File: ts.html

package info (click to toggle)
petsc 3.14.5%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 266,472 kB
  • sloc: ansic: 680,898; python: 33,303; cpp: 16,324; makefile: 14,022; f90: 13,731; javascript: 10,713; fortran: 9,581; sh: 1,373; xml: 619; objc: 445; csh: 192; pascal: 148; java: 13
file content (1433 lines) | stat: -rw-r--r-- 121,415 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">
  <head> <link rel="canonical" href="http://www.mcs.anl.gov/petsc/petsc-current/docs/sphinx_docs/html/manual/ts.html" />
    <meta charset="utf-8" />
    <title>TS: Scalable ODE and DAE Solvers &#8212; PETSc 3.14.5 documentation</title>
    <link rel="stylesheet" href="../_static/sphinxdoc.css" type="text/css" />
    <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
    <link rel="stylesheet" type="text/css" href="../_static/graphviz.css" />
    <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/npm/katex@0.12.0/dist/katex.min.css" />
    <link rel="stylesheet" type="text/css" href="../_static/katex-math.css" />
    <script id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
    <script src="../_static/jquery.js"></script>
    <script src="../_static/underscore.js"></script>
    <script src="../_static/doctools.js"></script>
    <script src="../_static/language_data.js"></script>
    <script src="https://cdn.jsdelivr.net/npm/katex@0.12.0/dist/katex.min.js"></script>
    <script src="https://cdn.jsdelivr.net/npm/katex@0.12.0/dist/contrib/auto-render.min.js"></script>
    <script src="../_static/katex_autorenderer.js"></script>
    <link rel="shortcut icon" href="../_static/PETSc_RGB-logo.png"/>
    <link rel="index" title="Index" href="../genindex.html" />
    <link rel="search" title="Search" href="../search.html" />
    <link rel="next" title="Performing sensitivity analysis" href="sensitivity_analysis.html" />
    <link rel="prev" title="SNES: Nonlinear Solvers" href="snes.html" /> 
  </head><body>
   <div id="version" align=right><b>petsc-3.14.5 2021-03-03</b></div>
   <div id="bugreport" align=right><a href="mailto:petsc-maint@mcs.anl.gov?subject=Typo or Error in Documentation &body=Please describe the typo or error in the documentation: petsc-3.14.5 v3.14.5 docs/sphinx_docs/html/manual/ts.html "><small>Report Typos and Errors</small></a></div>
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="sensitivity_analysis.html" title="Performing sensitivity analysis"
             accesskey="N">next</a> |</li>
        <li class="right" >
          <a href="snes.html" title="SNES: Nonlinear Solvers"
             accesskey="P">previous</a> |</li>
        <li class="nav-item nav-item-0"><a href="../index.html">PETSc 3.14.5 documentation</a> &#187;</li>
          <li class="nav-item nav-item-1"><a href="index.html" >PETSc Users Manual</a> &#187;</li>
          <li class="nav-item nav-item-2"><a href="programming.html" accesskey="U">Programming with PETSc</a> &#187;</li> 
      </ul>
    </div>
      <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
        <div class="sphinxsidebarwrapper">
            <p class="logo"><a href="../index.html">
              <img class="logo" src="../_static/PETSc-TAO_RGB.svg" alt="Logo"/>
            </a></p>
  <h3><a href="../index.html">Table of Contents</a></h3>
  <ul>
<li><a class="reference internal" href="#">TS: Scalable ODE and DAE Solvers</a><ul>
<li><a class="reference internal" href="#basic-ts-options">Basic TS Options</a></li>
<li><a class="reference internal" href="#dae-formulations">DAE Formulations</a><ul>
<li><a class="reference internal" href="#hessenberg-index-1-dae">Hessenberg Index-1 DAE</a></li>
<li><a class="reference internal" href="#hessenberg-index-2-dae">Hessenberg Index-2 DAE</a></li>
</ul>
</li>
<li><a class="reference internal" href="#using-implicit-explicit-imex-methods">Using Implicit-Explicit (IMEX) Methods</a></li>
<li><a class="reference internal" href="#glee-methods">GLEE methods</a></li>
<li><a class="reference internal" href="#using-fully-implicit-methods">Using fully implicit methods</a></li>
<li><a class="reference internal" href="#using-the-explicit-runge-kutta-timestepper-with-variable-timesteps">Using the Explicit Runge-Kutta timestepper with variable timesteps</a></li>
<li><a class="reference internal" href="#special-cases">Special Cases</a></li>
<li><a class="reference internal" href="#monitoring-and-visualizing-solutions">Monitoring and visualizing solutions</a></li>
<li><a class="reference internal" href="#error-control-via-variable-time-stepping">Error control via variable time-stepping</a></li>
<li><a class="reference internal" href="#handling-of-discontinuities">Handling of discontinuities</a></li>
<li><a class="reference internal" href="#using-tchem-from-petsc">Using TChem from PETSc</a></li>
<li><a class="reference internal" href="#using-sundials-from-petsc">Using Sundials from PETSc</a></li>
</ul>
</li>
</ul>

  <h4>Previous topic</h4>
  <p class="topless"><a href="snes.html"
                        title="previous chapter">SNES: Nonlinear Solvers</a></p>
  <h4>Next topic</h4>
  <p class="topless"><a href="sensitivity_analysis.html"
                        title="next chapter">Performing sensitivity analysis</a></p>
  <div role="note" aria-label="source link">
    <h3>This Page</h3>
    <ul class="this-page-menu">
      <li><a href="../_sources/manual/ts.rst.txt"
            rel="nofollow">Show Source</a></li>
    </ul>
   </div>
<div id="searchbox" style="display: none" role="search">
  <h3 id="searchlabel">Quick search</h3>
    <div class="searchformwrapper">
    <form class="search" action="../search.html" method="get">
      <input type="text" name="q" aria-labelledby="searchlabel" />
      <input type="submit" value="Go" />
    </form>
    </div>
</div>
<script>$('#searchbox').show(0);</script>
        </div>
      </div>

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body" role="main">
            
  <div class="section" id="ts-scalable-ode-and-dae-solvers">
<span id="chapter-ts"></span><h1>TS: Scalable ODE and DAE Solvers<a class="headerlink" href="#ts-scalable-ode-and-dae-solvers" title="Permalink to this headline">¶</a></h1>
<p>The <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span></code> library provides a framework for the scalable solution of
ODEs and DAEs arising from the discretization of time-dependent PDEs.</p>
<p><strong>Simple Example:</strong> Consider the PDE</p>
<div class="math">
\[u_t = u_{xx}

\]</div>
<p>discretized with centered finite differences in space yielding the
semi-discrete equation</p>
<div class="math">
\[\begin{aligned}
          (u_i)_t & =  & \frac{u_{i+1} - 2 u_{i} + u_{i-1}}{h^2}, \\
           u_t      &  = & \tilde{A} u;\end{aligned}\]</div>
<p>or with piecewise linear finite elements approximation in space
<span class="math">\(u(x,t) \doteq \sum_i \xi_i(t) \phi_i(x)\)</span> yielding the
semi-discrete equation</p>
<div class="math">
\[B {\xi}'(t) = A \xi(t)

\]</div>
<p>Now applying the backward Euler method results in</p>
<div class="math">
\[( B - dt^n A  ) u^{n+1} = B u^n,

\]</div>
<p>in which</p>
<div class="math">
\[{u^n}_i = \xi_i(t_n) \doteq u(x_i,t_n),

\]</div>
<div class="math">
\[{\xi}'(t_{n+1}) \doteq \frac{{u^{n+1}}_i - {u^{n}}_i }{dt^{n}},

\]</div>
<p><span class="math">\(A\)</span> is the stiffness matrix, and <span class="math">\(B\)</span> is the identity for
finite differences or the mass matrix for the finite element method.</p>
<p>The PETSc interface for solving time dependent problems assumes the
problem is written in the form</p>
<div class="math">
\[F(t,u,\dot{u}) = G(t,u), \quad u(t_0) = u_0.

\]</div>
<p>In general, this is a differential algebraic equation (DAE)  <a class="footnote-reference brackets" href="#id28" id="id1">4</a>. For
ODE with nontrivial mass matrices such as arise in FEM, the implicit/DAE
interface significantly reduces overhead to prepare the system for
algebraic solvers (<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/SNES/SNES.html#SNES">SNES</a></span></code>/<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSP.html#KSP">KSP</a></span></code>) by having the user assemble the
correctly shifted matrix. Therefore this interface is also useful for
ODE systems.</p>
<p>To solve an ODE or DAE one uses:</p>
<ul>
<li><p>Function <span class="math">\(F(t,u,\dot{u})\)</span></p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetIFunction.html#TSSetIFunction">TSSetIFunction</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="n">R</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode">PetscErrorCode</a></span> <span class="p">(</span><span class="o">*</span><span class="n">f</span><span class="p">)(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span> <span class="o">*</span><span class="n">funP</span><span class="p">);</span>
</pre></div>
</div>
<p>The vector <code class="docutils literal notranslate"><span class="pre">R</span></code> is an optional location to store the residual. The
arguments to the function <code class="docutils literal notranslate"><span class="pre">f()</span></code> are the timestep context, current
time, input state <span class="math">\(u\)</span>, input time derivative <span class="math">\(\dot{u}\)</span>,
and the (optional) user-provided context <code class="docutils literal notranslate"><span class="pre">funP</span></code>. If
<span class="math">\(F(t,u,\dot{u}) = \dot{u}\)</span> then one need not call this
function.</p>
</li>
<li><p>Function <span class="math">\(G(t,u)\)</span>, if it is nonzero, is provided with the
function</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetRHSFunction.html#TSSetRHSFunction">TSSetRHSFunction</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="n">R</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode">PetscErrorCode</a></span> <span class="p">(</span><span class="o">*</span><span class="n">f</span><span class="p">)(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span> <span class="o">*</span><span class="n">funP</span><span class="p">);</span>
</pre></div>
</div>
</li>
<li><div class="line-block">
<div class="line">Jacobian
<span class="math">\(\sigma F_{\dot{u}}(t^n,u^n,\dot{u}^n) + F_u(t^n,u^n,\dot{u}^n)\)</span></div>
<div class="line">If using a fully implicit or semi-implicit (IMEX) method one also
can provide an appropriate (approximate) Jacobian matrix of
<span class="math">\(F()\)</span>.</div>
</div>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetIJacobian.html#TSSetIJacobian">TSSetIJacobian</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span> <span class="n">A</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span> <span class="n">B</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode">PetscErrorCode</a></span> <span class="p">(</span><span class="o">*</span><span class="n">fjac</span><span class="p">)(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span> <span class="o">*</span><span class="n">jacP</span><span class="p">);</span>
</pre></div>
</div>
<p>The arguments for the function <code class="docutils literal notranslate"><span class="pre">fjac()</span></code> are the timestep context,
current time, input state <span class="math">\(u\)</span>, input derivative
<span class="math">\(\dot{u}\)</span>, input shift <span class="math">\(\sigma\)</span>, matrix <span class="math">\(A\)</span>,
preconditioning matrix <span class="math">\(B\)</span>, and the (optional) user-provided
context <code class="docutils literal notranslate"><span class="pre">jacP</span></code>.</p>
<p>The Jacobian needed for the nonlinear system is, by the chain rule,</p>
<div class="math">
\[\begin{aligned}
    \frac{d F}{d u^n} &  = &  \frac{\partial F}{\partial \dot{u}}|_{u^n} \frac{\partial \dot{u}}{\partial u}|_{u^n} + \frac{\partial F}{\partial u}|_{u^n}.\end{aligned}\]</div>
<p>For any ODE integration method the approximation of <span class="math">\(\dot{u}\)</span>
is linear in <span class="math">\(u^n\)</span> hence
<span class="math">\(\frac{\partial \dot{u}}{\partial u}|_{u^n} = \sigma\)</span>, where
the shift <span class="math">\(\sigma\)</span> depends on the ODE integrator and time step
but not on the function being integrated. Thus</p>
<div class="math">
\[\begin{aligned}
    \frac{d F}{d u^n} &  = &    \sigma F_{\dot{u}}(t^n,u^n,\dot{u}^n) + F_u(t^n,u^n,\dot{u}^n).\end{aligned}\]</div>
<p>This explains why the user provide Jacobian is in the given form for
all integration methods. An equivalent way to derive the formula is
to note that</p>
<div class="math">
\[F(t^n,u^n,\dot{u}^n) = F(t^n,u^n,w+\sigma*u^n)

\]</div>
<p>where <span class="math">\(w\)</span> is some linear combination of previous time solutions
of <span class="math">\(u\)</span> so that</p>
<div class="math">
\[\frac{d F}{d u^n} = \sigma F_{\dot{u}}(t^n,u^n,\dot{u}^n) + F_u(t^n,u^n,\dot{u}^n)

\]</div>
<p>again by the chain rule.</p>
<p>For example, consider backward Euler’s method applied to the ODE
<span class="math">\(F(t, u, \dot{u}) = \dot{u} - f(t, u)\)</span> with
<span class="math">\(\dot{u} = (u^n - u^{n-1})/\delta t\)</span> and
<span class="math">\(\frac{\partial \dot{u}}{\partial u}|_{u^n} = 1/\delta t\)</span>
resulting in</p>
<div class="math">
\[\begin{aligned}
    \frac{d F}{d u^n} & = &   (1/\delta t)F_{\dot{u}} + F_u(t^n,u^n,\dot{u}^n).\end{aligned}\]</div>
<p>But <span class="math">\(F_{\dot{u}} = 1\)</span>, in this special case, resulting in the
expected Jacobian <span class="math">\(I/\delta t - f_u(t,u^n)\)</span>.</p>
</li>
<li><div class="line-block">
<div class="line">Jacobian <span class="math">\(G_u\)</span></div>
<div class="line">If using a fully implicit method and the function <span class="math">\(G()\)</span> is
provided, one also can provide an appropriate (approximate)
Jacobian matrix of <span class="math">\(G()\)</span>.</div>
</div>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetRHSJacobian.html#TSSetRHSJacobian">TSSetRHSJacobian</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span> <span class="n">A</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span> <span class="n">B</span><span class="p">,</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode">PetscErrorCode</a></span> <span class="p">(</span><span class="o">*</span><span class="n">fjac</span><span class="p">)(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/Mat.html#Mat">Mat</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span> <span class="o">*</span><span class="n">jacP</span><span class="p">);</span>
</pre></div>
</div>
<p>The arguments for the function <code class="docutils literal notranslate"><span class="pre">fjac()</span></code> are the timestep context,
current time, input state <span class="math">\(u\)</span>, matrix <span class="math">\(A\)</span>,
preconditioning matrix <span class="math">\(B\)</span>, and the (optional) user-provided
context <code class="docutils literal notranslate"><span class="pre">jacP</span></code>.</p>
</li>
</ul>
<p>Providing appropriate <span class="math">\(F()\)</span> and <span class="math">\(G()\)</span> for your problem
allows for the easy runtime switching between explicit, semi-implicit
(IMEX), and fully implicit methods.</p>
<div class="section" id="basic-ts-options">
<h2>Basic TS Options<a class="headerlink" href="#basic-ts-options" title="Permalink to this headline">¶</a></h2>
<p>The user first creates a <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span></code> object with the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="kt">int</span> <span class="nf"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSCreate.html#TSCreate">TSCreate</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/MPI_Comm.html#MPI_Comm">MPI_Comm</a></span> <span class="n">comm</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="o">*</span><span class="n">ts</span><span class="p">);</span>
</pre></div>
</div>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="kt">int</span> <span class="nf"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetProblemType.html#TSSetProblemType">TSSetProblemType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSProblemType.html#TSProblemType">TSProblemType</a></span> <span class="n">problemtype</span><span class="p">);</span>
</pre></div>
</div>
<p>The <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSProblemType.html#TSProblemType">TSProblemType</a></span></code> is one of <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSProblemType.html#TSProblemType">TS_LINEAR</a></span></code> or <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSProblemType.html#TSProblemType">TS_NONLINEAR</a></span></code>.</p>
<p>To set up <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span></code> for solving an ODE, one must set the “initial
conditions” for the ODE with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetSolution.html#TSSetSolution">TSSetSolution</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span> <span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="n">initialsolution</span><span class="p">);</span>
</pre></div>
</div>
<p>One can set the solution method with the routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetType.html#TSSetType">TSSetType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSType.html#TSType">TSType</a></span> <span class="n">type</span><span class="p">);</span>
</pre></div>
</div>
<div class="line-block">
<div class="line">Currently supported types are <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSEULER.html#TSEULER">TSEULER</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSRK.html#TSRK">TSRK</a></span></code> (Runge-Kutta),
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSBEULER.html#TSBEULER">TSBEULER</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSCN.html#TSCN">TSCN</a></span></code> (Crank-Nicolson), <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSTHETA.html#TSTHETA">TSTHETA</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGLLE.html#TSGLLE">TSGLLE</a></span></code>
(generalized linear), <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSPSEUDO.html#TSPSEUDO">TSPSEUDO</a></span></code>, and <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSUNDIALS.html#TSSUNDIALS">TSSUNDIALS</a></span></code> (only if the
Sundials package is installed), or the command line option</div>
<div class="line"><code class="docutils literal notranslate"><span class="pre">-ts_type</span> <span class="pre">euler,rk,beuler,cn,theta,gl,pseudo,sundials,eimex,arkimex,rosw</span></code>.</div>
</div>
<p>A list of available methods is given in the following table.</p>
<table class="docutils align-default" id="tab-tspet">
<caption><span class="caption-number">Table 11 </span><span class="caption-text">Time integration schemes</span><a class="headerlink" href="#tab-tspet" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 20%" />
<col style="width: 20%" />
<col style="width: 20%" />
<col style="width: 20%" />
<col style="width: 20%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>TS Name</p></th>
<th class="head"><p>Reference</p></th>
<th class="head"><p>Class</p></th>
<th class="head"><p>Type</p></th>
<th class="head"><p>Order</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>euler</p></td>
<td><p>forward Euler</p></td>
<td><p>one-step</p></td>
<td><p>explicit</p></td>
<td><p><span class="math">\(1\)</span></p></td>
</tr>
<tr class="row-odd"><td><p>ssp</p></td>
<td><p>multistage SSP <span id="id2">[<a class="reference internal" href="#id56"><span>Ket08</span></a>]</span></p></td>
<td><p>Runge-Kutta</p></td>
<td><p>explicit</p></td>
<td><p><span class="math">\(\le 4\)</span></p></td>
</tr>
<tr class="row-even"><td><p>rk*</p></td>
<td><p>multiscale</p></td>
<td><p>Runge-Kutta</p></td>
<td><p>explicit</p></td>
<td><p><span class="math">\(\ge 1\)</span></p></td>
</tr>
<tr class="row-odd"><td><p>beuler</p></td>
<td><p>backward Euler</p></td>
<td><p>one-step</p></td>
<td><p>implicit</p></td>
<td><p><span class="math">\(1\)</span></p></td>
</tr>
<tr class="row-even"><td><p>cn</p></td>
<td><p>Crank-Nicolson</p></td>
<td><p>one-step</p></td>
<td><p>implicit</p></td>
<td><p><span class="math">\(2\)</span></p></td>
</tr>
<tr class="row-odd"><td><p>theta*</p></td>
<td><p>theta-method</p></td>
<td><p>one-step</p></td>
<td><p>implicit</p></td>
<td><p><span class="math">\(\le 2\)</span></p></td>
</tr>
<tr class="row-even"><td><p>alpha</p></td>
<td><p>alpha-method <span id="id3">[<a class="reference internal" href="#id57"><span>JWH00</span></a>]</span></p></td>
<td><p>one-step</p></td>
<td><p>implicit</p></td>
<td><p><span class="math">\(2\)</span></p></td>
</tr>
<tr class="row-odd"><td><p>gl</p></td>
<td><p>general linear <span id="id4">[<a class="reference internal" href="#id58"><span>BJW07</span></a>]</span></p></td>
<td><p>multistep-multistage</p></td>
<td><p>implicit</p></td>
<td><p><span class="math">\(\le 3\)</span></p></td>
</tr>
<tr class="row-even"><td><p>eimex</p></td>
<td><p>extrapolated IMEX <span id="id5">[<a class="reference internal" href="#id59"><span>CS10</span></a>]</span></p></td>
<td><p>one-step</p></td>
<td><p><span class="math">\(\ge 1\)</span>, adaptive</p></td>
<td></td>
</tr>
<tr class="row-odd"><td><p>arkimex</p></td>
<td><p>See <a class="reference internal" href="#tab-imex-rk-petsc"><span class="std std-ref">IMEX Runge-Kutta schemes</span></a></p></td>
<td><p>IMEX Runge-Kutta</p></td>
<td><p>IMEX</p></td>
<td><p><span class="math">\(1-5\)</span></p></td>
</tr>
<tr class="row-even"><td><p>rosw</p></td>
<td><p>See <a class="reference internal" href="#tab-imex-rosw-petsc"><span class="std std-ref">Rosenbrock W-schemes</span></a></p></td>
<td><p>Rosenbrock-W</p></td>
<td><p>linearly implicit</p></td>
<td><p><span class="math">\(1-4\)</span></p></td>
</tr>
<tr class="row-odd"><td><p>glee</p></td>
<td><p>See <a class="reference internal" href="#tab-imex-glee-petsc"><span class="std std-ref">GL schemes with global error estimation</span></a></p></td>
<td><p>GL with global error</p></td>
<td><p>explicit and implicit</p></td>
<td><p><span class="math">\(1-3\)</span></p></td>
</tr>
</tbody>
</table>
<p>Set the initial time with the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetTime.html#TSSetTime">TSSetTime</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="n">time</span><span class="p">);</span>
</pre></div>
</div>
<p>One can change the timestep with the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetTimeStep.html#TSSetTimeStep">TSSetTimeStep</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="n">dt</span><span class="p">);</span>
</pre></div>
</div>
<p>can determine the current timestep with the routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGetTimeStep.html#TSGetTimeStep">TSGetTimeStep</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span><span class="o">*</span> <span class="n">dt</span><span class="p">);</span>
</pre></div>
</div>
<p>Here, “current” refers to the timestep being used to attempt to promote
the solution form <span class="math">\(u^n\)</span> to <span class="math">\(u^{n+1}.\)</span></p>
<p>One sets the total number of timesteps to run or the total time to run
(whatever is first) with the commands</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetMaxSteps.html#TSSetMaxSteps">TSSetMaxSteps</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">maxsteps</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetMaxTime.html#TSSetMaxTime">TSSetMaxTime</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span> <span class="n">maxtime</span><span class="p">);</span>
</pre></div>
</div>
<p>and determines the behavior near the final time with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetExactFinalTime.html#TSSetExactFinalTime">TSSetExactFinalTime</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSExactFinalTimeOption.html#TSExactFinalTimeOption">TSExactFinalTimeOption</a></span> <span class="n">eftopt</span><span class="p">);</span>
</pre></div>
</div>
<p>where <code class="docutils literal notranslate"><span class="pre">eftopt</span></code> is one of
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSExactFinalTimeOption.html#TSExactFinalTimeOption">TS_EXACTFINALTIME_STEPOVER</a></span></code>,<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSExactFinalTimeOption.html#TSExactFinalTimeOption">TS_EXACTFINALTIME_INTERPOLATE</a></span></code>, or
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSExactFinalTimeOption.html#TSExactFinalTimeOption">TS_EXACTFINALTIME_MATCHSTEP</a></span></code>. One performs the requested number of
time steps with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSolve.html#TSSolve">TSSolve</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span> <span class="n">U</span><span class="p">);</span>
</pre></div>
</div>
<p>The solve call implicitly sets up the timestep context; this can be done
explicitly with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetUp.html#TSSetUp">TSSetUp</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">);</span>
</pre></div>
</div>
<p>One destroys the context with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSDestroy.html#TSDestroy">TSDestroy</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="o">*</span><span class="n">ts</span><span class="p">);</span>
</pre></div>
</div>
<p>and views it with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSView.html#TSView">TSView</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Viewer/PetscViewer.html#PetscViewer">PetscViewer</a></span> <span class="n">viewer</span><span class="p">);</span>
</pre></div>
</div>
<p>In place of <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSolve.html#TSSolve">TSSolve</a>()</span></code>, a single step can be taken using</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSStep.html#TSStep">TSStep</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">);</span>
</pre></div>
</div>
</div>
<div class="section" id="dae-formulations">
<span id="sec-imex"></span><h2>DAE Formulations<a class="headerlink" href="#dae-formulations" title="Permalink to this headline">¶</a></h2>
<p>You can find a discussion of DAEs in <span id="id6">[<a class="reference internal" href="#id51"><span>AP98</span></a>]</span> or <a class="reference external" href="http://www.scholarpedia.org/article/Differential-algebraic_equations">Scholarpedia</a>. In PETSc, TS deals with the semi-discrete form of the equations, so that space has already been discretized. If the DAE depends explicitly on the coordinate <span class="math">\(x\)</span>, then this will just appear as any other data for the equation, not as an explicit argument. Thus we have</p>
<div class="math">
\[F(t, u, \dot{u}) = 0\]</div>
<p>In this form, only fully implicit solvers are appropriate. However, specialized solvers for restricted forms of DAE are supported by PETSc. Below we consider an ODE which is augmented with algebraic constraints on the variables.</p>
<div class="section" id="hessenberg-index-1-dae">
<h3>Hessenberg Index-1 DAE<a class="headerlink" href="#hessenberg-index-1-dae" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>This is a Semi-Explicit Index-1 DAE which has the form</p>
</div></blockquote>
<div class="math">
\[\begin{aligned}
  \dot{u} &= f(t, u, z) \\
        0 &= h(t, u, z)
\end{aligned}\]</div>
<p>where <span class="math">\(z\)</span> is a new constraint variable, and the Jacobian <span class="math">\(\frac{dh}{dz}\)</span> is non-singular everywhere. We have suppressed the <span class="math">\(x\)</span> dependence since it plays no role here. Using the non-singularity of the Jacobian and the Implicit Function Theorem, we can solve for <span class="math">\(z\)</span> in terms of <span class="math">\(u\)</span>. This means we could, in principle, plug <span class="math">\(z(u)\)</span> into the first equation to obtain a simple ODE, even if this is not the numerical process we use. Below we show that this type of DAE can be used with IMEX schemes.</p>
</div>
<div class="section" id="hessenberg-index-2-dae">
<h3>Hessenberg Index-2 DAE<a class="headerlink" href="#hessenberg-index-2-dae" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>This DAE has the form</p>
</div></blockquote>
<div class="math">
\[\begin{aligned}
  \dot{u} &= f(t, u, z) \\
        0 &= h(t, u)
\end{aligned}\]</div>
<p>Notice that the constraint equation <span class="math">\(h\)</span> is not a function of the constraint variable :math:’z’. This means that we cannot naively invert as we did in the index-1 case. Our strategy will be to convert this into an index-1 DAE using a time derivative, which loosely corresponds to the idea of index being the number of derivatives necessary to get back to an ODE. If we differentiate the constraint equation with respect to time, we can use the ODE to simplify it,</p>
<div class="math">
\[\begin{aligned}
        0 &= \dot{h}(t, u) \\
          &= \frac{dh}{du} \dot{u} + \frac{\partial h}{\partial t} \\
          &= \frac{dh}{du} f(t, u, z) + \frac{\partial h}{\partial t}
\end{aligned}\]</div>
<p>If the Jacobian <span class="math">\(\frac{dh}{du} \frac{df}{dz}\)</span> is non-singular, then we have precisely a semi-explicit index-1 DAE, and we can once again use the PETSc IMEX tools to solve it. A common example of an index-2 DAE is the incompressible Navier-Stokes equations, since the continuity equation <span class="math">\(\nabla\cdot u = 0\)</span> does not involve the pressure. Using PETSc IMEX with the above conversion then corresponds to the Segregated Runge-Kutta method applied to this equation <span id="id7">[<a class="reference internal" href="#id52"><span>OColomesB16</span></a>]</span>.</p>
</div>
</div>
<div class="section" id="using-implicit-explicit-imex-methods">
<h2>Using Implicit-Explicit (IMEX) Methods<a class="headerlink" href="#using-implicit-explicit-imex-methods" title="Permalink to this headline">¶</a></h2>
<p>For “stiff” problems or those with multiple time scales <span class="math">\(F()\)</span> will
be treated implicitly using a method suitable for stiff problems and
<span class="math">\(G()\)</span> will be treated explicitly when using an IMEX method like
TSARKIMEX. <span class="math">\(F()\)</span> is typically linear or weakly nonlinear while
<span class="math">\(G()\)</span> may have very strong nonlinearities such as arise in
non-oscillatory methods for hyperbolic PDE. The user provides three
pieces of information, the APIs for which have been described above.</p>
<ul class="simple">
<li><p>“Slow” part <span class="math">\(G(t,u)\)</span> using <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetRHSFunction.html#TSSetRHSFunction">TSSetRHSFunction</a>()</span></code>.</p></li>
<li><p>“Stiff” part <span class="math">\(F(t,u,\dot u)\)</span> using <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetIFunction.html#TSSetIFunction">TSSetIFunction</a>()</span></code>.</p></li>
<li><p>Jacobian <span class="math">\(F_u + \sigma F_{\dot u}\)</span> using <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetIJacobian.html#TSSetIJacobian">TSSetIJacobian</a>()</span></code>.</p></li>
</ul>
<p>The user needs to set <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetEquationType.html#TSSetEquationType">TSSetEquationType</a>()</span></code> to <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSEquationType.html#TSEquationType">TS_EQ_IMPLICIT</a></span></code> or
higher if the problem is implicit; e.g.,
<span class="math">\(F(t,u,\dot u) = M \dot u - f(t,u)\)</span>, where <span class="math">\(M\)</span> is not the
identity matrix:</p>
<ul class="simple">
<li><p>the problem is an implicit ODE (defined implicitly through
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetIFunction.html#TSSetIFunction">TSSetIFunction</a>()</span></code>) or</p></li>
<li><p>a DAE is being solved.</p></li>
</ul>
<p>An IMEX problem representation can be made implicit by setting <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSARKIMEXSetFullyImplicit.html#TSARKIMEXSetFullyImplicit">TSARKIMEXSetFullyImplicit</a>()</span></code>.</p>
<p>In PETSc, DAEs and ODEs are formulated as <span class="math">\(F(t,u,\dot{u})=G(t,u)\)</span>, where <span class="math">\(F()\)</span> is meant to be integrated implicitly and <span class="math">\(G()\)</span> explicitly. An IMEX formulation such as <span class="math">\(M\dot{u}=f(t,u)+g(t,u)\)</span> requires the user to provide <span class="math">\(M^{-1} g(t,u)\)</span> or solve <span class="math">\(g(t,u) - M x=0\)</span> in place of <span class="math">\(G(t,u)\)</span>. General cases such as <span class="math">\(F(t,u,\dot{u})=G(t,u)\)</span> are not amenable to IMEX Runge-Kutta, but can be solved by using fully implicit methods. Some use-case examples for <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSARKIMEX.html#TSARKIMEX">TSARKIMEX</a></span></code> are listed in <a class="reference internal" href="#tab-de-forms"><span class="std std-numref">Table 12</span></a> and a list of methods with a summary of their properties is given in <a class="reference internal" href="#tab-imex-rk-petsc"><span class="std std-ref">IMEX Runge-Kutta schemes</span></a>.</p>
<table class="colwidths-given docutils align-default" id="tab-de-forms">
<colgroup>
<col style="width: 25%" />
<col style="width: 25%" />
<col style="width: 50%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><p><span class="math">\(\dot{u} = g(t,u)\)</span></p></td>
<td><p>nonstiff ODE</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= \dot{u} \\ G(t,u) &amp;= g(t,u)\end{aligned}\)</span></p></td>
</tr>
<tr class="row-even"><td><p><span class="math">\(M \dot{u} = g(t,u)\)</span></p></td>
<td><p>nonstiff ODE with mass matrix</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= \dot{u} \\ G(t,u) &amp;= M^{-1} g(t,u)\end{aligned}\)</span></p></td>
</tr>
<tr class="row-odd"><td><p><span class="math">\(\dot{u} = f(t,u)\)</span></p></td>
<td><p>stiff ODE</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= \dot{u} - f(t,u) \\ G(t,u) &amp;= 0\end{aligned}\)</span></p></td>
</tr>
<tr class="row-even"><td><p><span class="math">\(M \dot{u} = f(t,u)\)</span></p></td>
<td><p>stiff ODE with mass matrix</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= M \dot{u} - f(t,u) \\ G(t,u) &amp;= 0\end{aligned}\)</span></p></td>
</tr>
<tr class="row-odd"><td><p><span class="math">\(\dot{u} = f(t,u) + g(t,u)\)</span></p></td>
<td><p>stiff-nonstiff ODE</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= \dot{u} - f(t,u) \\ G(t,u) &amp;= g(t,u)\end{aligned}\)</span></p></td>
</tr>
<tr class="row-even"><td><p><span class="math">\(M \dot{u} = f(t,u) + g(t,u)\)</span></p></td>
<td><p>stiff-nonstiff ODE with mass matrix</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= M\dot{u} - f(t,u) \\ G(t,u) &amp;= M^{-1} g(t,u)\end{aligned}\)</span></p></td>
</tr>
<tr class="row-odd"><td><p><span class="math">\(\begin{aligned}\dot{u} &amp;= f(t,u,z) + g(t,u,z)\\0 &amp;= h(t,y,z)\end{aligned}\)</span></p></td>
<td><p>semi-explicit index-1 DAE</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= \begin{pmatrix}\dot{u} - f(t,u,z)\\h(t, u, z)\end{pmatrix}\\G(t,u) &amp;= g(t,u)\end{aligned}\)</span></p></td>
</tr>
<tr class="row-even"><td><p><span class="math">\(f(t,u,\dot{u})=0\)</span></p></td>
<td><p>fully implicit ODE/DAE</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= f(t,u,\dot{u})\\G(t,u) &amp;= 0\end{aligned}\)</span>; the user needs to set <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetEquationType.html#TSSetEquationType">TSSetEquationType</a>()</span></code> to <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSEquationType.html#TSEquationType">TS_EQ_IMPLICIT</a></span></code> or higher</p></td>
</tr>
</tbody>
</table>
<p><a class="reference internal" href="#tab-imex-rk-petsc"><span class="std std-numref">Table 13</span></a> lists of the currently available IMEX Runge-Kutta schemes. For each method, it gives the <code class="docutils literal notranslate"><span class="pre">-ts_arkimex_type</span></code> name, the reference, the total number of stages/implicit stages, the order/stage-order, the implicit stability properties (IM), stiff accuracy (SA), the existence of an embedded scheme, and dense output (DO).</p>
<table class="docutils align-default" id="tab-imex-rk-petsc">
<caption><span class="caption-number">Table 13 </span><span class="caption-text">IMEX Runge-Kutta schemes</span><a class="headerlink" href="#tab-imex-rk-petsc" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 11%" />
<col style="width: 11%" />
<col style="width: 11%" />
<col style="width: 11%" />
<col style="width: 11%" />
<col style="width: 11%" />
<col style="width: 11%" />
<col style="width: 11%" />
<col style="width: 11%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>Name</p></th>
<th class="head"><p>Reference</p></th>
<th class="head"><p>Stages (IM)</p></th>
<th class="head"><p>Order (Stage)</p></th>
<th class="head"><p>IM</p></th>
<th class="head"><p>SA</p></th>
<th class="head"><p>Embed</p></th>
<th class="head"><p>DO</p></th>
<th class="head"><p>Remarks</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>a2</p></td>
<td><p>based on CN</p></td>
<td><p>2 (1)</p></td>
<td><p>2 (2)</p></td>
<td><p>A-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (1)</p></td>
<td><p>yes (2)</p></td>
<td></td>
</tr>
<tr class="row-odd"><td><p>l2</p></td>
<td><p>SSP2(2,2,2) <span id="id8">[<a class="reference internal" href="#id47"><span>PR05</span></a>]</span></p></td>
<td><p>2 (2)</p></td>
<td><p>2 (1)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (1)</p></td>
<td><p>yes (2)</p></td>
<td><p>SSP SDIRK</p></td>
</tr>
<tr class="row-even"><td><p>ars122</p></td>
<td><p>ARS122 <span id="id9">[<a class="reference internal" href="#id50"><span>ARS97</span></a>]</span></p></td>
<td><p>2 (1)</p></td>
<td><p>3 (1)</p></td>
<td><p>A-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (1)</p></td>
<td><p>yes (2)</p></td>
<td></td>
</tr>
<tr class="row-odd"><td><p>2c</p></td>
<td><p><span id="id10">[<a class="reference internal" href="#id45"><span>GKC13</span></a>]</span></p></td>
<td><p>3 (2)</p></td>
<td><p>2 (2)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (1)</p></td>
<td><p>yes (2)</p></td>
<td><p>SDIRK</p></td>
</tr>
<tr class="row-even"><td><p>2d</p></td>
<td><p><span id="id11">[<a class="reference internal" href="#id45"><span>GKC13</span></a>]</span></p></td>
<td><p>3 (2)</p></td>
<td><p>2 (2)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (1)</p></td>
<td><p>yes (2)</p></td>
<td><p>SDIRK</p></td>
</tr>
<tr class="row-odd"><td><p>2e</p></td>
<td><p><span id="id12">[<a class="reference internal" href="#id45"><span>GKC13</span></a>]</span></p></td>
<td><p>3 (2)</p></td>
<td><p>2 (2)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (1)</p></td>
<td><p>yes (2)</p></td>
<td><p>SDIRK</p></td>
</tr>
<tr class="row-even"><td><p>prssp2</p></td>
<td><p>PRS(3,3,2) <span id="id13">[<a class="reference internal" href="#id47"><span>PR05</span></a>]</span></p></td>
<td><p>3 (3)</p></td>
<td><p>3 (1)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>no</p></td>
<td><p>no</p></td>
<td><p>SSP</p></td>
</tr>
<tr class="row-odd"><td><p>3</p></td>
<td><p><span id="id14">[<a class="reference internal" href="#id48"><span>KC03</span></a>]</span></p></td>
<td><p>4 (3)</p></td>
<td><p>3 (2)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (2)</p></td>
<td><p>yes (2)</p></td>
<td><p>SDIRK</p></td>
</tr>
<tr class="row-even"><td><p>bpr3</p></td>
<td><p><span id="id15">[<a class="reference internal" href="#id49"><span>BPR11</span></a>]</span></p></td>
<td><p>5 (4)</p></td>
<td><p>3 (2)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>no</p></td>
<td><p>no</p></td>
<td><p>SDIRK</p></td>
</tr>
<tr class="row-odd"><td><p>ars443</p></td>
<td><p><span id="id16">[<a class="reference internal" href="#id50"><span>ARS97</span></a>]</span></p></td>
<td><p>5 (4)</p></td>
<td><p>3 (1)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>no</p></td>
<td><p>no</p></td>
<td><p>SDIRK</p></td>
</tr>
<tr class="row-even"><td><p>4</p></td>
<td><p><span id="id17">[<a class="reference internal" href="#id48"><span>KC03</span></a>]</span></p></td>
<td><p>6 (5)</p></td>
<td><p>4 (2)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (3)</p></td>
<td><p>yes</p></td>
<td><p>SDIRK</p></td>
</tr>
<tr class="row-odd"><td><p>5</p></td>
<td><p><span id="id18">[<a class="reference internal" href="#id48"><span>KC03</span></a>]</span></p></td>
<td><p>8 (7)</p></td>
<td><p>5 (2)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (4)</p></td>
<td><p>yes (3)</p></td>
<td><p>SDIRK</p></td>
</tr>
</tbody>
</table>
<p>ROSW are linearized implicit Runge-Kutta methods known as Rosenbrock
W-methods. They can accommodate inexact Jacobian matrices in their
formulation. A series of methods are available in PETSc are listed in
<a class="reference internal" href="#tab-imex-rosw-petsc"><span class="std std-numref">Table 14</span></a> below. For each method, it gives the reference, the total number of stages and implicit stages, the scheme order and stage order, the implicit stability properties (IM), stiff accuracy (SA), the existence of an embedded scheme, dense output (DO), the capacity to use inexact Jacobian matrices (-W), and high order integration of differential algebraic equations (PDAE).</p>
<table class="docutils align-default" id="tab-imex-rosw-petsc">
<caption><span class="caption-number">Table 14 </span><span class="caption-text">Rosenbrock W-schemes</span><a class="headerlink" href="#tab-imex-rosw-petsc" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 9%" />
<col style="width: 9%" />
<col style="width: 9%" />
<col style="width: 9%" />
<col style="width: 9%" />
<col style="width: 9%" />
<col style="width: 9%" />
<col style="width: 9%" />
<col style="width: 9%" />
<col style="width: 9%" />
<col style="width: 9%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>TS</p></th>
<th class="head"><p>Reference</p></th>
<th class="head"><p>Stages (IM)</p></th>
<th class="head"><p>Order (Stage)</p></th>
<th class="head"><p>IM</p></th>
<th class="head"><p>SA</p></th>
<th class="head"><p>Embed</p></th>
<th class="head"><p>DO</p></th>
<th class="head"><p>-W</p></th>
<th class="head"><p>PDAE</p></th>
<th class="head"><p>Remarks</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>theta1</p></td>
<td><p>classical</p></td>
<td><p>1(1)</p></td>
<td><p>1(1)</p></td>
<td><p>L-Stable</p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-odd"><td><p>theta2</p></td>
<td><p>classical</p></td>
<td><p>1(1)</p></td>
<td><p>2(2)</p></td>
<td><p>A-Stable</p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-even"><td><p>2m</p></td>
<td><p>Zoltan</p></td>
<td><p>2(2)</p></td>
<td><p>2(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>No</p></td>
<td><p>Yes(1)</p></td>
<td><p>Yes(2)</p></td>
<td><p>Yes</p></td>
<td><p>No</p></td>
<td><p>SSP</p></td>
</tr>
<tr class="row-odd"><td><p>2p</p></td>
<td><p>Zoltan</p></td>
<td><p>2(2)</p></td>
<td><p>2(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>No</p></td>
<td><p>Yes(1)</p></td>
<td><p>Yes(2)</p></td>
<td><p>Yes</p></td>
<td><p>No</p></td>
<td><p>SSP</p></td>
</tr>
<tr class="row-even"><td><p>ra3pw</p></td>
<td><p><span id="id19">[<a class="reference internal" href="#id54"><span>RA05</span></a>]</span></p></td>
<td><p>3(3)</p></td>
<td><p>3(1)</p></td>
<td><p>A-Stable</p></td>
<td><p>No</p></td>
<td><p>Yes</p></td>
<td><p>Yes(2)</p></td>
<td><p>No</p></td>
<td><p>Yes(3)</p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-odd"><td><p>ra34pw2</p></td>
<td><p><span id="id20">[<a class="reference internal" href="#id54"><span>RA05</span></a>]</span></p></td>
<td><p>4(4)</p></td>
<td><p>3(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>Yes</p></td>
<td><p>Yes</p></td>
<td><p>Yes(3)</p></td>
<td><p>Yes</p></td>
<td><p>Yes(3)</p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-even"><td><p>rodas3</p></td>
<td><p><span id="id21">[<a class="reference internal" href="#id53"><span>SVB+97</span></a>]</span></p></td>
<td><p>4(4)</p></td>
<td><p>3(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>Yes</p></td>
<td><p>Yes</p></td>
<td><p>No</p></td>
<td><p>No</p></td>
<td><p>Yes</p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-odd"><td><p>sandu3</p></td>
<td><p><span id="id22">[<a class="reference internal" href="#id53"><span>SVB+97</span></a>]</span></p></td>
<td><p>3(3)</p></td>
<td><p>3(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>Yes</p></td>
<td><p>Yes</p></td>
<td><p>Yes(2)</p></td>
<td><p>No</p></td>
<td><p>No</p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-even"><td><p>assp3p3s1c</p></td>
<td><p>unpub.</p></td>
<td><p>3(2)</p></td>
<td><p>3(1)</p></td>
<td><p>A-Stable</p></td>
<td><p>No</p></td>
<td><p>Yes</p></td>
<td><p>Yes(2)</p></td>
<td><p>Yes</p></td>
<td><p>No</p></td>
<td><p>SSP</p></td>
</tr>
<tr class="row-odd"><td><p>lassp3p4s2c</p></td>
<td><p>unpub.</p></td>
<td><p>4(3)</p></td>
<td><p>3(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>No</p></td>
<td><p>Yes</p></td>
<td><p>Yes(3)</p></td>
<td><p>Yes</p></td>
<td><p>No</p></td>
<td><p>SSP</p></td>
</tr>
<tr class="row-even"><td><p>lassp3p4s2c</p></td>
<td><p>unpub.</p></td>
<td><p>4(3)</p></td>
<td><p>3(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>No</p></td>
<td><p>Yes</p></td>
<td><p>Yes(3)</p></td>
<td><p>Yes</p></td>
<td><p>No</p></td>
<td><p>SSP</p></td>
</tr>
<tr class="row-odd"><td><p>ark3</p></td>
<td><p>unpub.</p></td>
<td><p>4(3)</p></td>
<td><p>3(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>No</p></td>
<td><p>Yes</p></td>
<td><p>Yes(3)</p></td>
<td><p>Yes</p></td>
<td><p>No</p></td>
<td><p>IMEX-RK</p></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="glee-methods">
<h2>GLEE methods<a class="headerlink" href="#glee-methods" title="Permalink to this headline">¶</a></h2>
<p>In this section, we describe explicit and implicit time stepping methods
with global error estimation that are introduced in
<span id="id23">[<a class="reference internal" href="#id46"><span>Con16</span></a>]</span>. The solution vector for a
GLEE method is either [<span class="math">\(y\)</span>, <span class="math">\(\tilde{y}\)</span>] or
[<span class="math">\(y\)</span>,<span class="math">\(\varepsilon\)</span>], where <span class="math">\(y\)</span> is the solution,
<span class="math">\(\tilde{y}\)</span> is the “auxiliary solution,” and <span class="math">\(\varepsilon\)</span>
is the error. The working vector that <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGLEE.html#TSGLEE">TSGLEE</a></span></code> uses is <span class="math">\(Y\)</span> =
[<span class="math">\(y\)</span>,<span class="math">\(\tilde{y}\)</span>], or [<span class="math">\(y\)</span>,<span class="math">\(\varepsilon\)</span>]. A
GLEE method is defined by</p>
<ul class="simple">
<li><p><span class="math">\((p,r,s)\)</span>: (order, steps, and stages),</p></li>
<li><p><span class="math">\(\gamma\)</span>: factor representing the global error ratio,</p></li>
<li><p><span class="math">\(A, U, B, V\)</span>: method coefficients,</p></li>
<li><p><span class="math">\(S\)</span>: starting method to compute the working vector from the
solution (say at the beginning of time integration) so that
<span class="math">\(Y = Sy\)</span>,</p></li>
<li><p><span class="math">\(F\)</span>: finalizing method to compute the solution from the working
vector,<span class="math">\(y = FY\)</span>.</p></li>
<li><p><span class="math">\(F_\text{embed}\)</span>: coefficients for computing the auxiliary
solution <span class="math">\(\tilde{y}\)</span> from the working vector
(<span class="math">\(\tilde{y} = F_\text{embed} Y\)</span>),</p></li>
<li><p><span class="math">\(F_\text{error}\)</span>: coefficients to compute the estimated error
vector from the working vector
(<span class="math">\(\varepsilon = F_\text{error} Y\)</span>).</p></li>
<li><p><span class="math">\(S_\text{error}\)</span>: coefficients to initialize the auxiliary
solution (<span class="math">\(\tilde{y}\)</span> or <span class="math">\(\varepsilon\)</span>) from a specified
error vector (<span class="math">\(\varepsilon\)</span>). It is currently implemented only
for <span class="math">\(r = 2\)</span>. We have <span class="math">\(y_\text{aux} =
S_{error}[0]*\varepsilon + S_\text{error}[1]*y\)</span>, where
<span class="math">\(y_\text{aux}\)</span> is the 2nd component of the working vector
<span class="math">\(Y\)</span>.</p></li>
</ul>
<p>The methods can be described in two mathematically equivalent forms:
propagate two components (“<span class="math">\(y\tilde{y}\)</span> form”) and propagating the
solution and its estimated error (“<span class="math">\(y\varepsilon\)</span> form”). The two
forms are not explicitly specified in <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGLEE.html#TSGLEE">TSGLEE</a></span></code>; rather, the specific
values of <span class="math">\(B, U, S, F, F_{embed}\)</span>, and <span class="math">\(F_{error}\)</span>
characterize whether the method is in <span class="math">\(y\tilde{y}\)</span> or
<span class="math">\(y\varepsilon\)</span> form.</p>
<p>The API used by this <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span></code> method includes:</p>
<ul>
<li><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGetSolutionComponents.html#TSGetSolutionComponents">TSGetSolutionComponents</a></span></code>: Get all the solution components of the
working vector</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n">ierr</span> <span class="o">=</span> <span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGetSolutionComponents.html#TSGetSolutionComponents">TSGetSolutionComponents</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span><span class="p">,</span><span class="kt">int</span><span class="o">*</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="o">*</span><span class="p">)</span>
</pre></div>
</div>
<p>Call with <code class="docutils literal notranslate"><span class="pre">NULL</span></code> as the last argument to get the total number of
components in the working vector <span class="math">\(Y\)</span> (this is <span class="math">\(r\)</span> (not
<span class="math">\(r-1\)</span>)), then call to get the <span class="math">\(i\)</span>-th solution component.</p>
</li>
<li><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGetAuxSolution.html#TSGetAuxSolution">TSGetAuxSolution</a></span></code>: Returns the auxiliary solution
<span class="math">\(\tilde{y}\)</span> (computed as <span class="math">\(F_\text{embed} Y\)</span>)</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n">ierr</span> <span class="o">=</span> <span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGetAuxSolution.html#TSGetAuxSolution">TSGetAuxSolution</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="o">*</span><span class="p">)</span>
</pre></div>
</div>
</li>
<li><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGetTimeError.html#TSGetTimeError">TSGetTimeError</a></span></code>: Returns the estimated error vector
<span class="math">\(\varepsilon\)</span> (computed as <span class="math">\(F_\text{error} Y\)</span> if
<span class="math">\(n=0\)</span> or restores the error estimate at the end of the previous
step if <span class="math">\(n=-1\)</span>)</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n">ierr</span> <span class="o">=</span> <span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGetTimeError.html#TSGetTimeError">TSGetTimeError</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">n</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="o">*</span><span class="p">)</span>
</pre></div>
</div>
</li>
<li><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetTimeError.html#TSSetTimeError">TSSetTimeError</a></span></code>: Initializes the auxiliary solution
(<span class="math">\(\tilde{y}\)</span> or <span class="math">\(\varepsilon\)</span>) for a specified initial
error.</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n">ierr</span> <span class="o">=</span> <span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetTimeError.html#TSSetTimeError">TSSetTimeError</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">)</span>
</pre></div>
</div>
</li>
</ul>
<p>The local error is estimated as <span class="math">\(\varepsilon(n+1)-\varepsilon(n)\)</span>.
This is to be used in the error control. The error in <span class="math">\(y\tilde{y}\)</span>
GLEE is
<span class="math">\(\varepsilon(n) = \frac{1}{1-\gamma} * (\tilde{y}(n) - y(n))\)</span>.</p>
<p>Note that <span class="math">\(y\)</span> and <span class="math">\(\tilde{y}\)</span> are reported to <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSAdapt.html#TSAdapt">TSAdapt</a></span></code>
<code class="docutils literal notranslate"><span class="pre">basic</span></code> (<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSADAPTBASIC.html#TSADAPTBASIC">TSADAPTBASIC</a></span></code>), and thus it computes the local error as
<span class="math">\(\varepsilon_{loc} = (\tilde{y} -
y)\)</span>. However, the actual local error is <span class="math">\(\varepsilon_{loc}
= \varepsilon_{n+1} - \varepsilon_n = \frac{1}{1-\gamma} * [(\tilde{y} -
y)_{n+1} - (\tilde{y} - y)_n]\)</span>.</p>
<p><a class="reference internal" href="#tab-imex-glee-petsc"><span class="std std-numref">Table 15</span></a> lists currently available GL schemes with global error estimation <span id="id24">[<a class="reference internal" href="#id46"><span>Con16</span></a>]</span>.</p>
<table class="docutils align-default" id="tab-imex-glee-petsc">
<caption><span class="caption-number">Table 15 </span><span class="caption-text">GL schemes with global error estimation</span><a class="headerlink" href="#tab-imex-glee-petsc" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 14%" />
<col style="width: 14%" />
<col style="width: 14%" />
<col style="width: 14%" />
<col style="width: 14%" />
<col style="width: 14%" />
<col style="width: 14%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>TS</p></th>
<th class="head"><p>Reference</p></th>
<th class="head"><p>IM/EX</p></th>
<th class="head"><p><span class="math">\((p,r,s)\)</span></p></th>
<th class="head"><p><span class="math">\(\gamma\)</span></p></th>
<th class="head"><p>Form</p></th>
<th class="head"><p>Notes</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre">TSGLEEi1</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">BE1</span></code></p></td>
<td><p>IM</p></td>
<td><p><span class="math">\((1,3,2)\)</span></p></td>
<td><p><span class="math">\(0.5\)</span></p></td>
<td><p><span class="math">\(y\varepsilon\)</span></p></td>
<td><p>Based on backward Euler</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGLEE23.html#TSGLEE23">TSGLEE23</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">23</span></code></p></td>
<td><p>EX</p></td>
<td><p><span class="math">\((2,3,2)\)</span></p></td>
<td><p><span class="math">\(0\)</span></p></td>
<td><p><span class="math">\(y\varepsilon\)</span></p></td>
<td></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGLEE24.html#TSGLEE24">TSGLEE24</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">24</span></code></p></td>
<td><p>EX</p></td>
<td><p><span class="math">\((2,4,2)\)</span></p></td>
<td><p><span class="math">\(0\)</span></p></td>
<td><p><span class="math">\(y\tilde{y}\)</span></p></td>
<td></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre">TSGLEE25I</span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">25i</span></code></p></td>
<td><p>EX</p></td>
<td><p><span class="math">\((2,5,2)\)</span></p></td>
<td><p><span class="math">\(0\)</span></p></td>
<td><p><span class="math">\(y\tilde{y}\)</span></p></td>
<td></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGLEE35.html#TSGLEE35">TSGLEE35</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">35</span></code></p></td>
<td><p>EX</p></td>
<td><p><span class="math">\((3,5,2)\)</span></p></td>
<td><p><span class="math">\(0\)</span></p></td>
<td><p><span class="math">\(y\tilde{y}\)</span></p></td>
<td></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGLEEEXRK2A.html#TSGLEEEXRK2A">TSGLEEEXRK2A</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">exrk2a</span></code></p></td>
<td><p>EX</p></td>
<td><p><span class="math">\((2,6,2)\)</span></p></td>
<td><p><span class="math">\(0.25\)</span></p></td>
<td><p><span class="math">\(y\varepsilon\)</span></p></td>
<td></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGLEERK32G1.html#TSGLEERK32G1">TSGLEERK32G1</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">rk32g1</span></code></p></td>
<td><p>EX</p></td>
<td><p><span class="math">\((3,8,2)\)</span></p></td>
<td><p><span class="math">\(0\)</span></p></td>
<td><p><span class="math">\(y\varepsilon\)</span></p></td>
<td></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGLEERK285EX.html#TSGLEERK285EX">TSGLEERK285EX</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">rk285ex</span></code></p></td>
<td><p>EX</p></td>
<td><p><span class="math">\((2,9,2)\)</span></p></td>
<td><p><span class="math">\(0.25\)</span></p></td>
<td><p><span class="math">\(y\varepsilon\)</span></p></td>
<td></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="using-fully-implicit-methods">
<h2>Using fully implicit methods<a class="headerlink" href="#using-fully-implicit-methods" title="Permalink to this headline">¶</a></h2>
<p>To use a fully implicit method like <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSTHETA.html#TSTHETA">TSTHETA</a></span></code> or <code class="docutils literal notranslate"><span class="pre">TSGL</span></code>, either
provide the Jacobian of <span class="math">\(F()\)</span> (and <span class="math">\(G()\)</span> if <span class="math">\(G()\)</span> is
provided) or use a <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/DM.html#DM">DM</a></span></code> that provides a coloring so the Jacobian can
be computed efficiently via finite differences.</p>
</div>
<div class="section" id="using-the-explicit-runge-kutta-timestepper-with-variable-timesteps">
<h2>Using the Explicit Runge-Kutta timestepper with variable timesteps<a class="headerlink" href="#using-the-explicit-runge-kutta-timestepper-with-variable-timesteps" title="Permalink to this headline">¶</a></h2>
<p>The explicit Euler and Runge-Kutta methods require the ODE be in the
form</p>
<div class="math">
\[\dot{u} = G(u,t).

\]</div>
<p>The user can either call <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetRHSFunction.html#TSSetRHSFunction">TSSetRHSFunction</a>()</span></code> and/or they can call
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetIFunction.html#TSSetIFunction">TSSetIFunction</a>()</span></code> (so long as the function provided to
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetIFunction.html#TSSetIFunction">TSSetIFunction</a>()</span></code> is equivalent to <span class="math">\(\dot{u} + \tilde{F}(t,u)\)</span>)
but the Jacobians need not be provided. <a class="footnote-reference brackets" href="#id29" id="id25">5</a></p>
<p>The Explicit Runge-Kutta timestepper with variable timesteps is an
implementation of the standard Runge-Kutta with an embedded method. The
error in each timestep is calculated using the solutions from the
Runge-Kutta method and its embedded method (the 2-norm of the difference
is used). The default method is the <span class="math">\(3\)</span>rd-order Bogacki-Shampine
method with a <span class="math">\(2\)</span>nd-order embedded method (<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSRK3BS.html#TSRK3BS">TSRK3BS</a></span></code>). Other
available methods are the <span class="math">\(5\)</span>th-order Fehlberg RK scheme with a
<span class="math">\(4\)</span>th-order embedded method (<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSRK5F.html#TSRK5F">TSRK5F</a></span></code>), the
<span class="math">\(5\)</span>th-order Dormand-Prince RK scheme with a <span class="math">\(4\)</span>th-order
embedded method (<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSRK5DP.html#TSRK5DP">TSRK5DP</a></span></code>), the <span class="math">\(5\)</span>th-order Bogacki-Shampine
RK scheme with a <span class="math">\(4\)</span>th-order embedded method (<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSRK5BS.html#TSRK5BS">TSRK5BS</a></span></code>, and
the <span class="math">\(6\)</span>th-, <span class="math">\(7\)</span>th, and <span class="math">\(8\)</span>th-order robust Verner
RK schemes with a <span class="math">\(5\)</span>th-, <span class="math">\(6\)</span>th, and <span class="math">\(7\)</span>th-order
embedded method, respectively (<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSRK6VR.html#TSRK6VR">TSRK6VR</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSRK7VR.html#TSRK7VR">TSRK7VR</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSRK8VR.html#TSRK8VR">TSRK8VR</a></span></code>).
Variable timesteps cannot be used with RK schemes that do not have an
embedded method (<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSRK1FE.html#TSRK1FE">TSRK1FE</a></span></code> - <span class="math">\(1\)</span>st-order, <span class="math">\(1\)</span>-stage
forward Euler, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSRK2A.html#TSRK2A">TSRK2A</a></span></code> - <span class="math">\(2\)</span>nd-order, <span class="math">\(2\)</span>-stage RK
scheme, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSRK3.html#TSRK3">TSRK3</a></span></code> - <span class="math">\(3\)</span>rd-order, <span class="math">\(3\)</span>-stage RK scheme,
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSRK4.html#TSRK4">TSRK4</a></span></code> - <span class="math">\(4\)</span>-th order, <span class="math">\(4\)</span>-stage RK scheme).</p>
</div>
<div class="section" id="special-cases">
<h2>Special Cases<a class="headerlink" href="#special-cases" title="Permalink to this headline">¶</a></h2>
<ul>
<li><p><span class="math">\(\dot{u} = A u.\)</span> First compute the matrix <span class="math">\(A\)</span> then call</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetProblemType.html#TSSetProblemType">TSSetProblemType</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSProblemType.html#TSProblemType">TS_LINEAR</a></span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetRHSFunction.html#TSSetRHSFunction">TSSetRHSFunction</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="nb">NULL</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSComputeRHSFunctionLinear.html#TSComputeRHSFunctionLinear">TSComputeRHSFunctionLinear</a></span><span class="p">,</span><span class="nb">NULL</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetRHSJacobian.html#TSSetRHSJacobian">TSSetRHSJacobian</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSComputeRHSJacobianConstant.html#TSComputeRHSJacobianConstant">TSComputeRHSJacobianConstant</a></span><span class="p">,</span><span class="nb">NULL</span><span class="p">);</span>
</pre></div>
</div>
<p>or</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetProblemType.html#TSSetProblemType">TSSetProblemType</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSProblemType.html#TSProblemType">TS_LINEAR</a></span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetIFunction.html#TSSetIFunction">TSSetIFunction</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="nb">NULL</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSComputeIFunctionLinear.html#TSComputeIFunctionLinear">TSComputeIFunctionLinear</a></span><span class="p">,</span><span class="nb">NULL</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetIJacobian.html#TSSetIJacobian">TSSetIJacobian</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSComputeIJacobianConstant.html#TSComputeIJacobianConstant">TSComputeIJacobianConstant</a></span><span class="p">,</span><span class="nb">NULL</span><span class="p">);</span>
</pre></div>
</div>
</li>
<li><p><span class="math">\(\dot{u} = A(t) u.\)</span> Use</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetProblemType.html#TSSetProblemType">TSSetProblemType</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSProblemType.html#TSProblemType">TS_LINEAR</a></span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetRHSFunction.html#TSSetRHSFunction">TSSetRHSFunction</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="nb">NULL</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSComputeRHSFunctionLinear.html#TSComputeRHSFunctionLinear">TSComputeRHSFunctionLinear</a></span><span class="p">,</span><span class="nb">NULL</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetRHSJacobian.html#TSSetRHSJacobian">TSSetRHSJacobian</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n">YourComputeRHSJacobian</span><span class="p">,</span> <span class="o">&amp;</span><span class="n">appctx</span><span class="p">);</span>
</pre></div>
</div>
<p>where <code class="docutils literal notranslate"><span class="pre">YourComputeRHSJacobian()</span></code> is a function you provide that
computes <span class="math">\(A\)</span> as a function of time. Or use</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetProblemType.html#TSSetProblemType">TSSetProblemType</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSProblemType.html#TSProblemType">TS_LINEAR</a></span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetIFunction.html#TSSetIFunction">TSSetIFunction</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="nb">NULL</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSComputeIFunctionLinear.html#TSComputeIFunctionLinear">TSComputeIFunctionLinear</a></span><span class="p">,</span><span class="nb">NULL</span><span class="p">);</span>
<span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetIJacobian.html#TSSetIJacobian">TSSetIJacobian</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n">YourComputeIJacobian</span><span class="p">,</span> <span class="o">&amp;</span><span class="n">appctx</span><span class="p">);</span>
</pre></div>
</div>
</li>
</ul>
</div>
<div class="section" id="monitoring-and-visualizing-solutions">
<h2>Monitoring and visualizing solutions<a class="headerlink" href="#monitoring-and-visualizing-solutions" title="Permalink to this headline">¶</a></h2>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">-ts_monitor</span></code> - prints the time and timestep at each iteration.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">-ts_adapt_monitor</span></code> - prints information about the timestep
adaption calculation at each iteration.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">-ts_monitor_lg_timestep</span></code> - plots the size of each timestep,
<code class="docutils literal notranslate"><span class="pre">TSMonitorLGTimeStep()</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">-ts_monitor_lg_solution</span></code> - for ODEs with only a few components
(not arising from the discretization of a PDE) plots the solution as
a function of time, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSMonitorLGSolution.html#TSMonitorLGSolution">TSMonitorLGSolution</a>()</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">-ts_monitor_lg_error</span></code> - for ODEs with only a few components plots
the error as a function of time, only if <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetSolutionFunction.html#TSSetSolutionFunction">TSSetSolutionFunction</a>()</span></code>
is provided, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSMonitorLGError.html#TSMonitorLGError">TSMonitorLGError</a>()</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">-ts_monitor_draw_solution</span></code> - plots the solution at each iteration,
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSMonitorDrawSolution.html#TSMonitorDrawSolution">TSMonitorDrawSolution</a>()</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">-ts_monitor_draw_error</span></code> - plots the error at each iteration only
if <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetSolutionFunction.html#TSSetSolutionFunction">TSSetSolutionFunction</a>()</span></code> is provided,
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSMonitorDrawSolution.html#TSMonitorDrawSolution">TSMonitorDrawSolution</a>()</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">-ts_monitor_solution</span> <span class="pre">binary[:filename]</span></code> - saves the solution at
each iteration to a binary file, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSMonitorSolution.html#TSMonitorSolution">TSMonitorSolution</a>()</span></code>.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">-ts_monitor_solution_vtk</span> <span class="pre">&lt;filename-%03D.vts&gt;</span></code> - saves the solution
at each iteration to a file in vtk format,
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSMonitorSolutionVTK.html#TSMonitorSolutionVTK">TSMonitorSolutionVTK</a>()</span></code>.</p></li>
</ul>
</div>
<div class="section" id="error-control-via-variable-time-stepping">
<h2>Error control via variable time-stepping<a class="headerlink" href="#error-control-via-variable-time-stepping" title="Permalink to this headline">¶</a></h2>
<p>Most of the time stepping methods avaialable in PETSc have an error
estimation and error control mechanism. This mechanism is implemented by
changing the step size in order to maintain user specified absolute and
relative tolerances. The PETSc object responsible with error control is
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSAdapt.html#TSAdapt">TSAdapt</a></span></code>. The available <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSAdapt.html#TSAdapt">TSAdapt</a></span></code> types are listed in the following table.</p>
<table class="docutils align-default" id="tab-adaptors">
<caption><span class="caption-number">Table 16 </span><span class="caption-text"><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSAdapt.html#TSAdapt">TSAdapt</a></span></code>: available adaptors</span><a class="headerlink" href="#tab-adaptors" title="Permalink to this table">¶</a></caption>
<colgroup>
<col style="width: 33%" />
<col style="width: 33%" />
<col style="width: 33%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>ID</p></th>
<th class="head"><p>Name</p></th>
<th class="head"><p>Notes</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSADAPTNONE.html#TSADAPTNONE">TSADAPTNONE</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">none</span></code></p></td>
<td><p>no adaptivity</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSADAPTBASIC.html#TSADAPTBASIC">TSADAPTBASIC</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">basic</span></code></p></td>
<td><p>the default adaptor</p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSADAPTGLEE.html#TSADAPTGLEE">TSADAPTGLEE</a></span></code></p></td>
<td><p><code class="docutils literal notranslate"><span class="pre">glee</span></code></p></td>
<td><p>extension of the basic adaptor to treat <span class="math">\({\rm Tol}_{\rm A}\)</span> and <span class="math">\({\rm Tol}_{\rm R}\)</span> as separate criteria. It can also control global erorrs if the integrator (e.g., <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGLEE.html#TSGLEE">TSGLEE</a></span></code>) provides this information</p></td>
</tr>
</tbody>
</table>
<p>When using <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSADAPTBASIC.html#TSADAPTBASIC">TSADAPTBASIC</a></span></code> (the default), the user typically provides a
desired absolute <span class="math">\({\rm Tol}_{\rm A}\)</span> or a relative
<span class="math">\({\rm Tol}_{\rm R}\)</span> error tolerance by invoking
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetTolerances.html#TSSetTolerances">TSSetTolerances</a>()</span></code> or at the command line with options <code class="docutils literal notranslate"><span class="pre">-ts_atol</span></code>
and <code class="docutils literal notranslate"><span class="pre">-ts_rtol</span></code>. The error estimate is based on the local truncation
error, so for every step the algorithm verifies that the estimated local
truncation error satisfies the tolerances provided by the user and
computes a new step size to be taken. For multistage methods, the local
truncation is obtained by comparing the solution <span class="math">\(y\)</span> to a lower
order <span class="math">\(\widehat{p}=p-1\)</span> approximation, <span class="math">\(\widehat{y}\)</span>, where
<span class="math">\(p\)</span> is the order of the method and <span class="math">\(\widehat{p}\)</span> the order
of <span class="math">\(\widehat{y}\)</span>.</p>
<p>The adaptive controller at step <span class="math">\(n\)</span> computes a tolerance level</p>
<div class="math">
\[\begin{aligned}
Tol_n(i)&=&{\rm Tol}_{\rm A}(i) +  \max(y_n(i),\widehat{y}_n(i)) {\rm Tol}_{\rm R}(i)\,,\end{aligned}\]</div>
<p>and forms the acceptable error level</p>
<div class="math">
\[\begin{aligned}
\rm wlte_n&=& \frac{1}{m} \sum_{i=1}^{m}\sqrt{\frac{\left\|y_n(i)
  -\widehat{y}_n(i)\right\|}{Tol(i)}}\,,\end{aligned}\]</div>
<p>where the errors are computed componentwise, <span class="math">\(m\)</span> is the dimension
of <span class="math">\(y\)</span> and <code class="docutils literal notranslate"><span class="pre">-ts_adapt_wnormtype</span></code> is <code class="docutils literal notranslate"><span class="pre">2</span></code> (default). If
<code class="docutils literal notranslate"><span class="pre">-ts_adapt_wnormtype</span></code> is <code class="docutils literal notranslate"><span class="pre">infinity</span></code> (max norm), then</p>
<div class="math">
\[\begin{aligned}
\rm wlte_n&=& \max_{1\dots m}\frac{\left\|y_n(i)
  -\widehat{y}_n(i)\right\|}{Tol(i)}\,.\end{aligned}\]</div>
<p>The error tolerances are satisfied when <span class="math">\(\rm wlte\le 1.0\)</span>.</p>
<p>The next step size is based on this error estimate, and determined by</p>
<div class="math">
\[\begin{aligned}
 \Delta t_{\rm new}(t)&=&\Delta t_{\rm{old}} \min(\alpha_{\max},
 \max(\alpha_{\min}, \beta (1/\rm wlte)^\frac{1}{\widehat{p}+1}))\,,\end{aligned}\]</div>
<p>where <span class="math">\(\alpha_{\min}=\)</span><code class="docutils literal notranslate"><span class="pre">-ts_adapt_clip</span></code>[0] and
<span class="math">\(\alpha_{\max}\)</span>=<code class="docutils literal notranslate"><span class="pre">-ts_adapt_clip</span></code>[1] keep the change in
<span class="math">\(\Delta t\)</span> to within a certain factor, and <span class="math">\(\beta&lt;1\)</span> is
chosen through <code class="docutils literal notranslate"><span class="pre">-ts_adapt_safety</span></code> so that there is some margin to
which the tolerances are satisfied and so that the probability of
rejection is decreased.</p>
<p>This adaptive controller works in the following way. After completing
step <span class="math">\(k\)</span>, if <span class="math">\(\rm wlte_{k+1} \le 1.0\)</span>, then the step is
accepted and the next step is modified according to
(<a class="reference external" href="#eq:hnew">[eq:hnew]</a>); otherwise, the step is rejected and retaken
with the step length computed in (<a class="reference external" href="#eq:hnew">[eq:hnew]</a>).</p>
<p><code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSADAPTGLEE.html#TSADAPTGLEE">TSADAPTGLEE</a></span></code> is an extension of the basic
adaptor to treat <span class="math">\({\rm Tol}_{\rm A}\)</span> and <span class="math">\({\rm Tol}_{\rm R}\)</span>
as separate criteria. it can also control global errors if the
integrator (e.g., <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSGLEE.html#TSGLEE">TSGLEE</a></span></code>) provides this information.</p>
</div>
<div class="section" id="handling-of-discontinuities">
<h2>Handling of discontinuities<a class="headerlink" href="#handling-of-discontinuities" title="Permalink to this headline">¶</a></h2>
<p>For problems that involve discontinuous right hand sides, one can set an
“event” function <span class="math">\(g(t,u)\)</span> for PETSc to detect and locate the times
of discontinuities (zeros of <span class="math">\(g(t,u)\)</span>). Events can be defined
through the event monitoring routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetEventHandler.html#TSSetEventHandler">TSSetEventHandler</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">nevents</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="o">*</span><span class="n">direction</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscBool.html#PetscBool">PetscBool</a></span> <span class="o">*</span><span class="n">terminate</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode">PetscErrorCode</a></span> <span class="p">(</span><span class="o">*</span><span class="n">eventhandler</span><span class="p">)(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscScalar.html#PetscScalar">PetscScalar</a></span><span class="o">*</span><span class="p">,</span><span class="kt">void</span><span class="o">*</span> <span class="n">eventP</span><span class="p">),</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode">PetscErrorCode</a></span> <span class="p">(</span><span class="o">*</span><span class="n">postevent</span><span class="p">)(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span><span class="p">[],</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscReal.html#PetscReal">PetscReal</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/Vec.html#Vec">Vec</a></span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscBool.html#PetscBool">PetscBool</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span> <span class="n">eventP</span><span class="p">),</span><span class="kt">void</span> <span class="o">*</span><span class="n">eventP</span><span class="p">);</span>
</pre></div>
</div>
<p>Here, <code class="docutils literal notranslate"><span class="pre">nevents</span></code> denotes the number of events, <code class="docutils literal notranslate"><span class="pre">direction</span></code> sets the
type of zero crossing to be detected for an event (+1 for positive
zero-crossing, -1 for negative zero-crossing, and 0 for both),
<code class="docutils literal notranslate"><span class="pre">terminate</span></code> conveys whether the time-stepping should continue or halt
when an event is located, <code class="docutils literal notranslate"><span class="pre">eventmonitor</span></code> is a user- defined routine
that specifies the event description, <code class="docutils literal notranslate"><span class="pre">postevent</span></code> is an optional
user-defined routine to take specific actions following an event.</p>
<p>The arguments to <code class="docutils literal notranslate"><span class="pre">eventhandler()</span></code> are the timestep context, current
time, input state <span class="math">\(u\)</span>, array of event function value, and the
(optional) user-provided context <code class="docutils literal notranslate"><span class="pre">eventP</span></code>.</p>
<p>The arguments to <code class="docutils literal notranslate"><span class="pre">postevent()</span></code> routine are the timestep context,
number of events occured, indices of events occured, current time, input
state <span class="math">\(u\)</span>, a boolean flag indicating forward solve (1) or adjoint
solve (0), and the (optional) user-provided context <code class="docutils literal notranslate"><span class="pre">eventP</span></code>.</p>
<p>The event monitoring functionality is only available with PETSc’s
implicit time-stepping solvers <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSTHETA.html#TSTHETA">TSTHETA</a></span></code>, <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSARKIMEX.html#TSARKIMEX">TSARKIMEX</a></span></code>, and
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSROSW.html#TSROSW">TSROSW</a></span></code>.</p>
</div>
<div class="section" id="using-tchem-from-petsc">
<span id="sec-tchem"></span><h2>Using TChem from PETSc<a class="headerlink" href="#using-tchem-from-petsc" title="Permalink to this headline">¶</a></h2>
<p>TChem <a class="footnote-reference brackets" href="#id30" id="id26">6</a> is a package originally developed at Sandia National
Laboratory that can read in CHEMKIN <a class="footnote-reference brackets" href="#id31" id="id27">7</a> data files and compute the
right hand side function and its Jacobian for a reaction ODE system. To
utilize PETSc’s ODE solvers for these systems, first install PETSc with
the additional <code class="docutils literal notranslate"><span class="pre">./configure</span></code> option <code class="docutils literal notranslate"><span class="pre">--download-tchem</span></code>. We currently
provide two examples of its use; one for single cell reaction and one
for an “artificial” one dimensional problem with periodic boundary
conditions and diffusion of all species. The self-explanatory examples
are the
<a class="reference external" href="https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/extchem.c.html">The TS tutorial extchem</a>
and
<a class="reference external" href="https://www.mcs.anl.gov/petsc/petsc-current/src/ts/tutorials/extchemfield.c.html">The TS tutorial extchemfield</a>.</p>
</div>
<div class="section" id="using-sundials-from-petsc">
<span id="sec-sundials"></span><h2>Using Sundials from PETSc<a class="headerlink" href="#using-sundials-from-petsc" title="Permalink to this headline">¶</a></h2>
<p>Sundials is a parallel ODE solver developed by Hindmarsh et al. at LLNL.
The <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span></code> library provides an interface to use the CVODE component of
Sundials directly from PETSc. (To configure PETSc to use Sundials, see
the installation guide, <code class="docutils literal notranslate"><span class="pre">docs/installation/index.htm</span></code>.)</p>
<p>To use the Sundials integrators, call</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetType.html#TSSetType">TSSetType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSType.html#TSType">TSType</a></span> <span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSUNDIALS.html#TSSUNDIALS">TSSUNDIALS</a></span><span class="p">);</span>
</pre></div>
</div>
<p>or use the command line option <code class="docutils literal notranslate"><span class="pre">-ts_type</span></code> <code class="docutils literal notranslate"><span class="pre">sundials</span></code>.</p>
<p>Sundials’ CVODE solver comes with two main integrator families, Adams
and BDF (backward differentiation formula). One can select these with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSundialsSetType.html#TSSundialsSetType">TSSundialsSetType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n">TSSundialsLmmType</span> <span class="p">[</span><span class="n">SUNDIALS_ADAMS</span><span class="p">,</span><span class="n">SUNDIALS_BDF</span><span class="p">]);</span>
</pre></div>
</div>
<p>or the command line option <code class="docutils literal notranslate"><span class="pre">-ts_sundials_type</span> <span class="pre">&lt;adams,bdf&gt;</span></code>. BDF is the
default.</p>
<p>Sundials does not use the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/SNES/SNES.html#SNES">SNES</a></span></code> library within PETSc for its
nonlinear solvers, so one cannot change the nonlinear solver options via
<code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/SNES/SNES.html#SNES">SNES</a></span></code>. Rather, Sundials uses the preconditioners within the <code class="docutils literal notranslate"><span class="pre"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span></code>
package of PETSc, which can be accessed via</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSundialsGetPC.html#TSSundialsGetPC">TSSundialsGetPC</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PC.html#PC">PC</a></span> <span class="o">*</span><span class="n">pc</span><span class="p">);</span>
</pre></div>
</div>
<p>The user can then directly set preconditioner options; alternatively,
the usual runtime options can be employed via <code class="docutils literal notranslate"><span class="pre">-pc_xxx</span></code>.</p>
<p>Finally, one can set the Sundials tolerances via</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSundialsSetTolerance.html#TSSundialsSetTolerance">TSSundialsSetTolerance</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="kt">double</span> <span class="n">abs</span><span class="p">,</span><span class="kt">double</span> <span class="n">rel</span><span class="p">);</span>
</pre></div>
</div>
<p>where <code class="docutils literal notranslate"><span class="pre">abs</span></code> denotes the absolute tolerance and <code class="docutils literal notranslate"><span class="pre">rel</span></code> the relative
tolerance.</p>
<p>Other PETSc-Sundials options include</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSundialsSetGramSchmidtType.html#TSSundialsSetGramSchmidtType">TSSundialsSetGramSchmidtType</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n">TSSundialsGramSchmidtType</span> <span class="n">type</span><span class="p">);</span>
</pre></div>
</div>
<p>where <code class="docutils literal notranslate"><span class="pre">type</span></code> is either <code class="docutils literal notranslate"><span class="pre">SUNDIALS_MODIFIED_GS</span></code> or
<code class="docutils literal notranslate"><span class="pre">SUNDIALS_UNMODIFIED_GS</span></code>. This may be set via the options data base
with <code class="docutils literal notranslate"><span class="pre">-ts_sundials_gramschmidt_type</span> <span class="pre">&lt;modifed,unmodified&gt;</span></code>.</p>
<p>The routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSundialsSetMaxl.html#TSSundialsSetMaxl">TSSundialsSetMaxl</a></span><span class="p">(</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TS.html#TS">TS</a></span> <span class="n">ts</span><span class="p">,</span><span class="n"><a href="https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Sys/PetscInt.html#PetscInt">PetscInt</a></span> <span class="n">restart</span><span class="p">);</span>
</pre></div>
</div>
<p>sets the number of vectors in the Krylov subpspace used by GMRES. This
may be set in the options database with <code class="docutils literal notranslate"><span class="pre">-ts_sundials_maxl</span></code> <code class="docutils literal notranslate"><span class="pre">maxl</span></code>.</p>
<dl class="footnote brackets">
<dt class="label" id="id28"><span class="brackets"><a class="fn-backref" href="#id1">4</a></span></dt>
<dd><p>If the matrix <span class="math">\(F_{\dot{u}}(t) = \partial F
/ \partial \dot{u}\)</span> is nonsingular then it is an ODE and can be
transformed to the standard explicit form, although this
transformation may not lead to efficient algorithms.</p>
</dd>
<dt class="label" id="id29"><span class="brackets"><a class="fn-backref" href="#id25">5</a></span></dt>
<dd><p>PETSc will automatically translate the function provided to the
appropriate form.</p>
</dd>
<dt class="label" id="id30"><span class="brackets"><a class="fn-backref" href="#id26">6</a></span></dt>
<dd><p><a class="reference external" href="https://bitbucket.org/jedbrown/tchem">bitbucket.org/jedbrown/tchem</a></p>
</dd>
<dt class="label" id="id31"><span class="brackets"><a class="fn-backref" href="#id27">7</a></span></dt>
<dd><p><a class="reference external" href="https://en.wikipedia.org/wiki/CHEMKIN">en.wikipedia.org/wiki/CHEMKIN</a></p>
</dd>
</dl>
<hr><p id="id32"><dl class="citation">
<dt class="label" id="id50"><span class="brackets">ARS97</span><span class="fn-backref">(<a href="#id9">1</a>,<a href="#id16">2</a>)</span></dt>
<dd><p>U.M. Ascher, S.J. Ruuth, and R.J. Spiteri. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. <em>Applied Numerical Mathematics</em>, 25:151–167, 1997.</p>
</dd>
<dt class="label" id="id51"><span class="brackets"><a class="fn-backref" href="#id6">AP98</a></span></dt>
<dd><p>Uri M Ascher and Linda R Petzold. <em>Computer methods for ordinary differential equations and differential-algebraic equations</em>. Volume 61. SIAM, 1998.</p>
</dd>
<dt class="label" id="id49"><span class="brackets"><a class="fn-backref" href="#id15">BPR11</a></span></dt>
<dd><p>S. Boscarino, L. Pareschi, and G. Russo. Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. Arxiv preprint arXiv:1110.4375, 2011.</p>
</dd>
<dt class="label" id="id58"><span class="brackets"><a class="fn-backref" href="#id4">BJW07</a></span></dt>
<dd><p>J.C. Butcher, Z. Jackiewicz, and W.M. Wright. Error propagation of general linear methods for ordinary differential equations. <em>Journal of Complexity</em>, 23(4-6):560–580, 2007. <a class="reference external" href="https://doi.org/10.1016/j.jco.2007.01.009">doi:10.1016/j.jco.2007.01.009</a>.</p>
</dd>
<dt class="label" id="id46"><span class="brackets">Con16</span><span class="fn-backref">(<a href="#id23">1</a>,<a href="#id24">2</a>)</span></dt>
<dd><p>E.M. Constantinescu. Estimating global errors in time stepping. <em>ArXiv e-prints</em>, March 2016. <a class="reference external" href="https://arxiv.org/abs/1503.05166">arXiv:1503.05166</a>.</p>
</dd>
<dt class="label" id="id59"><span class="brackets"><a class="fn-backref" href="#id5">CS10</a></span></dt>
<dd><p>E.M. Constantinescu and A. Sandu. Extrapolated implicit-explicit time stepping. <em>SIAM Journal on Scientific Computing</em>, 31(6):4452–4477, 2010. <a class="reference external" href="https://doi.org/10.1137/080732833">doi:10.1137/080732833</a>.</p>
</dd>
<dt class="label" id="id45"><span class="brackets">GKC13</span><span class="fn-backref">(<a href="#id10">1</a>,<a href="#id11">2</a>,<a href="#id12">3</a>)</span></dt>
<dd><p>F.X. Giraldo, J.F. Kelly, and E.M. Constantinescu. Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA). <em>SIAM Journal on Scientific Computing</em>, 35(5):B1162–B1194, 2013. <a class="reference external" href="https://doi.org/10.1137/120876034">doi:10.1137/120876034</a>.</p>
</dd>
<dt class="label" id="id57"><span class="brackets"><a class="fn-backref" href="#id3">JWH00</a></span></dt>
<dd><p>K.E. Jansen, C.H. Whiting, and G.M. Hulbert. A generalized-alpha method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. <em>Computer Methods in Applied Mechanics and Engineering</em>, 190(3):305–319, 2000.</p>
</dd>
<dt class="label" id="id48"><span class="brackets">KC03</span><span class="fn-backref">(<a href="#id14">1</a>,<a href="#id17">2</a>,<a href="#id18">3</a>)</span></dt>
<dd><p>C.A. Kennedy and M.H. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-reaction equations. <em>Appl. Numer. Math.</em>, 44(1-2):139–181, 2003. <a class="reference external" href="https://doi.org/10.1016/S0168-9274(02)00138-1">doi:10.1016/S0168-9274(02)00138-1</a>.</p>
</dd>
<dt class="label" id="id56"><span class="brackets"><a class="fn-backref" href="#id2">Ket08</a></span></dt>
<dd><p>D.I. Ketcheson. Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations. <em>SIAM Journal on Scientific Computing</em>, 30(4):2113–2136, 2008. <a class="reference external" href="https://doi.org/10.1137/07070485X">doi:10.1137/07070485X</a>.</p>
</dd>
<dt class="label" id="id52"><span class="brackets"><a class="fn-backref" href="#id7">OColomesB16</a></span></dt>
<dd><p>Oriol Colomés and Santiago Badia. Segregated Runge–Kutta methods for the incompressible Navier–Stokes equations. <em>International Journal for Numerical Methods in Engineering</em>, 105(5):372–400, 2016.</p>
</dd>
<dt class="label" id="id47"><span class="brackets">PR05</span><span class="fn-backref">(<a href="#id8">1</a>,<a href="#id13">2</a>)</span></dt>
<dd><p>L. Pareschi and G. Russo. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. <em>Journal of Scientific Computing</em>, 25(1):129–155, 2005.</p>
</dd>
<dt class="label" id="id54"><span class="brackets">RA05</span><span class="fn-backref">(<a href="#id19">1</a>,<a href="#id20">2</a>)</span></dt>
<dd><p>J. Rang and L. Angermann. New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1. <em>BIT Numerical Mathematics</em>, 45(4):761–787, 2005.</p>
</dd>
<dt class="label" id="id53"><span class="brackets">SVB+97</span><span class="fn-backref">(<a href="#id21">1</a>,<a href="#id22">2</a>)</span></dt>
<dd><p>A. Sandu, J.G. Verwer, J.G. Blom, E.J. Spee, G.R. Carmichael, and F.A. Potra. Benchmarking stiff ode solvers for atmospheric chemistry problems II: Rosenbrock solvers. <em>Atmospheric Environment</em>, 31(20):3459–3472, 1997.</p>
</dd>
</dl>
</p>
<span class="target" id="id1282"></span></div>
</div>


          </div>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="sensitivity_analysis.html" title="Performing sensitivity analysis"
             >next</a> |</li>
        <li class="right" >
          <a href="snes.html" title="SNES: Nonlinear Solvers"
             >previous</a> |</li>
        <li class="nav-item nav-item-0"><a href="../index.html">PETSc 3.14.5 documentation</a> &#187;</li>
          <li class="nav-item nav-item-1"><a href="index.html" >PETSc Users Manual</a> &#187;</li>
          <li class="nav-item nav-item-2"><a href="programming.html" >Programming with PETSc</a> &#187;</li> 
      </ul>
    </div>
    <div class="footer" role="contentinfo">
        &#169; Copyright 1991-2021, UChicago Argonne, LLC and the PETSc Development Team.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 2.4.4.
    </div>
  </body>
</html>