1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
<html>
<title>DMDA</title><body bgcolor="FFFFFF">
<h2>DMDA</h2>
<menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex14.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Bratu nonlinear PDE in 3d.<BR>We solve the Bratu (SFI - solid fuel ignition) problem in a 3D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex19.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear driven cavity with multigrid in 2d.<BR> <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
-lidvelocity <lid>, where <lid> = dimensionless velocity of lid<BR>
-grashof <gr>, where <gr> = dimensionless temperature gradent<BR>
-prandtl <pr>, where <pr> = dimensionless thermal/momentum diffusity ratio<BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex19tu.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear driven cavity with multigrid in 2d.<BR> <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
-lidvelocity <lid>, where <lid> = dimensionless velocity of lid<BR>
-grashof <gr>, where <gr> = dimensionless temperature gradent<BR>
-prandtl <pr>, where <pr> = dimensionless thermal/momentum diffusity ratio<BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex26.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Grad-Shafranov solver for one dimensional CHI equilibrium.<BR></menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex27.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear driven cavity with multigrid and pseudo timestepping 2d.<BR> <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
-lidvelocity <lid>, where <lid> = dimensionless velocity of lid<BR>
-grashof <gr>, where <gr> = dimensionless temperature gradent<BR>
-prandtl <pr>, where <pr> = dimensionless thermal/momentum diffusity ratio<BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex29.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Hall MHD with in two dimensions with time stepping and multigrid.<BR>-options_file ex29.options<BR>
other PETSc options<BR>
-resistivity <eta><BR>
-viscosity <nu><BR>
-skin_depth <d_e><BR>
-larmor_radius <rho_s><BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex32.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Model multi-physics solver. Modified from ex19.c <BR>\\nThe 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
-lidvelocity <lid>, where <lid> = dimensionless velocity of lid<BR>
-grashof <gr>, where <gr> = dimensionless temperature gradent<BR>
-prandtl <pr>, where <pr> = dimensionless thermal/momentum diffusity ratio<BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex4.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear PDE in 2d.<BR>We solve the Lane-Emden equation in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex46.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Surface processes in geophysics.<BR></menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex49.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear driven cavity with multigrid in 2d.<BR> <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
-lidvelocity <lid>, where <lid> = dimensionless velocity of lid<BR>
-grashof <gr>, where <gr> = dimensionless temperature gradent<BR>
-prandtl <pr>, where <pr> = dimensionless thermal/momentum diffusity ratio<BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex4tu.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear PDE in 2d.<BR>We solve the Lane-Emden equation in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex5.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Bratu nonlinear PDE in 2d.<BR>We solve the Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex50.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear driven cavity with multigrid in 2d.<BR> <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
-lidvelocity <lid>, where <lid> = dimensionless velocity of lid<BR>
-grashof <gr>, where <gr> = dimensionless temperature gradent<BR>
-prandtl <pr>, where <pr> = dimensionless thermal/momentum diffusity ratio<BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex5f.F.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
<BR>
Description: This example solves a nonlinear system in parallel with SNES.<BR>
We solve the Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex5f90.F.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
<BR>
Description: Solves a nonlinear system in parallel with SNES.<BR>
We solve the Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex5f90t.F.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
<BR>
Description: Solves a nonlinear system in parallel with SNES.<BR>
We solve the Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex7.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear PDE in 2d.<BR>We solve the Stokes equation in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex8.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear PDE in 2d.<BR>We solve the Bratu equation in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex18.c.html"><CONCEPT>using distributed arrays</CONCEPT></A>
<menu>
Nonlinear Radiative Transport PDE with multigrid in 2d.<BR>Uses 2-dimensional distributed arrays.<BR>
A 2-dim simplified Radiative Transport test problem is used, with analytic Jacobian. <BR>
<BR>
Solves the linear systems via multilevel methods <BR>
<BR>
The command line<BR>
options are:<BR>
-tleft <tl>, where <tl> indicates the left Diriclet BC <BR>
-tright <tr>, where <tr> indicates the right Diriclet BC <BR>
-beta <beta>, where <beta> indicates the exponent in T <BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex25.c.html"><CONCEPT>using distributed arrays</CONCEPT></A>
<menu>
Minimum surface problem<BR>Uses 2-dimensional distributed arrays.<BR>
<BR>
Solves the linear systems via multilevel methods <BR>
<BR>
</menu>
</menu>
</body>
</html>
|