">PCASMSetTotalSubdomains</a>()</span></code> or
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMSetLocalSubdomains.html#PCASMSetLocalSubdomains">PCASMSetLocalSubdomains</a>()</span></code>; the routine <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASMSetOverlap.html#PCASMSetOverlap">PCASMSetOverlap</a>()</span></code> merely
allows PETSc to extend that overlap further if desired.</p>
<p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASM.html#PCGASM">PCGASM</a></span></code> is an experimental generalization of <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASM.html#PCASM">PCASM</a></span></code> that allows
the user to specify subdomains that span multiple MPI ranks. This can be
useful for problems where small subdomains result in poor convergence.
To be effective, the multirank subproblems must be solved using a
sufficient strong subsolver, such as LU, for which <code class="docutils literal notranslate"><span class="pre">SuperLU_DIST</span></code> or a
similar parallel direct solver could be used; other choices may include
a multigrid solver on the subdomains.</p>
<p>The interface for <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASM.html#PCGASM">PCGASM</a></span></code> is similar to that of <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASM.html#PCASM">PCASM</a></span></code>. In
particular, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASMType.html#PCGASMType">PCGASMType</a></span></code> is one of <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASMType.html#PCGASMType">PC_GASM_BASIC</a></span></code>,
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASMType.html#PCGASMType">PC_GASM_INTERPOLATE</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASMType.html#PCGASMType">PC_GASM_RESTRICT</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASMType.html#PCGASMType">PC_GASM_NONE</a></span></code>. These
options have the same meaning as with <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASM.html#PCASM">PCASM</a></span></code> and may also be set with
the options database <code class="docutils literal notranslate"><span class="pre">-pc_gasm_type</span></code> <code class="docutils literal notranslate"><span class="pre">[basic</span></code>, <code class="docutils literal notranslate"><span class="pre">interpolate</span></code>,
<code class="docutils literal notranslate"><span class="pre">restrict</span></code>, <code class="docutils literal notranslate"><span class="pre">none]</span></code>.</p>
<p>Unlike <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASM.html#PCASM">PCASM</a></span></code>, however, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASM.html#PCGASM">PCGASM</a></span></code> allows the user to define
subdomains that span multiple MPI ranks. The simplest way to do this is
using a call to <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASMSetTotalSubdomains.html#PCGASMSetTotalSubdomains">PCGASMSetTotalSubdomains</a>(<a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="pre">pc,PetscPetscInt</span> <span class="pre">N)</span></code> with
the total number of subdomains <code class="docutils literal notranslate"><span class="pre">N</span></code> that is smaller than the MPI
communicator <code class="docutils literal notranslate"><span class="pre">size</span></code>. In this case <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASM.html#PCGASM">PCGASM</a></span></code> will coalesce <code class="docutils literal notranslate"><span class="pre">size/N</span></code>
concecutive single-rank subdomains into a single multi-rank subdomain.
The single-rank subdomains contain the degrees of freedom corresponding
to the locally-owned rows of the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASM.html#PCGASM">PCGASM</a></span></code> preconditioning matrix –
these are the subdomains <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASM.html#PCASM">PCASM</a></span></code> and <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASM.html#PCGASM">PCGASM</a></span></code> use by default.</p>
<p>Each of the multirank subdomain subproblems is defined on the
subcommunicator that contains the coalesced <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASM.html#PCGASM">PCGASM</a></span></code> ranks. In general
this might not result in a very good subproblem if the single-rank
problems corresponding to the coalesced ranks are not very strongly
connected. In the future this will be addressed with a hierarchical
partitioner that generates well-connected coarse subdomains first before
subpartitioning them into the single-rank subdomains.</p>
<p>In the meantime the user can provide his or her own multi-rank
subdomains by calling<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASMSetSubdomains.html#PCGASMSetSubdomains">PCGASMSetSubdomains</a>(<a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a>,<a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/IS/IS.html#IS">IS</a>[],<a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/IS/IS.html#IS">IS</a>[])</span></code> where each
of the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/IS/IS.html#IS">IS</a></span></code> objects on the list defines the inner (without the
overlap) or the outer (including the overlap) subdomain on the
subcommunicator of the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/IS/IS.html#IS">IS</a></span></code> object. A helper subroutine
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASMCreateSubdomains2D.html#PCGASMCreateSubdomains2D">PCGASMCreateSubdomains2D</a>()</span></code> is similar to PCASM’s but is capable of
constructing multi-rank subdomains that can be then used with
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASMSetSubdomains.html#PCGASMSetSubdomains">PCGASMSetSubdomains</a>()</span></code>. An alternative way of creating multi-rank
subdomains is by using the underlying DM object, if it is capable of
generating such decompositions via <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/DMCreateDomainDecomposition.html#DMCreateDomainDecomposition">DMCreateDomainDecomposition</a>()</span></code>.
Ordinarily the decomposition specified by the user via
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASMSetSubdomains.html#PCGASMSetSubdomains">PCGASMSetSubdomains</a>()</span></code> takes precedence, unless
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASMSetUseDMSubdomains.html#PCGASMSetUseDMSubdomains">PCGASMSetUseDMSubdomains</a>()</span></code> instructs <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASM.html#PCGASM">PCGASM</a></span></code> to prefer
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/DM.html#DM">DM</a></span></code>-created decompositions.</p>
<p>Currently there is no support for increasing the overlap of multi-rank
subdomains via<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASMSetOverlap.html#PCGASMSetOverlap">PCGASMSetOverlap</a>()</span></code> – this functionality works only
for subdomains that fit within a single MPI rank, exactly as in
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCASM.html#PCASM">PCASM</a></span></code>.</p>
<p>Examples of the described PCGASM usage can be found in
<a class="reference external" href="https://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/tutorials/ex62.c.html">KSP Tutorial ex62</a>.
In particular, <code class="docutils literal notranslate"><span class="pre">runex62_superlu_dist</span></code> illustrates the use of
<code class="docutils literal notranslate"><span class="pre">SuperLU_DIST</span></code> as the subdomain solver on coalesced multi-rank
subdomains. The <code class="docutils literal notranslate"><span class="pre">runex62_2D_*</span></code> examples illustrate the use of
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGASMCreateSubdomains2D.html#PCGASMCreateSubdomains2D">PCGASMCreateSubdomains2D</a>()</span></code>.</p>
</div>
<div class="section" id="algebraic-multigrid-amg-preconditioners">
<span id="sec-amg"></span><h3>Algebraic Multigrid (AMG) Preconditioners<a class="headerlink" href="#algebraic-multigrid-amg-preconditioners" title="Permalink to this headline">¶</a></h3>
<p>PETSc has a native algebraic multigrid preconditioner <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGAMG.html#PCGAMG">PCGAMG</a></span></code> –
<em>gamg</em> – and interfaces to two external AMG packages: <em>hypre</em> and <em>ML</em>.
<em>Hypre</em> is relatively monolithic in that a PETSc matrix is into a hypre
matrix and then <em>hypre</em> is called to do the entire solve. <em>ML</em> is more
modular in that PETSc only has <em>ML</em> generate the coarse grid spaces
(columns of the prolongation operator), which is core of an AMG method,
and then constructs a <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMG.html#PCMG">PCMG</a></span></code> with Galerkin coarse grid operator
construction. GAMG is designed from the beginning to be modular, to
allow for new components to be added easily and also populates a
multigrid preconditioner <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMG.html#PCMG">PCMG</a></span></code> so generic multigrid parameters are
used. PETSc provides a fully supported (smoothed) aggregation AMG,
(<code class="docutils literal notranslate"><span class="pre">-pc_type</span> <span class="pre">gamg</span> <span class="pre">-pc_gamg_type</span> <span class="pre">agg</span></code> or <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSetType.html#PCSetType">PCSetType</a>(pc,<a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGAMG.html#PCGAMG">PCGAMG</a>)</span></code> and
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGAMGSetType.html#PCGAMGSetType">PCGAMGSetType</a>(pc,PCGAMGAGG)</span></code>, as well as reference implementations of
a classical AMG method (<code class="docutils literal notranslate"><span class="pre">-pc_gamg_type</span> <span class="pre">classical</span></code>), a hybrid geometric
AMG method (<code class="docutils literal notranslate"><span class="pre">-pc_gamg_type</span> <span class="pre">geo</span></code>), and a 2.5D AMG method DofColumns
<span id="id21">[<a class="reference internal" href="#id1060"><span>ISG15</span></a>]</span>. GAMG does require the use
of (MPI)AIJ matrices. For instance, BAIJ matrices are not supported. One
can use AIJ instead of BAIJ without changing any code other than the
constructor (or the <code class="docutils literal notranslate"><span class="pre">-mat_type</span></code> from the command line). For instance,
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSetValuesBlocked.html#MatSetValuesBlocked">MatSetValuesBlocked</a></span></code> works with AIJ matrices.</p>
<p>GAMG provides unsmoothed aggregation (<code class="docutils literal notranslate"><span class="pre">-pc_gamg_agg_nsmooths</span> <span class="pre">0</span></code>) and
smoothed aggregation (<code class="docutils literal notranslate"><span class="pre">-pc_gamg_agg_nsmooths</span> <span class="pre">1</span></code> or
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGAMGSetNSmooths.html#PCGAMGSetNSmooths">PCGAMGSetNSmooths</a>(pc,1)</span></code>). Smoothed aggregation (SA) is recommended
for symmetric positive definite systems. Unsmoothed aggregation can be
useful for asymmetric problems and problems where highest eigen
estimates are problematic. If poor convergence rates are observed using
the smoothed version one can test unsmoothed aggregation.</p>
<p><strong>Eigenvalue estimates:</strong> The parameters for the KSP eigen estimator,
use for SA, can be set with <code class="docutils literal notranslate"><span class="pre">-pc_gamg_esteig_ksp_max_it</span></code> and
<code class="docutils literal notranslate"><span class="pre">-pc_gamg_esteig_ksp_type</span></code>. For example CG generally converges to the
highest eigenvalue fast than GMRES (the default for KSP) if your problem
is symmetric positive definite. One can specify CG with
<code class="docutils literal notranslate"><span class="pre">-pc_gamg_esteig_ksp_type</span> <span class="pre">cg</span></code>. The default for
<code class="docutils literal notranslate"><span class="pre">-pc_gamg_esteig_ksp_max_it</span></code> is 10, which we have found is pretty safe
with a (default) safety factor of 1.1. One can specify the range of real
eigenvalues, in the same way that one can for Chebyshev KSP solvers
(smoothers), with <code class="docutils literal notranslate"><span class="pre">-pc_gamg_eigenvalues</span> <span class="pre"><emin,emax></span></code>. GAMG sets the MG
smoother type to chebyshev by default. By default, GAMG uses its eigen
estimate, if it has one, for Chebyshev smoothers if the smoother uses
Jacobi preconditioning. This can be overridden with
<code class="docutils literal notranslate"><span class="pre">-pc_gamg_use_sa_esteig</span>  <span class="pre"><true,false></span></code>.</p>
<p>AMG methods requires knowledge of the number of degrees of freedom per
vertex, the default is one (a scalar problem). Vector problems like
elasticity should set the block size of the matrix appropriately with
<code class="docutils literal notranslate"><span class="pre">-mat_block_size</span> <span class="pre">bs</span></code> or <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSetBlockSize.html#MatSetBlockSize">MatSetBlockSize</a>(mat,bs)</span></code>. Equations must be
ordered in “vertex-major” ordering (e.g.,
<span class="math">\(x_1,y_1,z_1,x_2,y_2,...\)</span>).</p>
<p><strong>Near null space:</strong> Smoothed aggregation requires an explicit
representation of the (near) null space of the operator for optimal
performance. One can provide an orthonormal set of null space vectors
with <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSetNearNullSpace.html#MatSetNearNullSpace">MatSetNearNullSpace</a>()</span></code>. The vector of all ones is the default,
for each variable given by the block size (e.g., the translational rigid
body modes). For elasticity, where rotational rigid body modes are
required to complete the near null space you can use
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatNullSpaceCreateRigidBody.html#MatNullSpaceCreateRigidBody">MatNullSpaceCreateRigidBody</a>()</span></code> to create the null space vectors and
then <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSetNearNullSpace.html#MatSetNearNullSpace">MatSetNearNullSpace</a>()</span></code>.</p>
<p><strong>Coarse grid data model:</strong> The GAMG framework provides for reducing the
number of active processes on coarse grids to reduce communication costs
when there is not enough parallelism to keep relative communication
costs down. Most AMG solver reduce to just one active process on the
coarsest grid (the PETSc MG framework also supports redundantly solving
the coarse grid on all processes to potentially reduce communication
costs), although this forcing to one process can be overridden if one
wishes to use a parallel coarse grid solver. GAMG generalizes this by
reducing the active number of processes on other coarse grids as well.
GAMG will select the number of active processors by fitting the desired
number of equation per process (set with
<code class="docutils literal notranslate"><span class="pre">-pc_gamg_process_eq_limit</span> <span class="pre"><50>,</span></code>) at each level given that size of
each level. If <span class="math">\(P_i < P\)</span> processors are desired on a level
<span class="math">\(i\)</span> then the first <span class="math">\(P_i\)</span> ranks are populated with the grid
and the remaining are empty on that grid. One can, and probably should,
repartition the coarse grids with <code class="docutils literal notranslate"><span class="pre">-pc_gamg_repartition</span> <span class="pre"><true>,</span></code>,
otherwise an integer process reduction factor (<span class="math">\(q\)</span>) is selected
and the equations on the first <span class="math">\(q\)</span> processes are move to process
0, and so on. As mentioned multigrid generally coarsens the problem
until it is small enough to be solved with an exact solver (eg, LU or
SVD) in a relatively small time. GAMG will stop coarsening when the
number of equation on a grid falls below at threshold give by
<code class="docutils literal notranslate"><span class="pre">-pc_gamg_coarse_eq_limit</span> <span class="pre"><50>,</span></code>.</p>
<p><strong>Coarse grid parameters:</strong> There are several options to provide
parameters to the coarsening algorithm and parallel data layout. Run a
code that uses GAMG with <code class="docutils literal notranslate"><span class="pre">-help</span></code> to get full listing of GAMG
parameters with short parameter descriptions. The rate of coarsening is
critical in AMG performance – too slow of coarsening will result in an
overly expensive solver per iteration and too fast coarsening will
result in decrease in the convergence rate. <code class="docutils literal notranslate"><span class="pre">-pc_gamg_threshold</span> <span class="pre"><0></span></code>
and <code class="docutils literal notranslate"><span class="pre">-pc_gamg_square_graph</span> <span class="pre"><1>,</span></code> are the primary parameters that
control coarsening rates, which is very important for AMG performance. A
greedy maximal independent set (MIS) algorithm is used in coarsening.
Squaring the graph implements so called MIS-2, the root vertex in an
aggregate is more than two edges away from another root vertex, instead
of more than one in MIS. The threshold parameter sets a normalized
threshold for which edges are removed from the MIS graph, thereby
coarsening slower. Zero will keep all non-zero edges, a negative number
will keep zero edges, a positive number will drop small edges. Typical
finite threshold values are in the range of <span class="math">\(0.01 - 0.05\)</span>. There
are additional parameters for changing the weights on coarse grids.
Note, the parallel algorithm requires symmetric weights/matrix. You must
use <code class="docutils literal notranslate"><span class="pre">-pc_gamg_sym_graph</span> <span class="pre"><true></span></code> to symmetrize the graph if your
problem is not symmetric.</p>
<p><strong>Trouble shooting algebraic multigrid methods:</strong> If <em>GAMG</em>, <em>ML</em>, or
<em>hypre</em> does not perform well the first thing to try is one of the other
methods. Often the default parameters or just the strengths of different
algorithms can fix performance problems or provide useful information to
guide further debugging. There are several sources of poor performance
of AMG solvers and often special purpose methods must be developed to
achieve the full potential of multigrid. To name just a few sources of
performance degradation that may not be fixed with parameters in PETSc
currently: non-elliptic operators, curl/curl operators, highly stretched
grids or highly anisotropic problems, large jumps in material
coefficients with complex geometry (AMG is particularly well suited to
jumps in coefficients but it is not a perfect solution), highly
incompressible elasticity, not to mention ill-posed problems, and many
others. For Grad-Div and Curl-Curl operators, you may want to try the
Auxiliary-space Maxwell Solver (AMS,
<code class="docutils literal notranslate"><span class="pre">-pc_type</span> <span class="pre">hypre</span> <span class="pre">-pc_hypre_type</span> <span class="pre">ams</span></code>) or the Auxiliary-space Divergence
Solver (ADS, <code class="docutils literal notranslate"><span class="pre">-pc_type</span> <span class="pre">hypre</span> <span class="pre">-pc_hypre_type</span> <span class="pre">ads</span></code>) solvers. These
solvers need some additional information on the underlying mesh;
specifically, AMS needs the discrete gradient operator, which can be
specified via <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCHYPRESetDiscreteGradient.html#PCHYPRESetDiscreteGradient">PCHYPRESetDiscreteGradient</a>()</span></code>. In addition to the
discrete gradient, ADS also needs the specification of the discrete curl
operator, which can be set using <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCHYPRESetDiscreteCurl.html#PCHYPRESetDiscreteCurl">PCHYPRESetDiscreteCurl</a>()</span></code>.</p>
<p><strong>I am converging slowly, what do I do?</strong> AMG methods are sensitive to
coarsening rates and methods; for GAMG use <code class="docutils literal notranslate"><span class="pre">-pc_gamg_threshold</span> <span class="pre"><x></span></code> to
regulate coarsening rates and PCGAMGSetThreshold, higher values decrease
coarsening rate. Squaring the graph is the second mechanism for
increasing coarsening rate. Use <code class="docutils literal notranslate"><span class="pre">-pc_gamg_square_graph</span> <span class="pre"><N>,</span></code>, or
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGAMGSetSquareGraph.html#PCGAMGSetSquareGraph">PCGAMGSetSquareGraph</a>(pc,N)</span></code>, to square the graph on the finest N
levels. A high threshold (e.g., <span class="math">\(x=0.08\)</span>) will result in an
expensive but potentially powerful preconditioner, and a low threshold
(e.g., <span class="math">\(x=0.0\)</span>) will result in faster coarsening, fewer levels,
cheaper solves, and generally worse convergence rates.</p>
<p>One can run with <code class="docutils literal notranslate"><span class="pre">-info</span></code> and grep for “GAMG” to get some statistics on
each level, which can be used to see if you are coarsening at an
appropriate rate. With smoothed aggregation you generally want to coarse
at about a rate of 3:1 in each dimension. Coarsening too slow will
result in large numbers of non-zeros per row on coarse grids (this is
reported). The number of non-zeros can go up very high, say about 300
(times the degrees-of-freedom per vertex) on a 3D hex mesh. One can also
look at the grid complexity, which is also reported (the ration of the
total number of matrix entries for all levels to the number of matrix
entries on the fine level). Grid complexity should be well under 2.0 and
preferably around <span class="math">\(1.3\)</span> or lower. If convergence is poor and the
Galerkin coarse grid construction is much smaller than the time for each
solve then one can safely decrease the coarsening rate.
<code class="docutils literal notranslate"><span class="pre">-pc_gamg_threshold</span></code> <span class="math">\(0.0\)</span> is the simplest and most robust
option, and is recommended if poor convergence rates are observed, at
least until the source of the problem is discovered. In conclusion, if
convergence is slow then decreasing the coarsening rate (increasing the
threshold) should be tried.</p>
<p><strong>A note on Chebyshev smoothers.</strong> Chebyshev solvers are attractive as
multigrid smoothers because they can target a specific interval of the
spectrum which is the purpose of a smoother. The spectral bounds for
Chebyshev solvers are simple to compute because they rely on the highest
eigenvalue of your (diagonally preconditioned) operator, which is
conceptually simple to compute. However, if this highest eigenvalue
estimate is not accurate (too low) then the solvers can fail with and
indefinite preconditioner message. One can run with <code class="docutils literal notranslate"><span class="pre">-info</span></code> and grep
for “GAMG” to get these estimates or use <code class="docutils literal notranslate"><span class="pre">-ksp_view</span></code>. These highest
eigenvalues are generally between 1.5-3.0. For symmetric positive
definite systems CG is a better eigenvalue estimator
<code class="docutils literal notranslate"><span class="pre">-mg_levels_esteig_ksp_type</span> <span class="pre">cg</span></code>. Indefinite matrix messages are often
caused by bad Eigen estimates. Explicitly damped Jacobi or Krylov
smoothers can provide an alternative to Chebyshev and <em>hypre</em> has
alternative smoothers.</p>
<p><strong>Now am I solving alright, can I expect better?</strong> If you find that you
are getting nearly on digit in reduction of the residual per iteration
and are using a modest number of point smoothing steps (e.g., 1-4
iterations of SOR), then you may be fairly close to textbook multigrid
efficiency. Although you also need to check the setup costs. This can be
determined by running with <code class="docutils literal notranslate"><span class="pre">-log_view</span></code> and check that the time for the
Galerkin coarse grid construction (<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatPtAP.html#MatPtAP">MatPtAP</a></span></code>) is not (much) more than
the time spent in each solve (<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSolve.html#KSPSolve">KSPSolve</a></span></code>). If the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatPtAP.html#MatPtAP">MatPtAP</a></span></code> time is
too large then one can increase the coarsening rate by decreasing the
threshold and squaring the coarsening graph
(<code class="docutils literal notranslate"><span class="pre">-pc_gamg_square_graph</span> <span class="pre"><N></span></code>, squares the graph on the finest N
levels). Likewise if your <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatPtAP.html#MatPtAP">MatPtAP</a></span></code> time is small and your convergence
rate is not ideal then you could decrease the coarsening rate.</p>
<p>PETSc’s AMG solver is constructed as a framework for developers to
easily add AMG capabilities, like a new AMG methods or an AMG component
like a matrix triple product. Contact us directly if you are interested
in contributing.</p>
</div>
<div class="section" id="balancing-domain-decomposition-by-constraints">
<h3>Balancing Domain Decomposition by Constraints<a class="headerlink" href="#balancing-domain-decomposition-by-constraints" title="Permalink to this headline">¶</a></h3>
<p>PETSc provides the Balancing Domain Decomposition by Constraints (BDDC)
method for preconditioning parallel finite element problems stored in
unassembled format (see <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATIS.html#MATIS">MATIS</a></span></code>). BDDC is a 2-level non-overlapping
domain decomposition method which can be easily adapted to different
problems and discretizations by means of few user customizations. The
application of the preconditioner to a vector consists in the static
condensation of the residual at the interior of the subdomains by means
of local Dirichet solves, followed by an additive combination of Neumann
local corrections and the solution of a global coupled coarse problem.
Command line options for the underlying <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> objects are prefixed by
<code class="docutils literal notranslate"><span class="pre">-pc_bddc_dirichlet</span></code>, <code class="docutils literal notranslate"><span class="pre">-pc_bddc_neumann</span></code>, and <code class="docutils literal notranslate"><span class="pre">-pc_bddc_coarse</span></code>
respectively.</p>
<p>The current implementation supports any kind of linear system, and
assumes a one-to-one mapping between subdomains and MPI processes.
Complex numbers are supported as well. For non-symmetric problems, use
the runtime option <code class="docutils literal notranslate"><span class="pre">-pc_bddc_symmetric</span> <span class="pre">0</span></code>.</p>
<p>Unlike conventional non-overlapping methods that iterates just on the
degrees of freedom at the interface between subdomain, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDC.html#PCBDDC">PCBDDC</a></span></code>
iterates on the whole set of degrees of freedom, allowing the use of
approximate subdomain solvers. When using approximate solvers, the
command line switches <code class="docutils literal notranslate"><span class="pre">-pc_bddc_dirichlet_approximate</span></code> and/or
<code class="docutils literal notranslate"><span class="pre">-pc_bddc_neumann_approximate</span></code> should be used to inform <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDC.html#PCBDDC">PCBDDC</a></span></code>. If
any of the local problems is singular, the nullspace of the local
operator should be attached to the local matrix via
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSetNullSpace.html#MatSetNullSpace">MatSetNullSpace</a>()</span></code>.</p>
<p>At the basis of the method there’s the analysis of the connected
components of the interface for the detection of vertices, edges and
faces equivalence classes. Additional information on the degrees of
freedom can be supplied to <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDC.html#PCBDDC">PCBDDC</a></span></code> by using the following functions:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDCSetDofsSplitting.html#PCBDDCSetDofsSplitting">PCBDDCSetDofsSplitting</a>()</span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDCSetLocalAdjacencyGraph.html#PCBDDCSetLocalAdjacencyGraph">PCBDDCSetLocalAdjacencyGraph</a>()</span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDCSetPrimalVerticesLocalIS.html#PCBDDCSetPrimalVerticesLocalIS">PCBDDCSetPrimalVerticesLocalIS</a>()</span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDCSetNeumannBoundaries.html#PCBDDCSetNeumannBoundaries">PCBDDCSetNeumannBoundaries</a>()</span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDCSetDirichletBoundaries.html#PCBDDCSetDirichletBoundaries">PCBDDCSetDirichletBoundaries</a>()</span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDCSetNeumannBoundariesLocal.html#PCBDDCSetNeumannBoundariesLocal">PCBDDCSetNeumannBoundariesLocal</a>()</span></code></p></li>
<li><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDCSetDirichletBoundariesLocal.html#PCBDDCSetDirichletBoundariesLocal">PCBDDCSetDirichletBoundariesLocal</a>()</span></code></p></li>
</ul>
<p>Crucial for the convergence of the iterative process is the
specification of the primal constraints to be imposed at the interface
between subdomains. <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDC.html#PCBDDC">PCBDDC</a></span></code> uses by default vertex continuities and
edge arithmetic averages, which are enough for the three-dimensional
Poisson problem with constant coefficients. The user can switch on and
off the usage of vertices, edges or face constraints by using the
command line switches <code class="docutils literal notranslate"><span class="pre">-pc_bddc_use_vertices</span></code>, <code class="docutils literal notranslate"><span class="pre">-pc_bddc_use_edges</span></code>,
<code class="docutils literal notranslate"><span class="pre">-pc_bddc_use_faces</span></code>. A customization of the constraints is available
by attaching a <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatNullSpace.html#MatNullSpace">MatNullSpace</a></span></code> object to the preconditioning matrix via
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSetNearNullSpace.html#MatSetNearNullSpace">MatSetNearNullSpace</a>()</span></code>. The vectors of the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatNullSpace.html#MatNullSpace">MatNullSpace</a></span></code> object
should represent the constraints in the form of quadrature rules;
quadrature rules for different classes of the interface can be listed in
the same vector. The number of vectors of the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatNullSpace.html#MatNullSpace">MatNullSpace</a></span></code> object
corresponds to the maximum number of constraints that can be imposed for
each class. Once all the quadrature rules for a given interface class
have been extracted, an SVD operation is performed to retain the
non-singular modes. As an example, the rigid body modes represent an
effective choice for elasticity, even in the almost incompressible case.
For particular problems, e.g. edge-based discretization with Nedelec
elements, a user defined change of basis of the degrees of freedom can
be beneficial for <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDC.html#PCBDDC">PCBDDC</a></span></code>; use <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDCSetChangeOfBasisMat.html#PCBDDCSetChangeOfBasisMat">PCBDDCSetChangeOfBasisMat</a>()</span></code> to
customize the change of basis.</p>
<p>The BDDC method is usually robust with respect to jumps in the material
parameters aligned with the interface; for PDEs with more than one
material parameter you may also consider to use the so-called deluxe
scaling, available via the command line switch
<code class="docutils literal notranslate"><span class="pre">-pc_bddc_use_deluxe_scaling</span></code>. Other scalings are available, see
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCISSetSubdomainScalingFactor.html#PCISSetSubdomainScalingFactor">PCISSetSubdomainScalingFactor</a>()</span></code>,
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCISSetSubdomainDiagonalScaling.html#PCISSetSubdomainDiagonalScaling">PCISSetSubdomainDiagonalScaling</a>()</span></code> or
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCISSetUseStiffnessScaling.html#PCISSetUseStiffnessScaling">PCISSetUseStiffnessScaling</a>()</span></code>. However, the convergence properties of
the BDDC method degrades in presence of large jumps in the material
coefficients not aligned with the interface; for such cases, PETSc has
the capability of adaptively computing the primal constraints. Adaptive
selection of constraints could be requested by specifying a threshold
value at command line by using <code class="docutils literal notranslate"><span class="pre">-pc_bddc_adaptive_threshold</span> <span class="pre">x</span></code>. Valid
values for the threshold <code class="docutils literal notranslate"><span class="pre">x</span></code> ranges from 1 to infinity, with smaller
values corresponding to more robust preconditioners. For SPD problems in
2D, or in 3D with only face degrees of freedom (like in the case of
Raviart-Thomas or Brezzi-Douglas-Marini elements), such a threshold is a
very accurate estimator of the condition number of the resulting
preconditioned operator. Since the adaptive selection of constraints for
BDDC methods is still an active topic of research, its implementation is
currently limited to SPD problems; moreover, because the technique
requires the explicit knowledge of the local Schur complements, it needs
the external package MUMPS.</p>
<p>When solving problems decomposed in thousands of subdomains or more, the
solution of the BDDC coarse problem could become a bottleneck; in order
to overcome this issue, the user could either consider to solve the
parallel coarse problem on a subset of the communicator associated with
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDC.html#PCBDDC">PCBDDC</a></span></code> by using the command line switch
<code class="docutils literal notranslate"><span class="pre">-pc_bddc_coarse_redistribute</span></code>, or instead use a multilevel approach.
The latter can be requested by specifying the number of requested level
at command line (<code class="docutils literal notranslate"><span class="pre">-pc_bddc_levels</span></code>) or by using <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDCSetLevels.html#PCBDDCSetLevels">PCBDDCSetLevels</a>()</span></code>.
An additional parameter (see <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDCSetCoarseningRatio.html#PCBDDCSetCoarseningRatio">PCBDDCSetCoarseningRatio</a>()</span></code>) controls
the number of subdomains that will be generated at the next level; the
larger the coarsening ratio, the lower the number of coarser subdomains.</p>
<p>For further details, see the example
<a class="reference external" href="https://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/tutorials/ex59.c">KSP Tutorial ex59</a>
and the online documentation for <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCBDDC.html#PCBDDC">PCBDDC</a></span></code>.</p>
</div>
<div class="section" id="shell-preconditioners">
<h3>Shell Preconditioners<a class="headerlink" href="#shell-preconditioners" title="Permalink to this headline">¶</a></h3>
<p>The shell preconditioner simply uses an application-provided routine to
implement the preconditioner. To set this routine, one uses the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCShellSetApply.html#PCShellSetApply">PCShellSetApply</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode">PetscErrorCode</a></span> <span class="p">(</span><span class="o">*</span><span class="n">apply</span><span class="p">)(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">));</span>
</pre></div>
</div>
<p>Often a preconditioner needs access to an application-provided data
structured. For this, one should use</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCShellSetContext.html#PCShellSetContext">PCShellSetContext</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="kt">void</span> <span class="o">*</span><span class="n">ctx</span><span class="p">);</span>
</pre></div>
</div>
<p>to set this data structure and</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCShellGetContext.html#PCShellGetContext">PCShellGetContext</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="kt">void</span> <span class="o">**</span><span class="n">ctx</span><span class="p">);</span>
</pre></div>
</div>
<p>to retrieve it in <code class="docutils literal notranslate"><span class="pre">apply</span></code>. The three routine arguments of <code class="docutils literal notranslate"><span class="pre">apply()</span></code>
are the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span></code>, the input vector, and the output vector, respectively.</p>
<p>For a preconditioner that requires some sort of “setup” before being
used, that requires a new setup every time the operator is changed, one
can provide a routine that is called every time the operator is changed
(usually via <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetOperators.html#KSPSetOperators">KSPSetOperators</a>()</span></code>).</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCShellSetSetUp.html#PCShellSetSetUp">PCShellSetSetUp</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode">PetscErrorCode</a></span> <span class="p">(</span><span class="o">*</span><span class="n">setup</span><span class="p">)(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span><span class="p">));</span>
</pre></div>
</div>
<p>The argument to the <code class="docutils literal notranslate"><span class="pre">setup</span></code> routine is the same <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span></code> object which
can be used to obtain the operators with <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCGetOperators.html#PCGetOperators">PCGetOperators</a>()</span></code> and the
application-provided data structure that was set with
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCShellSetContext.html#PCShellSetContext">PCShellSetContext</a>()</span></code>.</p>
</div>
<div class="section" id="combining-preconditioners">
<span id="sec-combining-pcs"></span><h3>Combining Preconditioners<a class="headerlink" href="#combining-preconditioners" title="Permalink to this headline">¶</a></h3>
<p>The <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span></code> type <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCCOMPOSITE.html#PCCOMPOSITE">PCCOMPOSITE</a></span></code> allows one to form new preconditioners
by combining already-defined preconditioners and solvers. Combining
preconditioners usually requires some experimentation to find a
combination of preconditioners that works better than any single method.
It is a tricky business and is not recommended until your application
code is complete and running and you are trying to improve performance.
In many cases using a single preconditioner is better than a
combination; an exception is the multigrid/multilevel preconditioners
(solvers) that are always combinations of some sort, see <a class="reference internal" href="#sec-mg"><span class="std std-ref">Multigrid Preconditioners</span></a>.</p>
<p>Let <span class="math">\(B_1\)</span> and <span class="math">\(B_2\)</span> represent the application of two
preconditioners of type <code class="docutils literal notranslate"><span class="pre">type1</span></code> and <code class="docutils literal notranslate"><span class="pre">type2</span></code>. The preconditioner
<span class="math">\(B = B_1 + B_2\)</span> can be obtained with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSetType.html#PCSetType">PCSetType</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCCOMPOSITE.html#PCCOMPOSITE">PCCOMPOSITE</a></span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCCompositeAddPC.html#PCCompositeAddPC">PCCompositeAddPC</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="n">type1</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCCompositeAddPC.html#PCCompositeAddPC">PCCompositeAddPC</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="n">type2</span><span class="p">);</span>
</pre></div>
</div>
<p>Any number of preconditioners may added in this way.</p>
<p>This way of combining preconditioners is called additive, since the
actions of the preconditioners are added together. This is the default
behavior. An alternative can be set with the option</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCCompositeSetType.html#PCCompositeSetType">PCCompositeSetType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCCompositeType.html#PCCompositeType">PCCompositeType</a></span> <span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCCompositeType.html#PCCompositeType">PC_COMPOSITE_MULTIPLICATIVE</a></span><span class="p">);</span>
</pre></div>
</div>
<p>In this form the new residual is updated after the application of each
preconditioner and the next preconditioner applied to the next residual.
For example, with two composed preconditioners: <span class="math">\(B_1\)</span> and
<span class="math">\(B_2\)</span>; <span class="math">\(y = B x\)</span> is obtained from</p>
<div class="math">
\[\begin{aligned}
y = B_1 x \\
w_1 = x - A y \\
y = y + B_2 w_1\end{aligned}\]</div>
<p>Loosely, this corresponds to a Gauss-Seidel iteration, while additive
corresponds to a Jacobi iteration.</p>
<p>Under most circumstances, the multiplicative form requires one-half the
number of iterations as the additive form; however, the multiplicative
form does require the application of <span class="math">\(A\)</span> inside the
preconditioner.</p>
<p>In the multiplicative version, the calculation of the residual inside
the preconditioner can be done in two ways: using the original linear
system matrix or using the matrix used to build the preconditioners
<span class="math">\(B_1\)</span>, <span class="math">\(B_2\)</span>, etc. By default it uses the “preconditioner
matrix”, to use the <code class="docutils literal notranslate"><span class="pre">Amat</span></code> matrix use the option</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSetUseAmat.html#PCSetUseAmat">PCSetUseAmat</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">);</span>
</pre></div>
</div>
<p>The individual preconditioners can be accessed (in order to set options)
via</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCCompositeGetPC.html#PCCompositeGetPC">PCCompositeGetPC</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">count</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="o">*</span><span class="n">subpc</span><span class="p">);</span>
</pre></div>
</div>
<p>For example, to set the first sub preconditioners to use ILU(1)</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">subpc</span><span class="p">;</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCCompositeGetPC.html#PCCompositeGetPC">PCCompositeGetPC</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="o">&</span><span class="n">subpc</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFactorSetFill.html#PCFactorSetFill">PCFactorSetFill</a></span><span class="p">(</span><span class="n">subpc</span><span class="p">,</span><span class="mi">1</span><span class="p">);</span>
</pre></div>
</div>
<p>One can also change the operator that is used to construct a particular
PC in the composite PC call PCSetOperators() on the obtained PC.</p>
<p>These various options can also be set via the options database. For
example, <code class="docutils literal notranslate"><span class="pre">-pc_type</span></code> <code class="docutils literal notranslate"><span class="pre">composite</span></code> <code class="docutils literal notranslate"><span class="pre">-pc_composite_pcs</span></code> <code class="docutils literal notranslate"><span class="pre">jacobi,ilu</span></code>
causes the composite preconditioner to be used with two preconditioners:
Jacobi and ILU. The option <code class="docutils literal notranslate"><span class="pre">-pc_composite_type</span></code> <code class="docutils literal notranslate"><span class="pre">multiplicative</span></code>
initiates the multiplicative version of the algorithm, while
<code class="docutils literal notranslate"><span class="pre">-pc_composite_type</span></code> <code class="docutils literal notranslate"><span class="pre">additive</span></code> the additive version. Using the
<code class="docutils literal notranslate"><span class="pre">Amat</span></code> matrix is obtained with the option <code class="docutils literal notranslate"><span class="pre">-pc_use_amat</span></code>. One sets
options for the sub-preconditioners with the extra prefix <code class="docutils literal notranslate"><span class="pre">-sub_N_</span></code>
where <code class="docutils literal notranslate"><span class="pre">N</span></code> is the number of the sub-preconditioner. For example,
<code class="docutils literal notranslate"><span class="pre">-sub_0_pc_ifactor_fill</span></code> <code class="docutils literal notranslate"><span class="pre">0</span></code>.</p>
<p>PETSc also allows a preconditioner to be a complete linear solver. This
is achieved with the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCKSP.html#PCKSP">PCKSP</a></span></code> type.</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSetType.html#PCSetType">PCSetType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCKSP.html#PCKSP">PCKSP</a></span> <span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCKSP.html#PCKSP">PCKSP</a></span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCKSPGetKSP.html#PCKSPGetKSP">PCKSPGetKSP</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="o">&</span><span class="n">ksp</span><span class="p">);</span>
<span class="cm">/* set any <a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a>/<a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a> options */</span>
</pre></div>
</div>
<p>From the command line one can use 5 iterations of biCG-stab with ILU(0)
preconditioning as the preconditioner with
<code class="docutils literal notranslate"><span class="pre">-pc_type</span> <span class="pre">ksp</span> <span class="pre">-ksp_pc_type</span> <span class="pre">ilu</span> <span class="pre">-ksp_ksp_max_it</span> <span class="pre">5</span> <span class="pre">-ksp_ksp_type</span> <span class="pre">bcgs</span></code>.</p>
<p>By default the inner <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> solver uses the outer preconditioner
matrix, <code class="docutils literal notranslate"><span class="pre">Pmat</span></code>, as the matrix to be solved in the linear system; to
use the matrix that defines the linear system, <code class="docutils literal notranslate"><span class="pre">Amat</span></code> use the option</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSetUseAmat.html#PCSetUseAmat">PCSetUseAmat</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">);</span>
</pre></div>
</div>
<p>or at the command line with <code class="docutils literal notranslate"><span class="pre">-pc_use_amat</span></code>.</p>
<p>Naturally, one can use a <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCKSP.html#PCKSP">PCKSP</a></span></code> preconditioner inside a composite
preconditioner. For example,
<code class="docutils literal notranslate"><span class="pre">-pc_type</span> <span class="pre">composite</span> <span class="pre">-pc_composite_pcs</span> <span class="pre">ilu,ksp</span> <span class="pre">-sub_1_pc_type</span> <span class="pre">jacobi</span> <span class="pre">-sub_1_ksp_max_it</span> <span class="pre">10</span></code>
uses two preconditioners: ILU(0) and 10 iterations of GMRES with Jacobi
preconditioning. However, it is not clear whether one would ever wish to
do such a thing.</p>
</div>
<div class="section" id="multigrid-preconditioners">
<span id="sec-mg"></span><h3>Multigrid Preconditioners<a class="headerlink" href="#multigrid-preconditioners" title="Permalink to this headline">¶</a></h3>
<p>A large suite of routines is available for using geometric multigrid as
a preconditioner <a class="footnote-reference brackets" href="#id25" id="id22">2</a>. In the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span></code> framework, the user is required to
provide the coarse grid solver, smoothers, restriction and interpolation
operators, and code to calculate residuals. The <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span></code> package allows
these components to be encapuslated within a PETSc-compliant
preconditioner. We fully support both matrix-free and matrix-based
multigrid solvers.</p>
<p>A multigrid preconditioner is created with the four commands</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPCreate.html#KSPCreate">KSPCreate</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/MPI_Comm.html#MPI_Comm">MPI_Comm</a></span> <span class="n">comm</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="o">*</span><span class="n">ksp</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGetPC.html#KSPGetPC">KSPGetPC</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="o">*</span><span class="n">pc</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSetType.html#PCSetType">PCSetType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMG.html#PCMG">PCMG</a></span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGSetLevels.html#PCMGSetLevels">PCMGSetLevels</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">levels</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/MPI_Comm.html#MPI_Comm">MPI_Comm</a></span> <span class="o">*</span><span class="n">comms</span><span class="p">);</span>
</pre></div>
</div>
<p>A large number of parameters affect the multigrid behavior. The command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGSetType.html#PCMGSetType">PCMGSetType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGType.html#PCMGType">PCMGType</a></span> <span class="n">mode</span><span class="p">);</span>
</pre></div>
</div>
<p>indicates which form of multigrid to apply <span id="id23">[<a class="reference internal" href="#id2058"><span>SBjorstadG96</span></a>]</span>.</p>
<p>For standard V or W-cycle multigrids, one sets the <code class="docutils literal notranslate"><span class="pre">mode</span></code> to be
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGType.html#PCMGType">PC_MG_MULTIPLICATIVE</a></span></code>; for the additive form (which in certain cases
reduces to the BPX method, or additive multilevel Schwarz, or multilevel
diagonal scaling), one uses <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGType.html#PCMGType">PC_MG_ADDITIVE</a></span></code> as the <code class="docutils literal notranslate"><span class="pre">mode</span></code>. For a
variant of full multigrid, one can use <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGType.html#PCMGType">PC_MG_FULL</a></span></code>, and for the
Kaskade algorithm <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGType.html#PCMGType">PC_MG_KASKADE</a></span></code>. For the multiplicative and full
multigrid options, one can use a W-cycle by calling</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGSetCycleType.html#PCMGSetCycleType">PCMGSetCycleType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGCycleType.html#PCMGCycleType">PCMGCycleType</a></span> <span class="n">ctype</span><span class="p">);</span>
</pre></div>
</div>
<p>with a value of <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGCycleType.html#PCMGCycleType">PC_MG_CYCLE_W</a></span></code> for <code class="docutils literal notranslate"><span class="pre">ctype</span></code>. The commands above can
also be set from the options database. The option names are
<code class="docutils literal notranslate"><span class="pre">-pc_mg_type</span> <span class="pre">[multiplicative,</span> <span class="pre">additive,</span> <span class="pre">full,</span> <span class="pre">kaskade]</span></code>, and
<code class="docutils literal notranslate"><span class="pre">-pc_mg_cycle_type</span></code> <code class="docutils literal notranslate"><span class="pre"><ctype></span></code>.</p>
<p>The user can control the amount of smoothing by configuring the solvers
on the levels. By default, the up and down smoothers are identical. If
separate configuration of up and down smooths is required, it can be
requested with the option <code class="docutils literal notranslate"><span class="pre">-pc_mg_distinct_smoothup</span></code> or the routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGSetDistinctSmoothUp.html#PCMGSetDistinctSmoothUp">PCMGSetDistinctSmoothUp</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">);</span>
</pre></div>
</div>
<p>The multigrid routines, which determine the solvers and
interpolation/restriction operators that are used, are mandatory. To set
the coarse grid solver, one must call</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGGetCoarseSolve.html#PCMGGetCoarseSolve">PCMGGetCoarseSolve</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="o">*</span><span class="n">ksp</span><span class="p">);</span>
</pre></div>
</div>
<p>and set the appropriate options in <code class="docutils literal notranslate"><span class="pre">ksp</span></code>. Similarly, the smoothers are
controlled by first calling</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGGetSmoother.html#PCMGGetSmoother">PCMGGetSmoother</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">level</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="o">*</span><span class="n">ksp</span><span class="p">);</span>
</pre></div>
</div>
<p>and then setting the various options in the <code class="docutils literal notranslate"><span class="pre">ksp.</span></code> For example,</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGGetSmoother.html#PCMGGetSmoother">PCMGGetSmoother</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="o">&</span><span class="n">ksp</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetOperators.html#KSPSetOperators">KSPSetOperators</a></span><span class="p">(</span><span class="n">ksp</span><span class="p">,</span><span class="n">A1</span><span class="p">,</span><span class="n">A1</span><span class="p">);</span>
</pre></div>
</div>
<p>sets the matrix that defines the smoother on level 1 of the multigrid.
While</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGGetSmoother.html#PCMGGetSmoother">PCMGGetSmoother</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="o">&</span><span class="n">ksp</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGetPC.html#KSPGetPC">KSPGetPC</a></span><span class="p">(</span><span class="n">ksp</span><span class="p">,</span><span class="o">&</span><span class="n">pc</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSetType.html#PCSetType">PCSetType</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSOR.html#PCSOR">PCSOR</a></span><span class="p">);</span>
</pre></div>
</div>
<p>sets SOR as the smoother to use on level 1.</p>
<p>To use a different pre- or postsmoother, one should call the following
routines instead.</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGGetSmootherUp.html#PCMGGetSmootherUp">PCMGGetSmootherUp</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">level</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="o">*</span><span class="n">upksp</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGGetSmootherDown.html#PCMGGetSmootherDown">PCMGGetSmootherDown</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">level</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span> <span class="o">*</span><span class="n">downksp</span><span class="p">);</span>
</pre></div>
</div>
<p>Use</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGSetInterpolation.html#PCMGSetInterpolation">PCMGSetInterpolation</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">level</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span> <span class="n">P</span><span class="p">);</span>
</pre></div>
</div>
<p>and</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGSetRestriction.html#PCMGSetRestriction">PCMGSetRestriction</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">level</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span> <span class="n">R</span><span class="p">);</span>
</pre></div>
</div>
<p>to define the intergrid transfer operations. If only one of these is
set, its transpose will be used for the other.</p>
<p>It is possible for these interpolation operations to be matrix free (see
<a class="reference internal" href="mat.html#sec-matrixfree"><span class="std std-ref">Matrix-Free Matrices</span></a>); One should then make
sure that these operations are defined for the (matrix-free) matrices
passed in. Note that this system is arranged so that if the
interpolation is the transpose of the restriction, you can pass the same
<code class="docutils literal notranslate"><span class="pre">mat</span></code> argument to both <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGSetRestriction.html#PCMGSetRestriction">PCMGSetRestriction</a>()</span></code> and
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGSetInterpolation.html#PCMGSetInterpolation">PCMGSetInterpolation</a>()</span></code>.</p>
<p>On each level except the coarsest, one must also set the routine to
compute the residual. The following command suffices:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGSetResidual.html#PCMGSetResidual">PCMGSetResidual</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">level</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode">PetscErrorCode</a></span> <span class="p">(</span><span class="o">*</span><span class="n">residual</span><span class="p">)(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">),</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span> <span class="n">mat</span><span class="p">);</span>
</pre></div>
</div>
<p>The <code class="docutils literal notranslate"><span class="pre">residual()</span></code> function normally does not need to be set if one’s
operator is stored in <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span></code> format. In certain circumstances, where it
is much cheaper to calculate the residual directly, rather than through
the usual formula <span class="math">\(b - Ax\)</span>, the user may wish to provide an
alternative.</p>
<p>Finally, the user may provide three work vectors for each level (except
on the finest, where only the residual work vector is required). The
work vectors are set with the commands</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGSetRhs.html#PCMGSetRhs">PCMGSetRhs</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">level</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="n">b</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGSetX.html#PCMGSetX">PCMGSetX</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">level</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="n">x</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMGSetR.html#PCMGSetR">PCMGSetR</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">level</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="n">r</span><span class="p">);</span>
</pre></div>
</div>
<p>The <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span></code> references these vectors, so you should call <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecDestroy.html#VecDestroy">VecDestroy</a>()</span></code>
when you are finished with them. If any of these vectors are not
provided, the preconditioner will allocate them.</p>
<p>One can control the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> and <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span></code> options used on the various
levels (as well as the coarse grid) using the prefix <code class="docutils literal notranslate"><span class="pre">mg_levels_</span></code>
(<code class="docutils literal notranslate"><span class="pre">mg_coarse_</span></code> for the coarse grid). For example,
<code class="docutils literal notranslate"><span class="pre">-mg_levels_ksp_type</span> <span class="pre">cg</span></code> will cause the CG method to be used as the
Krylov method for each level. Or
<code class="docutils literal notranslate"><span class="pre">-mg_levels_pc_type</span> <span class="pre">ilu</span> <span class="pre">-mg_levels_pc_factor_levels</span> <span class="pre">2</span></code> will cause the
ILU preconditioner to be used on each level with two levels of fill in
the incomplete factorization.</p>
</div>
</div>
<div class="section" id="solving-block-matrices">
<span id="sec-block-matrices"></span><h2>Solving Block Matrices<a class="headerlink" href="#solving-block-matrices" title="Permalink to this headline">¶</a></h2>
<p>Block matrices represent an important class of problems in numerical
linear algebra and offer the possibility of far more efficient iterative
solvers than just treating the entire matrix as black box. In this
section we use the common linear algebra definition of block matrices
where matrices are divided in a small, problem-size independent (two,
three or so) number of very large blocks. These blocks arise naturally
from the underlying physics or discretization of the problem, for
example, the velocity and pressure. Under a certain numbering of
unknowns the matrix can be written as</p>
<div class="math">
\[\left( \begin{array}{cccc}
A_{00} & A_{01} & A_{02} & A_{03} \\
A_{10} & A_{11} & A_{12} & A_{13} \\
A_{20} & A_{21} & A_{22} & A_{23} \\
A_{30} & A_{31} & A_{32} & A_{33} \\
\end{array} \right),\]</div>
<p>where each <span class="math">\(A_{ij}\)</span> is an entire block. On a parallel computer the
matrices are not explicitly stored this way. Instead, each process will
own some of the rows of <span class="math">\(A_{0*}\)</span>, <span class="math">\(A_{1*}\)</span> etc. On a
process, the blocks may be stored one block followed by another</p>
<div class="math">
\[\left( \begin{array}{ccccccc}
A_{{00}_{00}} & A_{{00}_{01}} & A_{{00}_{02}} & ... & A_{{01}_{00}} & A_{{01}_{02}} & ... \\
A_{{00}_{10}} & A_{{00}_{11}} & A_{{00}_{12}} & ... & A_{{01}_{10}} & A_{{01}_{12}} & ... \\
A_{{00}_{20}} & A_{{00}_{21}} & A_{{00}_{22}} & ... & A_{{01}_{20}} & A_{{01}_{22}} & ...\\
... \\
A_{{10}_{00}} & A_{{10}_{01}} & A_{{10}_{02}} & ... & A_{{11}_{00}} & A_{{11}_{02}} & ... \\
A_{{10}_{10}} & A_{{10}_{11}} & A_{{10}_{12}} & ... & A_{{11}_{10}} & A_{{11}_{12}} & ... \\
... \\
\end{array} \right)\]</div>
<p>or interlaced, for example with two blocks</p>
<div class="math">
\[\left( \begin{array}{ccccc}
A_{{00}_{00}} & A_{{01}_{00}} & A_{{00}_{01}} & A_{{01}_{01}} & ... \\
A_{{10}_{00}} & A_{{11}_{00}} & A_{{10}_{01}} & A_{{11}_{01}} & ... \\
... \\
A_{{00}_{10}} & A_{{01}_{10}} & A_{{00}_{11}} & A_{{01}_{11}} & ...\\
A_{{10}_{10}} & A_{{11}_{10}} & A_{{10}_{11}} & A_{{11}_{11}} & ...\\
...
\end{array} \right).\]</div>
<p>Note that for interlaced storage the number of rows/columns of each
block must be the same size. Matrices obtained with <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/DMCreateMatrix.html#DMCreateMatrix">DMCreateMatrix</a>()</span></code>
where the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/DM.html#DM">DM</a></span></code> is a <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DMDA/DMDA.html#DMDA">DMDA</a></span></code> are always stored interlaced. Block
matrices can also be stored using the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATNEST.html#MATNEST">MATNEST</a></span></code> format which holds
separate assembled blocks. Each of these nested matrices is itself
distributed in parallel. It is more efficient to use <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATNEST.html#MATNEST">MATNEST</a></span></code> with
the methods described in this section because there are fewer copies and
better formats (e.g. <code class="docutils literal notranslate"><span class="pre">BAIJ</span></code> or <code class="docutils literal notranslate"><span class="pre">SBAIJ</span></code>) can be used for the
components, but it is not possible to use many other methods with
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATNEST.html#MATNEST">MATNEST</a></span></code>. See <a class="reference internal" href="mat.html#sec-matnest"><span class="std std-ref">Block Matrices</span></a> for more on assembling
block matrices without depending on a specific matrix format.</p>
<p>The PETSc <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFIELDSPLIT.html#PCFIELDSPLIT">PCFIELDSPLIT</a></span></code> preconditioner is used to implement the
“block” solvers in PETSc. There are three ways to provide the
information that defines the blocks. If the matrices are stored as
interlaced then <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFieldSplitSetFields.html#PCFieldSplitSetFields">PCFieldSplitSetFields</a>()</span></code> can be called repeatedly to
indicate which fields belong to each block. More generally
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFieldSplitSetIS.html#PCFieldSplitSetIS">PCFieldSplitSetIS</a>()</span></code> can be used to indicate exactly which
rows/columns of the matrix belong to a particular block. You can provide
names for each block with these routines, if you do not provide names
they are numbered from 0. With these two approaches the blocks may
overlap (though generally they will not). If only one block is defined
then the complement of the matrices is used to define the other block.
Finally the option <code class="docutils literal notranslate"><span class="pre">-pc_fieldsplit_detect_saddle_point</span></code> causes two
diagonal blocks to be found, one associated with all rows/columns that
have zeros on the diagonals and the rest.</p>
<p>For simplicity in the rest of the section we restrict our matrices to
two by two blocks. So the matrix is</p>
<div class="math">
\[\left( \begin{array}{cc}
A_{00} & A_{01} \\
A_{10} & A_{11} \\
\end{array} \right).\]</div>
<p>On occasion the user may provide another matrix that is used to
construct parts of the preconditioner</p>
<div class="math">
\[\left( \begin{array}{cc}
Ap_{00} & Ap_{01} \\
Ap_{10} & Ap_{11} \\
\end{array} \right).\]</div>
<p>For notational simplicity define <span class="math">\(\text{ksp}(A,Ap)\)</span> to mean
approximately solving a linear system using <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> with operator
<span class="math">\(A\)</span> and preconditioner built from matrix <span class="math">\(Ap\)</span>.</p>
<p>For matrices defined with any number of blocks there are three “block”
algorithms available: block Jacobi,</p>
<div class="math">
\[\left( \begin{array}{cc}
\text{ksp}(A_{00},Ap_{00}) & 0 \\
0 & \text{ksp}(A_{11},Ap_{11}) \\
\end{array} \right)\]</div>
<p>block Gauss-Seidel,</p>
<div class="math">
\[\left( \begin{array}{cc}
I & 0 \\
0 & A^{-1}_{11} \\
\end{array} \right)
\left( \begin{array}{cc}
I & 0 \\
-A_{10} & I \\
\end{array} \right)
\left( \begin{array}{cc}
A^{-1}_{00} & 0 \\
0 & I \\
\end{array} \right)\]</div>
<p>which is implemented <a class="footnote-reference brackets" href="#id26" id="id24">3</a> as</p>
<div class="math">
\[\left( \begin{array}{cc}
I & 0 \\
0 & \text{ksp}(A_{11},Ap_{11}) \\
\end{array} \right)
\left[
\left( \begin{array}{cc}
0 & 0 \\
0 & I \\
\end{array} \right)
+
\left( \begin{array}{cc}
I & 0 \\
-A_{10} & -A_{11} \\
\end{array} \right)
\left( \begin{array}{cc}
I & 0 \\
0 & 0 \\
\end{array} \right)
\right]
\left( \begin{array}{cc}
\text{ksp}(A_{00},Ap_{00}) & 0 \\
0 & I \\
\end{array} \right)\]</div>
<p>and symmetric block Gauss-Seidel</p>
<div class="math">
\[\left( \begin{array}{cc}
A_{00}^{-1} & 0 \\
0 & I \\
\end{array} \right)
\left( \begin{array}{cc}
I & -A_{01} \\
0 & I \\
\end{array} \right)
\left( \begin{array}{cc}
A_{00} & 0 \\
0 & A_{11}^{-1} \\
\end{array} \right)
\left( \begin{array}{cc}
I & 0 \\
-A_{10} & I \\
\end{array} \right)
\left( \begin{array}{cc}
A_{00}^{-1} & 0 \\
0 & I \\
\end{array} \right).\]</div>
<p>These can be accessed with
<code class="docutils literal notranslate"><span class="pre">-pc_fieldsplit_type<additive,multiplicative,</span></code><code class="docutils literal notranslate"><span class="pre">symmetric_multiplicative></span></code>
or the function <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFieldSplitSetType.html#PCFieldSplitSetType">PCFieldSplitSetType</a>()</span></code>. The option prefixes for the
internal KSPs are given by <code class="docutils literal notranslate"><span class="pre">-fieldsplit_name_</span></code>.</p>
<p>By default blocks <span class="math">\(A_{00}, A_{01}\)</span> and so on are extracted out of
<code class="docutils literal notranslate"><span class="pre">Pmat</span></code>, the matrix that the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> uses to build the preconditioner,
and not out of <code class="docutils literal notranslate"><span class="pre">Amat</span></code> (i.e., <span class="math">\(A\)</span> itself). As discussed above in
<a class="reference internal" href="#sec-combining-pcs"><span class="std std-ref">Combining Preconditioners</span></a>, however, it is
possible to use <code class="docutils literal notranslate"><span class="pre">Amat</span></code> instead of <code class="docutils literal notranslate"><span class="pre">Pmat</span></code> by calling
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSetUseAmat.html#PCSetUseAmat">PCSetUseAmat</a>(pc)</span></code> or using <code class="docutils literal notranslate"><span class="pre">-pc_use_amat</span></code> on the command line.
Alternatively, you can have <code class="docutils literal notranslate"><span class="pre">PCFieldSplit</span></code> extract the diagonal blocks
<span class="math">\(A_{00}, A_{11}\)</span> etc. out of <code class="docutils literal notranslate"><span class="pre">Amat</span></code> by calling
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFieldSplitSetDiagUseAmat.html#PCFieldSplitSetDiagUseAmat">PCFieldSplitSetDiagUseAmat</a>(pc,<a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PETSC_TRUE.html#PETSC_TRUE">PETSC_TRUE</a>)</span></code> or supplying command-line
argument <code class="docutils literal notranslate"><span class="pre">-pc_fieldsplit_diag_use_amat</span></code>. Similarly,
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFieldSplitSetOffDiagUseAmat.html#PCFieldSplitSetOffDiagUseAmat">PCFieldSplitSetOffDiagUseAmat</a>(pc,{<a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PETSC_TRUE.html#PETSC_TRUE">PETSC_TRUE</a></span></code>) or
<code class="docutils literal notranslate"><span class="pre">-pc_fieldsplit_off_diag_use_amat</span></code> will cause the off-diagonal blocks
<span class="math">\(A_{01},A_{10}\)</span> etc. to be extracted out of <code class="docutils literal notranslate"><span class="pre">Amat</span></code>.</p>
<p>For two by two blocks only there are another family of solvers, based on
Schur complements. The inverse of the Schur complement factorization is</p>
<div class="math">
\[\left[
\left( \begin{array}{cc}
I & 0 \\
A_{10}A_{00}^{-1} & I \\
\end{array} \right)
\left( \begin{array}{cc}
A_{00} & 0 \\
0 & S \\
\end{array} \right)
\left( \begin{array}{cc}
I & A_{00}^{-1} A_{01} \\
0 & I \\
\end{array} \right)
\right]^{-1}\]</div>
<div class="math">
\[\left( \begin{array}{cc}
I & A_{00}^{-1} A_{01} \\
0 & I \\
\end{array} \right)^{-1}
\left( \begin{array}{cc}
A_{00}^{-1} & 0 \\
0 & S^{-1} \\
\end{array} \right)
\left( \begin{array}{cc}
I & 0 \\
A_{10}A_{00}^{-1} & I \\
\end{array} \right)^{-1}\]</div>
<div class="math">
\[\left( \begin{array}{cc}
I & -A_{00}^{-1} A_{01} \\
0 & I \\
\end{array} \right)
\left( \begin{array}{cc}
A_{00}^{-1} & 0 \\
0 & S^{-1} \\
\end{array} \right)
\left( \begin{array}{cc}
I & 0 \\
-A_{10}A_{00}^{-1} & I \\
\end{array} \right)\]</div>
<div class="math">
\[\left( \begin{array}{cc}
A_{00}^{-1} & 0 \\
0 & I \\
\end{array} \right)
\left( \begin{array}{cc}
I & -A_{01} \\
0 & I \\
\end{array} \right)
\left( \begin{array}{cc}
A_{00} & 0 \\
0 & S^{-1} \\
\end{array} \right)
\left( \begin{array}{cc}
I & 0 \\
-A_{10} & I \\
\end{array} \right)
\left( \begin{array}{cc}
A_{00}^{-1} & 0 \\
0 & I \\
\end{array} \right).\]</div>
<p>The preconditioner is accessed with <code class="docutils literal notranslate"><span class="pre">-pc_fieldsplit_type</span> <span class="pre">schur</span></code> and is
implemented as</p>
<div class="math">
\[\left( \begin{array}{cc}
\text{ksp}(A_{00},Ap_{00}) & 0 \\
0 & I \\
\end{array} \right)
\left( \begin{array}{cc}
I & -A_{01} \\
0 & I \\
\end{array} \right)
\left( \begin{array}{cc}
I & 0 \\
0 & \text{ksp}(\hat{S},\hat{S}p) \\
\end{array} \right)
\left( \begin{array}{cc}
I & 0 \\
-A_{10} \text{ksp}(A_{00},Ap_{00}) & I \\
\end{array} \right).\]</div>
<p>Where
<span class="math">\(\hat{S} = A_{11} - A_{10} \text{ksp}(A_{00},Ap_{00}) A_{01}\)</span> is
the approximate Schur complement.</p>
<p>There are several variants of the Schur complement preconditioner
obtained by dropping some of the terms, these can be obtained with
<code class="docutils literal notranslate"><span class="pre">-pc_fieldsplit_schur_fact_type</span> <span class="pre"><diag,lower,upper,full></span></code> or the
function <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFieldSplitSetSchurFactType.html#PCFieldSplitSetSchurFactType">PCFieldSplitSetSchurFactType</a>()</span></code>. Note that the <code class="docutils literal notranslate"><span class="pre">diag</span></code> form
uses the preconditioner</p>
<div class="math">
\[\left( \begin{array}{cc}
\text{ksp}(A_{00},Ap_{00}) & 0 \\
0 & -\text{ksp}(\hat{S},\hat{S}p) \\
\end{array} \right).\]</div>
<p>This is done to ensure the preconditioner is positive definite for a
common class of problems, saddle points with a positive definite
<span class="math">\(A_{00}\)</span>: for these the Schur complement is negative definite.</p>
<p>The effectiveness of the Schur complement preconditioner depends on the
availability of a good preconditioner <span class="math">\(\hat Sp\)</span> for the Schur
complement matrix. In general, you are responsible for supplying
<span class="math">\(\hat Sp\)</span> via
<code class="docutils literal notranslate"><span class="pre">PCFieldSplitSchurPrecondition(pc,<a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFieldSplitSchurPreType.html#PCFieldSplitSchurPreType">PC_FIELDSPLIT_SCHUR_PRE_USER</a>,Sp)</span></code>.
In the absence of a good problem-specific <span class="math">\(\hat Sp\)</span>, you can use
some of the built-in options.</p>
<p>Using <code class="docutils literal notranslate"><span class="pre">-pc_fieldsplit_schur_precondition</span> <span class="pre">user</span></code> on the command line
activates the matrix supplied programmatically as explained above.</p>
<p>With <code class="docutils literal notranslate"><span class="pre">-pc_fieldsplit_schur_precondition</span> <span class="pre">a11</span></code> (default)
<span class="math">\(\hat Sp = A_{11}\)</span> is used to build a preconditioner for
<span class="math">\(\hat S\)</span>.</p>
<p>Otherwise, <code class="docutils literal notranslate"><span class="pre">-pc_fieldsplit_schur_precondition</span> <span class="pre">self</span></code> will set
<span class="math">\(\hat Sp = \hat S\)</span> and use the Schur complement matrix itself to
build the preconditioner.</p>
<p>The problem with the last approach is that <span class="math">\(\hat S\)</span> is used in
unassembled, matrix-free form, and many preconditioners (e.g., ILU)
cannot be built out of such matrices. Instead, you can <em>assemble</em> an
approximation to <span class="math">\(\hat S\)</span> by inverting <span class="math">\(A_{00}\)</span>, but only
approximately, so as to ensure the sparsity of <span class="math">\(\hat Sp\)</span> as much
as possible. Specifically, using
<code class="docutils literal notranslate"><span class="pre">-pc_fieldsplit_schur_precondition</span> <span class="pre">selfp</span></code> will assemble
<span class="math">\(\hat Sp = A_{11} - A_{10} \text{inv}(A_{00}) A_{01}\)</span>.</p>
<p>By default <span class="math">\(\text{inv}(A_{00})\)</span> is the inverse of the diagonal of
<span class="math">\(A_{00}\)</span>, but using
<code class="docutils literal notranslate"><span class="pre">-fieldsplit_1_mat_schur_complement_ainv_type</span> <span class="pre">lump</span></code> will lump
<span class="math">\(A_{00}\)</span> first. Using
<code class="docutils literal notranslate"><span class="pre">-fieldsplit_1_mat_schur_complement_ainv_type</span> <span class="pre">blockdiag</span></code> will use the
inverse of the block diagonal of <span class="math">\(A_{00}\)</span>. Option
<code class="docutils literal notranslate"><span class="pre">-mat_schur_complement_ainv_type</span></code> applies to any matrix of
<code class="docutils literal notranslate"><span class="pre">MatSchurComplement</span></code> type and here it is used with the prefix
<code class="docutils literal notranslate"><span class="pre">-fieldsplit_1</span></code> of the linear system in the second split.</p>
<p>Finally, you can use the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCLSC.html#PCLSC">PCLSC</a></span></code> preconditioner for the Schur
complement with <code class="docutils literal notranslate"><span class="pre">-pc_fieldsplit_type</span> <span class="pre">schur</span> <span class="pre">-fieldsplit_1_pc_type</span> <span class="pre">lsc</span></code>.
This uses for the preconditioner to <span class="math">\(\hat{S}\)</span> the operator</p>
<div class="math">
\[\text{ksp}(A_{10} A_{01},A_{10} A_{01}) A_{10} A_{00} A_{01} \text{ksp}(A_{10} A_{01},A_{10} A_{01})
\]</div>
<p>which, of course, introduces two additional inner solves for each
application of the Schur complement. The options prefix for this inner
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> is <code class="docutils literal notranslate"><span class="pre">-fieldsplit_1_lsc_</span></code>. Instead of constructing the matrix
<span class="math">\(A_{10} A_{01}\)</span> the user can provide their own matrix. This is
done by attaching the matrix/matrices to the <span class="math">\(Sp\)</span> matrix they
provide with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscObjectCompose.html#PetscObjectCompose">PetscObjectCompose</a></span><span class="p">((</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscObject.html#PetscObject">PetscObject</a></span><span class="p">)</span><span class="n">Sp</span><span class="p">,</span><span class="s">"LSC_L"</span><span class="p">,(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscObject.html#PetscObject">PetscObject</a></span><span class="p">)</span><span class="n">L</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscObjectCompose.html#PetscObjectCompose">PetscObjectCompose</a></span><span class="p">((</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscObject.html#PetscObject">PetscObject</a></span><span class="p">)</span><span class="n">Sp</span><span class="p">,</span><span class="s">"LSC_Lp"</span><span class="p">,(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscObject.html#PetscObject">PetscObject</a></span><span class="p">)</span><span class="n">Lp</span><span class="p">);</span>
</pre></div>
</div>
</div>
<div class="section" id="solving-singular-systems">
<span id="sec-singular"></span><h2>Solving Singular Systems<a class="headerlink" href="#solving-singular-systems" title="Permalink to this headline">¶</a></h2>
<p>Sometimes one is required to solver singular linear systems. In this
case, the system matrix has a nontrivial null space. For example, the
discretization of the Laplacian operator with Neumann boundary
conditions has a null space of the constant functions. PETSc has tools
to help solve these systems.</p>
<p>First, one must know what the null space is and store it using an
orthonormal basis in an array of PETSc Vecs. The constant functions can
be handled separately, since they are such a common case). Create a
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatNullSpace.html#MatNullSpace">MatNullSpace</a></span></code> object with the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatNullSpaceCreate.html#MatNullSpaceCreate">MatNullSpaceCreate</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/MPI_Comm.html#MPI_Comm">MPI_Comm</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscBool.html#PetscBool">PetscBool</a></span> <span class="n">hasconstants</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">dim</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="o">*</span><span class="n">basis</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatNullSpace.html#MatNullSpace">MatNullSpace</a></span> <span class="o">*</span><span class="n">nsp</span><span class="p">);</span>
</pre></div>
</div>
<p>Here, <code class="docutils literal notranslate"><span class="pre">dim</span></code> is the number of vectors in <code class="docutils literal notranslate"><span class="pre">basis</span></code> and <code class="docutils literal notranslate"><span class="pre">hasconstants</span></code>
indicates if the null space contains the constant functions. If the null
space contains the constant functions you do not need to include it in
the <code class="docutils literal notranslate"><span class="pre">basis</span></code> vectors you provide, nor in the count <code class="docutils literal notranslate"><span class="pre">dim</span></code>.</p>
<p>One then tells the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code> object you are using what the null space is
with the call</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSetNullSpace.html#MatSetNullSpace">MatSetNullSpace</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span> <span class="n">Amat</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatNullSpace.html#MatNullSpace">MatNullSpace</a></span> <span class="n">nsp</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSetTransposeNullSpace.html#MatSetTransposeNullSpace">MatSetTransposeNullSpace</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span> <span class="n">Amat</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatNullSpace.html#MatNullSpace">MatNullSpace</a></span> <span class="n">nsp</span><span class="p">);</span>
</pre></div>
</div>
<p>The <code class="docutils literal notranslate"><span class="pre">Amat</span></code> should be the <em>first</em> matrix argument used with
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetOperators.html#KSPSetOperators">KSPSetOperators</a>()</span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/SNES/SNESSetJacobian.html#SNESSetJacobian">SNESSetJacobian</a>()</span></code>, or <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetIJacobian.html#TSSetIJacobian">TSSetIJacobian</a>()</span></code>.
You can also use <code class="docutils literal notranslate"><span class="pre">KSPSetNullspace()</span></code>. The PETSc solvers will now
handle the null space during the solution process.</p>
<p>If one chooses a direct solver (or an incomplete factorization) it may
still detect a zero pivot. You can run with the additional options or
<code class="docutils literal notranslate"><span class="pre">-pc_factor_shift_type</span> <span class="pre">NONZERO</span></code>
<code class="docutils literal notranslate"><span class="pre">-pc_factor_shift_amount</span>  <span class="pre"><dampingfactor></span></code> to prevent the zero pivot.
A good choice for the <code class="docutils literal notranslate"><span class="pre">dampingfactor</span></code> is 1.e-10.</p>
</div>
<div class="section" id="using-external-linear-solvers">
<span id="sec-externalsol"></span><h2>Using External Linear Solvers<a class="headerlink" href="#using-external-linear-solvers" title="Permalink to this headline">¶</a></h2>
<p>PETSc interfaces to several external linear solvers (also see <a class="reference internal" href="acknowledgements.html#chapter-acknowledgements"><span class="std std-ref">Acknowledgments</span></a>)
at the beginning of this manual). To use these solvers, one may:</p>
<ol class="arabic simple">
<li><p>Run <code class="docutils literal notranslate"><span class="pre">./configure</span></code> with the additional options
<code class="docutils literal notranslate"><span class="pre">--download-packagename</span></code> e.g. <code class="docutils literal notranslate"><span class="pre">--download-superlu_dist</span></code>
<code class="docutils literal notranslate"><span class="pre">--download-parmetis</span></code> (SuperLU_DIST needs ParMetis) or
<code class="docutils literal notranslate"><span class="pre">--download-mumps</span></code> <code class="docutils literal notranslate"><span class="pre">--download-scalapack</span></code> (MUMPS requires
ScaLAPACK).</p></li>
<li><p>Build the PETSc libraries.</p></li>
<li><p>Use the runtime option: <code class="docutils literal notranslate"><span class="pre">-ksp_type</span> <span class="pre">preonly</span></code> <code class="docutils literal notranslate"><span class="pre">-pc_type</span> <span class="pre"><pctype></span></code>
<code class="docutils literal notranslate"><span class="pre">-pc_factor_mat_solver_type</span> <span class="pre"><packagename></span></code>. For eg:
<code class="docutils literal notranslate"><span class="pre">-ksp_type</span> <span class="pre">preonly</span></code> <code class="docutils literal notranslate"><span class="pre">-pc_type</span> <span class="pre">lu</span></code>
<code class="docutils literal notranslate"><span class="pre">-pc_factor_mat_solver_type</span> <span class="pre">superlu_dist</span></code>.</p></li>
</ol>
<table class="docutils align-default" id="tab-externaloptions">
<caption><span class="caption-number">Table 6 </span><span class="caption-text">Options for External Solvers</span><a class="headerlink" href="#tab-externaloptions" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 25%" />
<col style="width: 25%" />
<col style="width: 25%" />
<col style="width: 25%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>MatType</p></th>
<th class="head"><p>PCType</p></th>
<th class="head"><p>MatSolverType</p></th>
<th class="head"><p>Package (<code class="docutils literal notranslate"><span class="pre">-pc_factor_mat_solver_type</span></code>)</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">seqaij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSOLVERESSL.html#MATSOLVERESSL">MATSOLVERESSL</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">essl</span></code></p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">seqaij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSOLVERLUSOL.html#MATSOLVERLUSOL">MATSOLVERLUSOL</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lusol</span></code></p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">seqaij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSOLVERMATLAB.html#MATSOLVERMATLAB">MATSOLVERMATLAB</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">matlab</span></code></p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">aij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSOLVERMUMPS.html#MATSOLVERMUMPS">MATSOLVERMUMPS</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">mumps</span></code></p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">aij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">cholesky</span></code></p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">sbaij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">cholesky</span></code></p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">seqaij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSOLVERSUPERLU.html#MATSOLVERSUPERLU">MATSOLVERSUPERLU</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">superlu</span></code></p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">aij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSOLVERSUPERLU_DIST.html#MATSOLVERSUPERLU_DIST">MATSOLVERSUPERLU_DIST</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">superlu_dist</span></code></p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">seqaij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSOLVERUMFPACK.html#MATSOLVERUMFPACK">MATSOLVERUMFPACK</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">umfpack</span></code></p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">seqaij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">cholesky</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSOLVERCHOLMOD.html#MATSOLVERCHOLMOD">MATSOLVERCHOLMOD</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">cholmod</span></code></p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">aij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">MATSOLVERCLIQUE</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">clique</span></code></p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">seqaij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSOLVERKLU.html#MATSOLVERKLU">MATSOLVERKLU</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">klu</span></code></p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">dense</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">MATSOLVERELEMENTAL</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">elemental</span></code></p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">dense</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">cholesky</span></code></p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">seqaij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSOLVERMKL_PARDISO.html#MATSOLVERMKL_PARDISO">MATSOLVERMKL_PARDISO</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">mkl_pardiso</span></code></p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">aij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">MATSOLVERMKL_CPARDISO</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">mkl_cpardiso</span></code></p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">aij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSOLVERPASTIX.html#MATSOLVERPASTIX">MATSOLVERPASTIX</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">pastix</span></code></p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">aij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">cholesky</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSOLVERBAS.html#MATSOLVERBAS">MATSOLVERBAS</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">bas</span></code></p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">aijcusparse</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSOLVERCUSPARSE.html#MATSOLVERCUSPARSE">MATSOLVERCUSPARSE</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">cusparse</span></code></p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">aijcusparse</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">cholesky</span></code></p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">aij</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">lu</span></code>, <code class="docutils literal notranslate"><span class="pre">cholesky</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">MATSOLVERPETSC</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">petsc</span></code></p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">baij</span></code></p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">aijcrl</span></code></p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">aijperm</span></code></p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">seqdense</span></code></p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">aij</span></code></p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">baij</span></code></p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">aijcrl</span></code></p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">aijperm</span></code></p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">seqdense</span></code></p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>The default and available input options for each external software can
be found by specifying <code class="docutils literal notranslate"><span class="pre">-help</span></code> at runtime.</p>
<p>As an alternative to using runtime flags to employ these external
packages, procedural calls are provided for some packages. For example,
the following procedural calls are equivalent to runtime options
<code class="docutils literal notranslate"><span class="pre">-ksp_type</span> <span class="pre">preonly</span></code> <code class="docutils literal notranslate"><span class="pre">-pc_type</span> <span class="pre">lu</span></code>
<code class="docutils literal notranslate"><span class="pre">-pc_factor_mat_solver_type</span> <span class="pre">mumps</span></code> <code class="docutils literal notranslate"><span class="pre">-mat_mumps_icntl_7</span> <span class="pre">2</span></code>:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPSetType.html#KSPSetType">KSPSetType</a></span><span class="p">(</span><span class="n">ksp</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPPREONLY.html#KSPPREONLY">KSPPREONLY</a></span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPGetPC.html#KSPGetPC">KSPGetPC</a></span><span class="p">(</span><span class="n">ksp</span><span class="p">,</span><span class="o">&</span><span class="n">pc</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCSetType.html#PCSetType">PCSetType</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCLU.html#PCLU">PCLU</a></span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFactorSetMatSolverType.html#PCFactorSetMatSolverType">PCFactorSetMatSolverType</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSOLVERMUMPS.html#MATSOLVERMUMPS">MATSOLVERMUMPS</a></span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCFactorGetMatrix.html#PCFactorGetMatrix">PCFactorGetMatrix</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="o">&</span><span class="n">F</span><span class="p">);</span>
<span class="n">icntl</span><span class="o">=</span><span class="mi">7</span><span class="p">;</span> <span class="n">ival</span> <span class="o">=</span> <span class="mi">2</span><span class="p">;</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatMumpsSetIcntl.html#MatMumpsSetIcntl">MatMumpsSetIcntl</a></span><span class="p">(</span><span class="n">F</span><span class="p">,</span><span class="n">icntl</span><span class="p">,</span><span class="n">ival</span><span class="p">);</span>
</pre></div>
</div>
<p>One can also create matrices with the appropriate capabilities by
calling <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatCreate.html#MatCreate">MatCreate</a>()</span></code> followed by <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSetType.html#MatSetType">MatSetType</a>()</span></code> specifying the
desired matrix type from <a class="reference internal" href="#tab-externaloptions"><span class="std std-ref">Options for External Solvers</span></a>. These
matrix types inherit capabilities from their PETSc matrix parents:
<code class="docutils literal notranslate"><span class="pre">seqaij</span></code>, <code class="docutils literal notranslate"><span class="pre">mpiaij</span></code>, etc. As a result, the preallocation routines
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSeqAIJSetPreallocation.html#MatSeqAIJSetPreallocation">MatSeqAIJSetPreallocation</a>()</span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatMPIAIJSetPreallocation.html#MatMPIAIJSetPreallocation">MatMPIAIJSetPreallocation</a>()</span></code>, etc.
and any other type specific routines of the base class are supported.
One can also call <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatConvert.html#MatConvert">MatConvert</a>()</span></code> inplace to convert the matrix to and
from its base class without performing an expensive data copy.
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatConvert.html#MatConvert">MatConvert</a>()</span></code> cannot be called on matrices that have already been
factored.</p>
<p>In <a class="reference internal" href="#tab-externaloptions"><span class="std std-ref">Options for External Solvers</span></a>, the base class <code class="docutils literal notranslate"><span class="pre">aij</span></code> refers
to the fact that inheritance is based on <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATSEQAIJ.html#MATSEQAIJ">MATSEQAIJ</a></span></code> when constructed
with a single process communicator, and from <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MATMPIAIJ.html#MATMPIAIJ">MATMPIAIJ</a></span></code> otherwise.
The same holds for <code class="docutils literal notranslate"><span class="pre">baij</span></code> and <code class="docutils literal notranslate"><span class="pre">sbaij</span></code>. For codes that are intended
to be run as both a single process or with multiple processes, depending
on the <code class="docutils literal notranslate"><span class="pre">mpiexec</span></code> command, it is recommended that both sets of
preallocation routines are called for these communicator morphing types.
The call for the incorrect type will simply be ignored without any harm
or message.</p>
<hr><dl class="footnote brackets">
<dt class="label" id="id25"><span class="brackets"><a class="fn-backref" href="#id22">2</a></span></dt>
<dd><p>See <a class="reference internal" href="#sec-amg"><span class="std std-ref">Algebraic Multigrid (AMG) Preconditioners</span></a> for information on using algebraic multigrid.</p>
</dd>
<dt class="label" id="id26"><span class="brackets"><a class="fn-backref" href="#id24">3</a></span></dt>
<dd><p>This may seem an odd way to implement since it involves the “extra”
multiply by <span class="math">\(-A_{11}\)</span>. The reason is this is implemented this
way is that this approach works for any number of blocks that may
overlap.</p>
</dd>
</dl>
<hr><p id="id27"><dl class="citation">
<dt class="label" id="id218"><span class="brackets"><a class="fn-backref" href="#id20">CS97</a></span></dt>
<dd><p>X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse linear systems. Technical Report CU-CS 843-97, Computer Science Department, University of Colorado-Boulder, 1997. (accepted by SIAM J. of Scientific Computing).</p>
</dd>
<dt class="label" id="id278"><span class="brackets"><a class="fn-backref" href="#id19">Eis81</a></span></dt>
<dd><p>S. Eisenstat. Efficient implementation of a class of CG methods. <em>SIAM J. Sci. Stat. Comput.</em>, 2:1–4, 1981.</p>
</dd>
<dt class="label" id="id726"><span class="brackets"><a class="fn-backref" href="#id14">EES83</a></span></dt>
<dd><p>S.C. Eisenstat, H.C. Elman, and M.H. Schultz. Variational iterative methods for nonsymmetric systems of linear equations. <em>SIAM Journal on Numerical Analysis</em>, 20(2):345–357, 1983.</p>
</dd>
<dt class="label" id="id273"><span class="brackets"><a class="fn-backref" href="#id1">FGN92</a></span></dt>
<dd><p>R. Freund, G. H. Golub, and N. Nachtigal. <em>Iterative Solution of Linear Systems</em>, pages 57–100. Acta Numerica. Cambridge University Press, 1992.</p>
</dd>
<dt class="label" id="id322"><span class="brackets"><a class="fn-backref" href="#id17">Fre93</a></span></dt>
<dd><p>Roland W. Freund. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems. <em>SIAM J. Sci. Stat. Comput.</em>, 14:470–482, 1993.</p>
</dd>
<dt class="label" id="id838"><span class="brackets"><a class="fn-backref" href="#id12">GAMV13</a></span></dt>
<dd><p>P. Ghysels, T.J. Ashby, K. Meerbergen, and W. Vanroose. Hiding global communication latency in the GMRES algorithm on massively parallel machines. <em>SIAM Journal on Scientific Computing</em>, 35(1):C48–C71, 2013.</p>
</dd>
<dt class="label" id="id839"><span class="brackets"><a class="fn-backref" href="#id5">GV14</a></span></dt>
<dd><p>P. Ghysels and W. Vanroose. Hiding global synchronization latency in the preconditioned conjugate gradient algorithm. <em>Parallel Computing</em>, 40(7):224–238, 2014. 7th Workshop on Parallel Matrix Algorithms and Applications. <a class="reference external" href="https://doi.org/10.1016/j.parco.2013.06.001">doi:10.1016/j.parco.2013.06.001</a>.</p>
</dd>
<dt class="label" id="id318"><span class="brackets"><a class="fn-backref" href="#id4">HS52</a></span></dt>
<dd><p>Magnus R. Hestenes and Eduard Steifel. Methods of conjugate gradients for solving linear systems. <em>J. Research of the National Bureau of Standards</em>, 49:409–436, 1952.</p>
</dd>
<dt class="label" id="id1060"><span class="brackets"><a class="fn-backref" href="#id21">ISG15</a></span></dt>
<dd><p>Tobin Isaac, Georg Stadler, and Omar Ghattas. Solution of nonlinear Stokes equations discretized by high-order finite elements on nonconforming and anisotropic meshes, with application to ice sheet dynamics. <em>SIAM J. Sci. Comput.</em>, 37(6):804–833, 2015.</p>
</dd>
<dt class="label" id="id918"><span class="brackets"><a class="fn-backref" href="#id6">Not00</a></span></dt>
<dd><p>Yvan Notay. Flexible Conjugate Gradients. <em>SIAM Journal on Scientific Computing</em>, 22(4):1444–1460, 2000.</p>
</dd>
<dt class="label" id="id1126"><span class="brackets">PS75</span><span class="fn-backref">(<a href="#id9">1</a>,<a href="#id18">2</a>)</span></dt>
<dd><p>C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. <em>SIAM Journal on Numerical Analysis</em>, 12:617–629, 1975.</p>
</dd>
<dt class="label" id="id713"><span class="brackets"><a class="fn-backref" href="#id11">Saa93</a></span></dt>
<dd><p>Youcef Saad. A flexible inner-outer preconditioned GMRES algorithm. <em>SIAM Journal on Scientific Computing</em>, 14(2):461–469, 1993. <a class="reference external" href="https://doi.org/10.1137/0914028">doi:10.1137/0914028</a>.</p>
</dd>
<dt class="label" id="id319"><span class="brackets"><a class="fn-backref" href="#id10">SS86</a></span></dt>
<dd><p>Youcef Saad and Martin H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. <em>SIAM J. Sci. Stat. Comput.</em>, 7:856–869, 1986.</p>
</dd>
<dt class="label" id="id389"><span class="brackets"><a class="fn-backref" href="#id3">Saa03</a></span></dt>
<dd><p>Yousef Saad. <em>Iterative Methods for Sparse Linear Systems</em>. SIAM, 2nd edition, 2003. <a class="reference external" href="https://doi.org/10.1016/S1570-579X(01)80025-2">doi:10.1016/S1570-579X(01)80025-2</a>.</p>
</dd>
<dt class="label" id="id320"><span class="brackets"><a class="fn-backref" href="#id16">Son89</a></span></dt>
<dd><p>Peter Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. <em>SIAM J. Sci. Stat. Comput.</em>, 10:36–52, 1989.</p>
</dd>
<dt class="label" id="id1274"><span class="brackets"><a class="fn-backref" href="#id2">vdV03</a></span></dt>
<dd><p>H. van der Vorst. <em>Iterative Krylov Methods for Large Linear Systems</em>. Cambridge University Press, 2003. ISBN 9780521818285.</p>
</dd>
<dt class="label" id="id321"><span class="brackets"><a class="fn-backref" href="#id8">vandVorst92</a></span></dt>
<dd><p>H. A. van der Vorst. BiCGSTAB: a fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems. <em>SIAM J. Sci. Stat. Comput.</em>, 13:631–644, 1992.</p>
</dd>
</dl>
</p>
<p id="id1277"><dl class="citation">
<dt class="label" id="id2112"><span class="brackets">SSM16</span><span class="fn-backref">(<a href="#id7">1</a>,<a href="#id13">2</a>,<a href="#id15">3</a>)</span></dt>
<dd><p>P. Sanan, S. M. Schnepp, and D. A. May. Pipelined, flexible Krylov subspace methods. <em>SIAM Journal on Scientific Computing</em>, 38(5):C441–C470, 2016. <a class="reference external" href="https://doi.org/10.1137/15M1049130">doi:10.1137/15M1049130</a>.</p>
</dd>
<dt class="label" id="id2058"><span class="brackets"><a class="fn-backref" href="#id23">SBjorstadG96</a></span></dt>
<dd><p>Barry F. Smith, Petter Bjørstad, and William D. Gropp. <em>Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations</em>. Cambridge University Press, 1996. URL: <a class="reference external" href="http://www.mcs.anl.gov/~bsmith/ddbook.html">http://www.mcs.anl.gov/~bsmith/ddbook.html</a>.</p>
</dd>
</dl>
</p>
</div>
</div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="../genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="snes.html" title="SNES: Nonlinear Solvers"
>next</a> |</li>
<li class="right" >
<a href="mat.html" title="Matrices"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="../index.html">PETSc 3.14.5 documentation</a> »</li>
<li class="nav-item nav-item-1"><a href="index.html" >PETSc Users Manual</a> »</li>
<li class="nav-item nav-item-2"><a href="programming.html" >Programming with PETSc</a> »</li>
</ul>
</div>
<div class="footer" role="contentinfo">
© Copyright 1991-2021, UChicago Argonne, LLC and the PETSc Development Team.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 2.4.4.
</div>
</body>
</html>
|