File: dmda.html

package info (click to toggle)
petsc 3.2.dfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 124,660 kB
  • sloc: ansic: 342,250; cpp: 62,975; python: 32,761; fortran: 17,337; makefile: 15,867; xml: 621; objc: 594; sh: 492; java: 381; f90: 347; csh: 245
file content (153 lines) | stat: -rw-r--r-- 8,447 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
<html>
<title>DMDA</title><body bgcolor="FFFFFF">
<h2>DMDA</h2>
<menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex14.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Bratu nonlinear PDE in 3d.<BR>We solve the  Bratu (SFI - solid fuel ignition) problem in a 3D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex19.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear driven cavity with multigrid in 2d.<BR>  <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
  -lidvelocity &lt;lid&gt;, where &lt;lid&gt; = dimensionless velocity of lid<BR>
  -grashof &lt;gr&gt;, where &lt;gr&gt; = dimensionless temperature gradent<BR>
  -prandtl &lt;pr&gt;, where &lt;pr&gt; = dimensionless thermal/momentum diffusity ratio<BR>
  -contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex19tu.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear driven cavity with multigrid in 2d.<BR>  <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
  -lidvelocity &lt;lid&gt;, where &lt;lid&gt; = dimensionless velocity of lid<BR>
  -grashof &lt;gr&gt;, where &lt;gr&gt; = dimensionless temperature gradent<BR>
  -prandtl &lt;pr&gt;, where &lt;pr&gt; = dimensionless thermal/momentum diffusity ratio<BR>
  -contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex26.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Grad-Shafranov solver for one dimensional CHI equilibrium.<BR></menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex27.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear driven cavity with multigrid and pseudo timestepping 2d.<BR>  <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
  -lidvelocity &lt;lid&gt;, where &lt;lid&gt; = dimensionless velocity of lid<BR>
  -grashof &lt;gr&gt;, where &lt;gr&gt; = dimensionless temperature gradent<BR>
  -prandtl &lt;pr&gt;, where &lt;pr&gt; = dimensionless thermal/momentum diffusity ratio<BR>
  -contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex29.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Hall MHD with in two dimensions with time stepping and multigrid.<BR>-options_file ex29.options<BR>
other PETSc options<BR>
-resistivity &lt;eta&gt;<BR>
-viscosity &lt;nu&gt;<BR>
-skin_depth &lt;d_e&gt;<BR>
-larmor_radius &lt;rho_s&gt;<BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex32.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Model multi-physics solver. Modified from ex19.c <BR>\\nThe 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
  -lidvelocity &lt;lid&gt;, where &lt;lid&gt; = dimensionless velocity of lid<BR>
  -grashof &lt;gr&gt;, where &lt;gr&gt; = dimensionless temperature gradent<BR>
  -prandtl &lt;pr&gt;, where &lt;pr&gt; = dimensionless thermal/momentum diffusity ratio<BR>
  -contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex4.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear PDE in 2d.<BR>We solve the Lane-Emden equation in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex46.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Surface processes in geophysics.<BR></menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex49.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear driven cavity with multigrid in 2d.<BR>  <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
  -lidvelocity &lt;lid&gt;, where &lt;lid&gt; = dimensionless velocity of lid<BR>
  -grashof &lt;gr&gt;, where &lt;gr&gt; = dimensionless temperature gradent<BR>
  -prandtl &lt;pr&gt;, where &lt;pr&gt; = dimensionless thermal/momentum diffusity ratio<BR>
  -contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex4tu.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear PDE in 2d.<BR>We solve the Lane-Emden equation in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex5.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Bratu nonlinear PDE in 2d.<BR>We solve the  Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex50.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear driven cavity with multigrid in 2d.<BR>  <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
  -lidvelocity &lt;lid&gt;, where &lt;lid&gt; = dimensionless velocity of lid<BR>
  -grashof &lt;gr&gt;, where &lt;gr&gt; = dimensionless temperature gradent<BR>
  -prandtl &lt;pr&gt;, where &lt;pr&gt; = dimensionless thermal/momentum diffusity ratio<BR>
  -contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex5f.F.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
<BR>
  Description: This example solves a nonlinear system in parallel with SNES.<BR>
  We solve the  Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
  domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex5f90.F.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
<BR>
  Description: Solves a nonlinear system in parallel with SNES.<BR>
  We solve the  Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
  domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex5f90t.F.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
<BR>
  Description: Solves a nonlinear system in parallel with SNES.<BR>
  We solve the  Bratu (SFI - solid fuel ignition) problem in a 2D rectangular<BR>
  domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex7.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear PDE in 2d.<BR>We solve the Stokes equation in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex8.c.html"><CONCEPT>using distributed arrays;</CONCEPT></A>
<menu>
Nonlinear PDE in 2d.<BR>We solve the Bratu equation in a 2D rectangular<BR>
domain, using distributed arrays (DMDAs) to partition the parallel grid.<BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex18.c.html"><CONCEPT>using distributed arrays</CONCEPT></A>
<menu>
Nonlinear Radiative Transport PDE with multigrid in 2d.<BR>Uses 2-dimensional distributed arrays.<BR>
A 2-dim simplified Radiative Transport test problem is used, with analytic Jacobian. <BR>
<BR>
  Solves the linear systems via multilevel methods <BR>
<BR>
The command line<BR>
options are:<BR>
  -tleft &lt;tl&gt;, where &lt;tl&gt; indicates the left Diriclet BC <BR>
  -tright &lt;tr&gt;, where &lt;tr&gt; indicates the right Diriclet BC <BR>
  -beta &lt;beta&gt;, where &lt;beta&gt; indicates the exponent in T <BR>
</menu>
<LI><A HREF="../../../src/snes/examples/tutorials/ex25.c.html"><CONCEPT>using distributed arrays</CONCEPT></A>
<menu>
Minimum surface problem<BR>Uses 2-dimensional distributed arrays.<BR>
<BR>
  Solves the linear systems via multilevel methods <BR>
<BR>
</menu>
</menu>
</body>
</html>