File: ts.rst.txt

package info (click to toggle)
petsc 3.22.5%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 516,740 kB
  • sloc: ansic: 814,333; cpp: 50,948; python: 37,416; f90: 17,187; javascript: 3,493; makefile: 3,198; sh: 1,502; xml: 619; objc: 445; java: 13; csh: 1
file content (1574 lines) | stat: -rw-r--r-- 54,561 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
.. _ch_ts:

TS: Scalable ODE and DAE Solvers
--------------------------------

The ``TS`` library provides a framework for the scalable solution of
ODEs and DAEs arising from the discretization of time-dependent PDEs.

**Simple Example:** Consider the PDE

.. math:: u_t = u_{xx}

discretized with centered finite differences in space yielding the
semi-discrete equation

.. math::

   \begin{aligned}
             (u_i)_t & =  & \frac{u_{i+1} - 2 u_{i} + u_{i-1}}{h^2}, \\
              u_t      &  = & \tilde{A} u;\end{aligned}

or with piecewise linear finite elements approximation in space
:math:`u(x,t) \doteq \sum_i \xi_i(t) \phi_i(x)` yielding the
semi-discrete equation

.. math:: B {\xi}'(t) = A \xi(t)

Now applying the backward Euler method results in

.. math:: ( B - dt^n A  ) u^{n+1} = B u^n,

in which

.. math:: {u^n}_i = \xi_i(t_n) \doteq u(x_i,t_n),

.. math:: {\xi}'(t_{n+1}) \doteq \frac{{u^{n+1}}_i - {u^{n}}_i }{dt^{n}},

:math:`A` is the stiffness matrix, and :math:`B` is the identity for
finite differences or the mass matrix for the finite element method.

The PETSc interface for solving time dependent problems assumes the
problem is written in the form

.. math:: F(t,u,\dot{u}) = G(t,u), \quad u(t_0) = u_0.

In general, this is a differential algebraic equation (DAE)  [4]_. For
ODE with nontrivial mass matrices such as arise in FEM, the implicit/DAE
interface significantly reduces overhead to prepare the system for
algebraic solvers (``SNES``/``KSP``) by having the user assemble the
correctly shifted matrix. Therefore this interface is also useful for
ODE systems.

To solve an ODE or DAE one uses:

-  Function :math:`F(t,u,\dot{u})`

   ::

      TSSetIFunction(TS ts,Vec R,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,Vec,void*),void *funP);

   The vector ``R`` is an optional location to store the residual. The
   arguments to the function ``f()`` are the timestep context, current
   time, input state :math:`u`, input time derivative :math:`\dot{u}`,
   and the (optional) user-provided context ``funP``. If
   :math:`F(t,u,\dot{u}) = \dot{u}` then one need not call this
   function.

-  Function :math:`G(t,u)`, if it is nonzero, is provided with the
   function

   ::

      TSSetRHSFunction(TS ts,Vec R,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *funP);

-  | Jacobian
     :math:`\sigma F_{\dot{u}}(t^n,u^n,\dot{u}^n) + F_u(t^n,u^n,\dot{u}^n)`
   | If using a fully implicit or semi-implicit (IMEX) method one also
     can provide an appropriate (approximate) Jacobian matrix of
     :math:`F()`.

   ::

      TSSetIJacobian(TS ts,Mat A,Mat B,PetscErrorCode (*fjac)(TS,PetscReal,Vec,Vec,PetscReal,Mat,Mat,void*),void *jacP);

   The arguments for the function ``fjac()`` are the timestep context,
   current time, input state :math:`u`, input derivative
   :math:`\dot{u}`, input shift :math:`\sigma`, matrix :math:`A`,
   preconditioning matrix :math:`B`, and the (optional) user-provided
   context ``jacP``.

   The Jacobian needed for the nonlinear system is, by the chain rule,

   .. math::

      \begin{aligned}
          \frac{d F}{d u^n} &  = &  \frac{\partial F}{\partial \dot{u}}|_{u^n} \frac{\partial \dot{u}}{\partial u}|_{u^n} + \frac{\partial F}{\partial u}|_{u^n}.\end{aligned}

   For any ODE integration method the approximation of :math:`\dot{u}`
   is linear in :math:`u^n` hence
   :math:`\frac{\partial \dot{u}}{\partial u}|_{u^n} = \sigma`, where
   the shift :math:`\sigma` depends on the ODE integrator and time step
   but not on the function being integrated. Thus

   .. math::

      \begin{aligned}
          \frac{d F}{d u^n} &  = &    \sigma F_{\dot{u}}(t^n,u^n,\dot{u}^n) + F_u(t^n,u^n,\dot{u}^n).\end{aligned}

   This explains why the user provide Jacobian is in the given form for
   all integration methods. An equivalent way to derive the formula is
   to note that

   .. math:: F(t^n,u^n,\dot{u}^n) = F(t^n,u^n,w+\sigma*u^n)

   where :math:`w` is some linear combination of previous time solutions
   of :math:`u` so that

   .. math:: \frac{d F}{d u^n} = \sigma F_{\dot{u}}(t^n,u^n,\dot{u}^n) + F_u(t^n,u^n,\dot{u}^n)

   again by the chain rule.

   For example, consider backward Euler’s method applied to the ODE
   :math:`F(t, u, \dot{u}) = \dot{u} - f(t, u)` with
   :math:`\dot{u} = (u^n - u^{n-1})/\delta t` and
   :math:`\frac{\partial \dot{u}}{\partial u}|_{u^n} = 1/\delta t`
   resulting in

   .. math::

      \begin{aligned}
          \frac{d F}{d u^n} & = &   (1/\delta t)F_{\dot{u}} + F_u(t^n,u^n,\dot{u}^n).\end{aligned}

   But :math:`F_{\dot{u}} = 1`, in this special case, resulting in the
   expected Jacobian :math:`I/\delta t - f_u(t,u^n)`.

-  | Jacobian :math:`G_u`
   | If using a fully implicit method and the function :math:`G()` is
     provided, one also can provide an appropriate (approximate)
     Jacobian matrix of :math:`G()`.

   ::

      TSSetRHSJacobian(TS ts,Mat A,Mat B,
      PetscErrorCode (*fjac)(TS,PetscReal,Vec,Mat,Mat,void*),void *jacP);

   The arguments for the function ``fjac()`` are the timestep context,
   current time, input state :math:`u`, matrix :math:`A`,
   preconditioning matrix :math:`B`, and the (optional) user-provided
   context ``jacP``.

Providing appropriate :math:`F()` and :math:`G()` for your problem
allows for the easy runtime switching between explicit, semi-implicit
(IMEX), and fully implicit methods.

.. _sec_ts_basic:

Basic TS Options
~~~~~~~~~~~~~~~~

The user first creates a ``TS`` object with the command

.. code-block::

   int TSCreate(MPI_Comm comm,TS *ts);

.. code-block::

   int TSSetProblemType(TS ts,TSProblemType problemtype);

The ``TSProblemType`` is one of ``TS_LINEAR`` or ``TS_NONLINEAR``.

To set up ``TS`` for solving an ODE, one must set the “initial
conditions” for the ODE with

.. code-block::

   TSSetSolution(TS ts, Vec initialsolution);

One can set the solution method with the routine

.. code-block::

   TSSetType(TS ts,TSType type);

| Some of the currently supported types are ``TSEULER``, ``TSRK`` (Runge-Kutta),
  ``TSBEULER``, ``TSCN`` (Crank-Nicolson), ``TSTHETA``, ``TSGLLE``
  (generalized linear), ``TSPSEUDO``, and ``TSSUNDIALS`` (only if the
  Sundials package is installed), or the command line option
| ``-ts_type euler,rk,beuler,cn,theta,gl,pseudo,sundials,eimex,arkimex,rosw``.

A list of available methods is given in :any:`integrator_table`.

Set the initial time with the command

.. code-block::

   TSSetTime(TS ts,PetscReal time);

One can change the timestep with the command

.. code-block::

   TSSetTimeStep(TS ts,PetscReal dt);

can determine the current timestep with the routine

.. code-block::

   TSGetTimeStep(TS ts,PetscReal* dt);

Here, “current” refers to the timestep being used to attempt to promote
the solution form :math:`u^n` to :math:`u^{n+1}.`

One sets the total number of timesteps to run or the total time to run
(whatever is first) with the commands

.. code-block::

   TSSetMaxSteps(TS ts,PetscInt maxsteps);
   TSSetMaxTime(TS ts,PetscReal maxtime);

and determines the behavior near the final time with

.. code-block::

   TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt);

where ``eftopt`` is one of
``TS_EXACTFINALTIME_STEPOVER``,\ ``TS_EXACTFINALTIME_INTERPOLATE``, or
``TS_EXACTFINALTIME_MATCHSTEP``. One performs the requested number of
time steps with

.. code-block::

   TSSolve(TS ts,Vec U);

The solve call implicitly sets up the timestep context; this can be done
explicitly with

.. code-block::

   TSSetUp(TS ts);

One destroys the context with

.. code-block::

   TSDestroy(TS *ts);

and views it with

.. code-block::

   TSView(TS ts,PetscViewer viewer);

In place of ``TSSolve()``, a single step can be taken using

.. code-block::

   TSStep(TS ts);

.. _sec_imex:

DAE Formulations
~~~~~~~~~~~~~~~~

You can find a discussion of DAEs in :cite:`ascherpetzold1998` or `Scholarpedia <http://www.scholarpedia.org/article/Differential-algebraic_equations>`__. In PETSc, TS deals with the semi-discrete form of the equations, so that space has already been discretized. If the DAE depends explicitly on the coordinate :math:`x`, then this will just appear as any other data for the equation, not as an explicit argument. Thus we have

.. math::

  F(t, u, \dot{u}) = 0

In this form, only fully implicit solvers are appropriate. However, specialized solvers for restricted forms of DAE are supported by PETSc. Below we consider an ODE which is augmented with algebraic constraints on the variables.

Hessenberg Index-1 DAE
``````````````````````

  This is a Semi-Explicit Index-1 DAE which has the form

.. math::

  \begin{aligned}
    \dot{u} &= f(t, u, z) \\
          0 &= h(t, u, z)
  \end{aligned}

where :math:`z` is a new constraint variable, and the Jacobian :math:`\frac{dh}{dz}` is non-singular everywhere. We have suppressed the :math:`x` dependence since it plays no role here. Using the non-singularity of the Jacobian and the Implicit Function Theorem, we can solve for :math:`z` in terms of :math:`u`. This means we could, in principle, plug :math:`z(u)` into the first equation to obtain a simple ODE, even if this is not the numerical process we use. Below we show that this type of DAE can be used with IMEX schemes.

Hessenberg Index-2 DAE
``````````````````````

  This DAE has the form

.. math::

  \begin{aligned}
    \dot{u} &= f(t, u, z) \\
          0 &= h(t, u)
  \end{aligned}

Notice that the constraint equation :math:`h` is not a function of the constraint variable :math:`z`. This means that we cannot naively invert as we did in the index-1 case. Our strategy will be to convert this into an index-1 DAE using a time derivative, which loosely corresponds to the idea of an index being the number of derivatives necessary to get back to an ODE. If we differentiate the constraint equation with respect to time, we can use the ODE to simplify it,

.. math::

  \begin{aligned}
          0 &= \dot{h}(t, u) \\
            &= \frac{dh}{du} \dot{u} + \frac{\partial h}{\partial t} \\
            &= \frac{dh}{du} f(t, u, z) + \frac{\partial h}{\partial t}
  \end{aligned}

If the Jacobian :math:`\frac{dh}{du} \frac{df}{dz}` is non-singular, then we have precisely a semi-explicit index-1 DAE, and we can once again use the PETSc IMEX tools to solve it. A common example of an index-2 DAE is the incompressible Navier-Stokes equations, since the continuity equation :math:`\nabla\cdot u = 0` does not involve the pressure. Using PETSc IMEX with the above conversion then corresponds to the Segregated Runge-Kutta method applied to this equation :cite:`colomesbadia2016`.

Using Implicit-Explicit (IMEX) Methods
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For “stiff” problems or those with multiple time scales :math:`F()` will
be treated implicitly using a method suitable for stiff problems and
:math:`G()` will be treated explicitly when using an IMEX method like
TSARKIMEX. :math:`F()` is typically linear or weakly nonlinear while
:math:`G()` may have very strong nonlinearities such as arise in
non-oscillatory methods for hyperbolic PDE. The user provides three
pieces of information, the APIs for which have been described above.

-  “Slow” part :math:`G(t,u)` using ``TSSetRHSFunction()``.

-  “Stiff” part :math:`F(t,u,\dot u)` using ``TSSetIFunction()``.

-  Jacobian :math:`F_u + \sigma F_{\dot u}` using ``TSSetIJacobian()``.

The user needs to set ``TSSetEquationType()`` to ``TS_EQ_IMPLICIT`` or
higher if the problem is implicit; e.g.,
:math:`F(t,u,\dot u) = M \dot u - f(t,u)`, where :math:`M` is not the
identity matrix:

-  the problem is an implicit ODE (defined implicitly through
   ``TSSetIFunction()``) or

-  a DAE is being solved.

An IMEX problem representation can be made implicit by setting ``TSARKIMEXSetFullyImplicit()``.
Note that multilevel preconditioners (e.g. ``PCMG``), won't work in the fully implicit case; the
same holds true for any other ``TS`` type requiring a fully implicit formulation in case both
Jacobians are specified.

In PETSc, DAEs and ODEs are formulated as :math:`F(t,u,\dot{u})=G(t,u)`, where :math:`F()` is meant to be integrated implicitly and :math:`G()` explicitly. An IMEX formulation such as :math:`M\dot{u}=f(t,u)+g(t,u)` requires the user to provide :math:`M^{-1} g(t,u)` or solve :math:`g(t,u) - M x=0` in place of :math:`G(t,u)`. General cases such as :math:`F(t,u,\dot{u})=G(t,u)` are not amenable to IMEX Runge-Kutta, but can be solved by using fully implicit methods. Some use-case examples for ``TSARKIMEX`` are listed in :numref:`tab_DE_forms` and a list of methods with a summary of their properties is given in :any:`tab_IMEX_RK_PETSc`.

.. list-table:: Use case examples for ``TSARKIMEX``
   :name: tab_DE_forms
   :widths: 40 40 80

   * - :math:`\dot{u} = g(t,u)`
     - nonstiff ODE
     - :math:`\begin{aligned}F(t,u,\dot{u}) &= \dot{u} \\ G(t,u) &= g(t,u)\end{aligned}`
   * - :math:`M \dot{u} = g(t,u)`
     - nonstiff ODE with mass matrix
     - :math:`\begin{aligned}F(t,u,\dot{u}) &= \dot{u} \\ G(t,u) &= M^{-1} g(t,u)\end{aligned}`
   * - :math:`\dot{u} = f(t,u)`
     - stiff ODE
     - :math:`\begin{aligned}F(t,u,\dot{u}) &= \dot{u} - f(t,u) \\ G(t,u) &= 0\end{aligned}`
   * - :math:`M \dot{u} = f(t,u)`
     - stiff ODE with mass matrix
     - :math:`\begin{aligned}F(t,u,\dot{u}) &= M \dot{u} - f(t,u) \\ G(t,u) &= 0\end{aligned}`
   * - :math:`\dot{u} = f(t,u) + g(t,u)`
     - stiff-nonstiff ODE
     - :math:`\begin{aligned}F(t,u,\dot{u}) &= \dot{u} - f(t,u) \\ G(t,u) &= g(t,u)\end{aligned}`
   * - :math:`M \dot{u} = f(t,u) + g(t,u)`
     - stiff-nonstiff ODE with mass matrix
     - :math:`\begin{aligned}F(t,u,\dot{u}) &= M\dot{u} - f(t,u) \\ G(t,u) &= M^{-1} g(t,u)\end{aligned}`
   * - :math:`\begin{aligned}\dot{u} &= f(t,u,z) + g(t,u,z)\\0 &= h(t,y,z)\end{aligned}`
     - semi-explicit index-1 DAE
     - :math:`\begin{aligned}F(t,u,\dot{u}) &= \begin{pmatrix}\dot{u} - f(t,u,z)\\h(t, u, z)\end{pmatrix}\\G(t,u) &= g(t,u)\end{aligned}`
   * - :math:`f(t,u,\dot{u})=0`
     - fully implicit ODE/DAE
     - :math:`\begin{aligned}F(t,u,\dot{u}) &= f(t,u,\dot{u})\\G(t,u) &= 0\end{aligned}`; the user needs to set ``TSSetEquationType()`` to ``TS_EQ_IMPLICIT`` or higher

:numref:`tab_IMEX_RK_PETSc` lists of the currently available IMEX Runge-Kutta schemes. For each method, it gives the ``-ts_arkimex_type`` name, the reference, the total number of stages/implicit stages, the order/stage-order, the implicit stability properties (IM), stiff accuracy (SA), the existence of an embedded scheme, and dense output (DO).

.. list-table:: IMEX Runge-Kutta schemes
  :name: tab_IMEX_RK_PETSc
  :header-rows: 1

  * - Name
    - Reference
    - Stages (IM)
    - Order (Stage)
    - IM
    - SA
    - Embed
    - DO
    - Remarks
  * - a2
    - based on CN
    - 2 (1)
    - 2 (2)
    - A-Stable
    - yes
    - yes (1)
    - yes (2)
    -
  * - l2
    - SSP2(2,2,2) :cite:`pareschi_2005`
    - 2 (2)
    - 2 (1)
    - L-Stable
    - yes
    - yes (1)
    - yes (2)
    - SSP SDIRK
  * - ars122
    - ARS122 :cite:`ascher_1997`
    - 2 (1)
    - 3 (1)
    - A-Stable
    - yes
    - yes (1)
    - yes (2)
    -
  * - 2c
    - :cite:`giraldo_2013`
    - 3 (2)
    - 2 (2)
    - L-Stable
    - yes
    - yes (1)
    - yes (2)
    - SDIRK
  * - 2d
    - :cite:`giraldo_2013`
    - 3 (2)
    - 2 (2)
    - L-Stable
    - yes
    - yes (1)
    - yes (2)
    - SDIRK
  * -  2e
    - :cite:`giraldo_2013`
    - 3 (2)
    - 2 (2)
    - L-Stable
    - yes
    - yes (1)
    - yes (2)
    - SDIRK
  * - prssp2
    - PRS(3,3,2) :cite:`pareschi_2005`
    - 3 (3)
    - 3 (1)
    - L-Stable
    - yes
    - no
    - no
    - SSP
  * - 3
    - :cite:`kennedy_2003`
    - 4 (3)
    - 3 (2)
    - L-Stable
    - yes
    - yes (2)
    - yes (2)
    - SDIRK
  * - bpr3
    - :cite:`boscarino_tr2011`
    - 5 (4)
    - 3 (2)
    - L-Stable
    - yes
    - no
    - no
    - SDIRK
  * - ars443
    - :cite:`ascher_1997`
    - 5 (4)
    - 3 (1)
    - L-Stable
    - yes
    - no
    - no
    - SDIRK
  * - 4
    - :cite:`kennedy_2003`
    - 6 (5)
    - 4 (2)
    - L-Stable
    - yes
    - yes (3)
    - yes
    - SDIRK
  * - 5
    - :cite:`kennedy_2003`
    - 8 (7)
    - 5 (2)
    - L-Stable
    - yes
    - yes (4)
    - yes (3)
    - SDIRK

ROSW are linearized implicit Runge-Kutta methods known as Rosenbrock
W-methods. They can accommodate inexact Jacobian matrices in their
formulation. A series of methods are available in PETSc are listed in
:numref:`tab_IMEX_RosW_PETSc` below. For each method, it gives the reference, the total number of stages and implicit stages, the scheme order and stage order, the implicit stability properties (IM), stiff accuracy (SA), the existence of an embedded scheme, dense output (DO), the capacity to use inexact Jacobian matrices (-W), and high order integration of differential algebraic equations (PDAE).

.. list-table:: Rosenbrock W-schemes
   :name: tab_IMEX_RosW_PETSc
   :header-rows: 1

   * - TS
     - Reference
     - Stages (IM)
     - Order (Stage)
     - IM
     - SA
     - Embed
     - DO
     - -W
     - PDAE
     - Remarks
   * - theta1
     - classical
     - 1(1)
     - 1(1)
     - L-Stable
     - -
     - -
     - -
     - -
     - -
     - -
   * - theta2
     - classical
     - 1(1)
     - 2(2)
     - A-Stable
     - -
     - -
     - -
     - -
     - -
     - -
   * - 2m
     - Zoltan
     - 2(2)
     - 2(1)
     - L-Stable
     - No
     - Yes(1)
     - Yes(2)
     - Yes
     - No
     - SSP
   * - 2p
     - Zoltan
     - 2(2)
     - 2(1)
     - L-Stable
     - No
     - Yes(1)
     - Yes(2)
     - Yes
     - No
     - SSP
   * - ra3pw
     - :cite:`rang_2005`
     - 3(3)
     - 3(1)
     - A-Stable
     - No
     - Yes
     - Yes(2)
     - No
     - Yes(3)
     - -
   * - ra34pw2
     - :cite:`rang_2005`
     - 4(4)
     - 3(1)
     - L-Stable
     - Yes
     - Yes
     - Yes(3)
     - Yes
     - Yes(3)
     - -
   * - rodas3
     - :cite:`sandu_1997`
     - 4(4)
     - 3(1)
     - L-Stable
     - Yes
     - Yes
     - No
     - No
     - Yes
     - -
   * - sandu3
     - :cite:`sandu_1997`
     - 3(3)
     - 3(1)
     - L-Stable
     - Yes
     - Yes
     - Yes(2)
     - No
     - No
     - -
   * - assp3p3s1c
     - unpub.
     - 3(2)
     - 3(1)
     - A-Stable
     - No
     - Yes
     - Yes(2)
     - Yes
     - No
     - SSP
   * - lassp3p4s2c
     - unpub.
     - 4(3)
     - 3(1)
     - L-Stable
     - No
     - Yes
     - Yes(3)
     - Yes
     - No
     - SSP
   * - lassp3p4s2c
     - unpub.
     - 4(3)
     - 3(1)
     - L-Stable
     - No
     - Yes
     - Yes(3)
     - Yes
     - No
     - SSP
   * - ark3
     - unpub.
     - 4(3)
     - 3(1)
     - L-Stable
     - No
     - Yes
     - Yes(3)
     - Yes
     - No
     - IMEX-RK

IMEX Methods for fast-slow systems
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Consider a fast-slow ODE system

.. math::

  \begin{aligned}
  \dot{u}^{slow} & = f^{slow}(t, u^{slow},u^{fast}) \\
  M \dot{u}^{fast} & = g^{fast}(t, u^{slow},u^{fast}) + f^{fast}(t, u^{slow},u^{fast})
  \end{aligned}

where :math:`u^{slow}` is the slow component and :math:`u^{fast}` is the
fast component. The fast component can be partitioned additively as
described above. Thus we want to treat :math:`f^{slow}()` and
:math:`f^{fast}()` explicitly and the other terms implicitly when using
TSARKIMEX. This is achieved by using the following APIs:

- ``TSARKIMEXSetFastSlowSplit()`` informs PETSc to use ARKIMEX to solve a fast-slow system.

- ``TSRHSSplitSetIS()`` specifies the index set for the slow/fast components.

- ``TSRHSSplitSetRHSFunction()`` specifies the parts to be handled explicitly :math:`f^{slow}()` and :math:`f^{fast}()`.

- ``TSRHSSplitSetIFunction()`` and ``TSRHSSplitSetIJacobian()`` specify the implicit part and its Jacobian.

Note that this ODE system can also be solved by padding zeros in the implicit part and using the standard IMEX methods. However, one needs to provide the full-dimensional Jacobian whereas only a partial Jacobian is needed for the fast-slow split which is more efficient in storage and speed.

GLEE methods
~~~~~~~~~~~~

In this section, we describe explicit and implicit time stepping methods
with global error estimation that are introduced in
:cite:`constantinescu_tr2016b`. The solution vector for a
GLEE method is either [:math:`y`, :math:`\tilde{y}`] or
[:math:`y`,\ :math:`\varepsilon`], where :math:`y` is the solution,
:math:`\tilde{y}` is the “auxiliary solution,” and :math:`\varepsilon`
is the error. The working vector that ``TSGLEE`` uses is :math:`Y` =
[:math:`y`,\ :math:`\tilde{y}`], or [:math:`y`,\ :math:`\varepsilon`]. A
GLEE method is defined by

-  :math:`(p,r,s)`: (order, steps, and stages),

-  :math:`\gamma`: factor representing the global error ratio,

-  :math:`A, U, B, V`: method coefficients,

-  :math:`S`: starting method to compute the working vector from the
   solution (say at the beginning of time integration) so that
   :math:`Y = Sy`,

-  :math:`F`: finalizing method to compute the solution from the working
   vector,\ :math:`y = FY`.

-  :math:`F_\text{embed}`: coefficients for computing the auxiliary
   solution :math:`\tilde{y}` from the working vector
   (:math:`\tilde{y} = F_\text{embed} Y`),

-  :math:`F_\text{error}`: coefficients to compute the estimated error
   vector from the working vector
   (:math:`\varepsilon = F_\text{error} Y`).

-  :math:`S_\text{error}`: coefficients to initialize the auxiliary
   solution (:math:`\tilde{y}` or :math:`\varepsilon`) from a specified
   error vector (:math:`\varepsilon`). It is currently implemented only
   for :math:`r = 2`. We have :math:`y_\text{aux} =
   S_{error}[0]*\varepsilon + S_\text{error}[1]*y`, where
   :math:`y_\text{aux}` is the 2nd component of the working vector
   :math:`Y`.

The methods can be described in two mathematically equivalent forms:
propagate two components (“:math:`y\tilde{y}` form”) and propagating the
solution and its estimated error (“:math:`y\varepsilon` form”). The two
forms are not explicitly specified in ``TSGLEE``; rather, the specific
values of :math:`B, U, S, F, F_{embed}`, and :math:`F_{error}`
characterize whether the method is in :math:`y\tilde{y}` or
:math:`y\varepsilon` form.

The API used by this ``TS`` method includes:

-  ``TSGetSolutionComponents``: Get all the solution components of the
   working vector

   ::

          ierr = TSGetSolutionComponents(TS,int*,Vec*)

   Call with ``NULL`` as the last argument to get the total number of
   components in the working vector :math:`Y` (this is :math:`r` (not
   :math:`r-1`)), then call to get the :math:`i`-th solution component.

-  ``TSGetAuxSolution``: Returns the auxiliary solution
   :math:`\tilde{y}` (computed as :math:`F_\text{embed} Y`)

   ::

          ierr = TSGetAuxSolution(TS,Vec*)

-  ``TSGetTimeError``: Returns the estimated error vector
   :math:`\varepsilon` (computed as :math:`F_\text{error} Y` if
   :math:`n=0` or restores the error estimate at the end of the previous
   step if :math:`n=-1`)

   ::

          ierr = TSGetTimeError(TS,PetscInt n,Vec*)

-  ``TSSetTimeError``: Initializes the auxiliary solution
   (:math:`\tilde{y}` or :math:`\varepsilon`) for a specified initial
   error.

   ::

          ierr = TSSetTimeError(TS,Vec)

The local error is estimated as :math:`\varepsilon(n+1)-\varepsilon(n)`.
This is to be used in the error control. The error in :math:`y\tilde{y}`
GLEE is
:math:`\varepsilon(n) = \frac{1}{1-\gamma} * (\tilde{y}(n) - y(n))`.

Note that :math:`y` and :math:`\tilde{y}` are reported to ``TSAdapt``
``basic`` (``TSADAPTBASIC``), and thus it computes the local error as
:math:`\varepsilon_{loc} = (\tilde{y} -
y)`. However, the actual local error is :math:`\varepsilon_{loc}
= \varepsilon_{n+1} - \varepsilon_n = \frac{1}{1-\gamma} * [(\tilde{y} -
y)_{n+1} - (\tilde{y} - y)_n]`.

:numref:`tab_IMEX_GLEE_PETSc` lists currently available GL schemes with global error estimation :cite:`constantinescu_tr2016b`.

.. list-table:: GL schemes with global error estimation
   :name: tab_IMEX_GLEE_PETSc
   :header-rows: 1

   * - TS
     - Reference
     - IM/EX
     - :math:`(p,r,s)`
     - :math:`\gamma`
     - Form
     - Notes
   * - ``TSGLEEi1``
     - ``BE1``
     - IM
     - :math:`(1,3,2)`
     - :math:`0.5`
     - :math:`y\varepsilon`
     - Based on backward Euler
   * - ``TSGLEE23``
     - ``23``
     - EX
     - :math:`(2,3,2)`
     - :math:`0`
     - :math:`y\varepsilon`
     -
   * - ``TSGLEE24``
     - ``24``
     - EX
     - :math:`(2,4,2)`
     - :math:`0`
     - :math:`y\tilde{y}`
     -
   * - ``TSGLEE25I``
     - ``25i``
     - EX
     - :math:`(2,5,2)`
     - :math:`0`
     - :math:`y\tilde{y}`
     -
   * - ``TSGLEE35``
     - ``35``
     - EX
     - :math:`(3,5,2)`
     - :math:`0`
     - :math:`y\tilde{y}`
     -
   * - ``TSGLEEEXRK2A``
     - ``exrk2a``
     - EX
     - :math:`(2,6,2)`
     - :math:`0.25`
     - :math:`y\varepsilon`
     -
   * - ``TSGLEERK32G1``
     - ``rk32g1``
     - EX
     - :math:`(3,8,2)`
     - :math:`0`
     - :math:`y\varepsilon`
     -
   * - ``TSGLEERK285EX``
     - ``rk285ex``
     - EX
     - :math:`(2,9,2)`
     - :math:`0.25`
     - :math:`y\varepsilon`
     -

Using fully implicit methods
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To use a fully implicit method like ``TSTHETA``, ``TSBDF`` or ``TSDIRK``, either
provide the Jacobian of :math:`F()` (and :math:`G()` if :math:`G()` is
provided) or use a ``DM`` that provides a coloring so the Jacobian can
be computed efficiently via finite differences.

Using the Explicit Runge-Kutta timestepper with variable timesteps
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The explicit Euler and Runge-Kutta methods require the ODE be in the
form

.. math:: \dot{u} = G(u,t).

The user can either call ``TSSetRHSFunction()`` and/or they can call
``TSSetIFunction()`` (so long as the function provided to
``TSSetIFunction()`` is equivalent to :math:`\dot{u} + \tilde{F}(t,u)`)
but the Jacobians need not be provided. [5]_

The Explicit Runge-Kutta timestepper with variable timesteps is an
implementation of the standard Runge-Kutta with an embedded method. The
error in each timestep is calculated using the solutions from the
Runge-Kutta method and its embedded method (the 2-norm of the difference
is used). The default method is the :math:`3`\ rd-order Bogacki-Shampine
method with a :math:`2`\ nd-order embedded method (``TSRK3BS``). Other
available methods are the :math:`5`\ th-order Fehlberg RK scheme with a
:math:`4`\ th-order embedded method (``TSRK5F``), the
:math:`5`\ th-order Dormand-Prince RK scheme with a :math:`4`\ th-order
embedded method (``TSRK5DP``), the :math:`5`\ th-order Bogacki-Shampine
RK scheme with a :math:`4`\ th-order embedded method (``TSRK5BS``, and
the :math:`6`\ th-, :math:`7`\ th, and :math:`8`\ th-order robust Verner
RK schemes with a :math:`5`\ th-, :math:`6`\ th, and :math:`7`\ th-order
embedded method, respectively (``TSRK6VR``, ``TSRK7VR``, ``TSRK8VR``).
Variable timesteps cannot be used with RK schemes that do not have an
embedded method (``TSRK1FE`` - :math:`1`\ st-order, :math:`1`-stage
forward Euler, ``TSRK2A`` - :math:`2`\ nd-order, :math:`2`-stage RK
scheme, ``TSRK3`` - :math:`3`\ rd-order, :math:`3`-stage RK scheme,
``TSRK4`` - :math:`4`-th order, :math:`4`-stage RK scheme).

Special Cases
~~~~~~~~~~~~~

-  :math:`\dot{u} = A u.` First compute the matrix :math:`A` then call

   ::

      TSSetProblemType(ts,TS_LINEAR);
      TSSetRHSFunction(ts,NULL,TSComputeRHSFunctionLinear,NULL);
      TSSetRHSJacobian(ts,A,A,TSComputeRHSJacobianConstant,NULL);

   or

   ::

      TSSetProblemType(ts,TS_LINEAR);
      TSSetIFunction(ts,NULL,TSComputeIFunctionLinear,NULL);
      TSSetIJacobian(ts,A,A,TSComputeIJacobianConstant,NULL);

-  :math:`\dot{u} = A(t) u.` Use

   ::

      TSSetProblemType(ts,TS_LINEAR);
      TSSetRHSFunction(ts,NULL,TSComputeRHSFunctionLinear,NULL);
      TSSetRHSJacobian(ts,A,A,YourComputeRHSJacobian, &appctx);

   where ``YourComputeRHSJacobian()`` is a function you provide that
   computes :math:`A` as a function of time. Or use

   ::

      TSSetProblemType(ts,TS_LINEAR);
      TSSetIFunction(ts,NULL,TSComputeIFunctionLinear,NULL);
      TSSetIJacobian(ts,A,A,YourComputeIJacobian, &appctx);

Monitoring and visualizing solutions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-  ``-ts_monitor`` - prints the time and timestep at each iteration.

-  ``-ts_adapt_monitor`` - prints information about the timestep
   adaption calculation at each iteration.

-  ``-ts_monitor_lg_timestep`` - plots the size of each timestep,
   ``TSMonitorLGTimeStep()``.

-  ``-ts_monitor_lg_solution`` - for ODEs with only a few components
   (not arising from the discretization of a PDE) plots the solution as
   a function of time, ``TSMonitorLGSolution()``.

-  ``-ts_monitor_lg_error`` - for ODEs with only a few components plots
   the error as a function of time, only if ``TSSetSolutionFunction()``
   is provided, ``TSMonitorLGError()``.

-  ``-ts_monitor_draw_solution`` - plots the solution at each iteration,
   ``TSMonitorDrawSolution()``.

-  ``-ts_monitor_draw_error`` - plots the error at each iteration only
   if ``TSSetSolutionFunction()`` is provided,
   ``TSMonitorDrawSolution()``.

-  ``-ts_monitor_solution binary[:filename]`` - saves the solution at each
   iteration to a binary file, ``TSMonitorSolution()``. Solution viewers work
   with other time-aware formats, e.g., ``-ts_monitor_solution cgns:sol.cgns``,
   and can output one solution every 10 time steps by adding
   ``-ts_monitor_solution_interval 10``. Use ``-ts_monitor_solution_interval -1``
   to output data only at then end of a time loop.

-  ``-ts_monitor_solution_vtk <filename-%03D.vts>`` - saves the solution
   at each iteration to a file in vtk format,
   ``TSMonitorSolutionVTK()``.

Error control via variable time-stepping
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Most of the time stepping methods available in PETSc have an error
estimation and error control mechanism. This mechanism is implemented by
changing the step size in order to maintain user specified absolute and
relative tolerances. The PETSc object responsible with error control is
``TSAdapt``. The available ``TSAdapt`` types are listed in the following table.

.. list-table:: ``TSAdapt``: available adaptors
   :name: tab_adaptors
   :header-rows: 1

   * - ID
     - Name
     - Notes
   * - ``TSADAPTNONE``
     - ``none``
     - no adaptivity
   * - ``TSADAPTBASIC``
     - ``basic``
     - the default adaptor
   * - ``TSADAPTGLEE``
     - ``glee``
     - extension of the basic adaptor to treat :math:`{\rm Tol}_{\rm A}` and :math:`{\rm Tol}_{\rm R}` as separate criteria. It can also control global errors if the integrator (e.g., ``TSGLEE``) provides this information
   * - ``TSADAPTDSP``
     - ``dsp``
     - adaptive controller for time-stepping based on digital signal processing

When using ``TSADAPTBASIC`` (the default), the user typically provides a
desired absolute :math:`{\rm Tol}_{\rm A}` or a relative
:math:`{\rm Tol}_{\rm R}` error tolerance by invoking
``TSSetTolerances()`` or at the command line with options ``-ts_atol``
and ``-ts_rtol``. The error estimate is based on the local truncation
error, so for every step the algorithm verifies that the estimated local
truncation error satisfies the tolerances provided by the user and
computes a new step size to be taken. For multistage methods, the local
truncation is obtained by comparing the solution :math:`y` to a lower
order :math:`\widehat{p}=p-1` approximation, :math:`\widehat{y}`, where
:math:`p` is the order of the method and :math:`\widehat{p}` the order
of :math:`\widehat{y}`.

The adaptive controller at step :math:`n` computes a tolerance level

.. math::

   \begin{aligned}
   Tol_n(i)&=&{\rm Tol}_{\rm A}(i) +  \max(y_n(i),\widehat{y}_n(i)) {\rm Tol}_{\rm R}(i)\,,\end{aligned}

and forms the acceptable error level

.. math::

   \begin{aligned}
   \rm wlte_n&=& \frac{1}{m} \sum_{i=1}^{m}\sqrt{\frac{\left\|y_n(i)
     -\widehat{y}_n(i)\right\|}{Tol(i)}}\,,\end{aligned}

where the errors are computed componentwise, :math:`m` is the dimension
of :math:`y` and ``-ts_adapt_wnormtype`` is ``2`` (default). If
``-ts_adapt_wnormtype`` is ``infinity`` (max norm), then

.. math::

   \begin{aligned}
   \rm wlte_n&=& \max_{1\dots m}\frac{\left\|y_n(i)
     -\widehat{y}_n(i)\right\|}{Tol(i)}\,.\end{aligned}

The error tolerances are satisfied when :math:`\rm wlte\le 1.0`.

The next step size is based on this error estimate, and determined by

.. math::
   :label: hnew

   \begin{aligned}
    \Delta t_{\rm new}(t)&=&\Delta t_{\rm{old}} \min(\alpha_{\max},
    \max(\alpha_{\min}, \beta (1/\rm wlte)^\frac{1}{\widehat{p}+1}))\,,\end{aligned}

where :math:`\alpha_{\min}=`\ ``-ts_adapt_clip``\ [0] and
:math:`\alpha_{\max}`\ =\ ``-ts_adapt_clip``\ [1] keep the change in
:math:`\Delta t` to within a certain factor, and :math:`\beta<1` is
chosen through ``-ts_adapt_safety`` so that there is some margin to
which the tolerances are satisfied and so that the probability of
rejection is decreased.

This adaptive controller works in the following way. After completing
step :math:`k`, if :math:`\rm wlte_{k+1} \le 1.0`, then the step is
accepted and the next step is modified according to
:eq:`hnew`; otherwise, the step is rejected and retaken
with the step length computed in :eq:`hnew`.

``TSADAPTGLEE`` is an extension of the basic
adaptor to treat :math:`{\rm Tol}_{\rm A}` and :math:`{\rm Tol}_{\rm R}`
as separate criteria. it can also control global errors if the
integrator (e.g., ``TSGLEE``) provides this information.

Handling of discontinuities
~~~~~~~~~~~~~~~~~~~~~~~~~~~

For problems that involve discontinuous right-hand sides, one can set an
“event” function :math:`g(t,u)` for PETSc to detect and locate the times
of discontinuities (zeros of :math:`g(t,u)`). Events can be defined
through the event monitoring routine

.. code-block::

   TSSetEventHandler(TS ts,PetscInt nevents,PetscInt *direction,PetscBool *terminate,PetscErrorCode (*indicator)(TS,PetscReal,Vec,PetscScalar*,void* eventP),PetscErrorCode (*postevent)(TS,PetscInt,PetscInt[],PetscReal,Vec,PetscBool,void* eventP),void *eventP);

Here, ``nevents`` denotes the number of events, ``direction`` sets the
type of zero crossing to be detected for an event (+1 for positive
zero-crossing, -1 for negative zero-crossing, and 0 for both),
``terminate`` conveys whether the time-stepping should continue or halt
when an event is located, ``eventmonitor`` is a user- defined routine
that specifies the event description, ``postevent`` is an optional
user-defined routine to take specific actions following an event.

The arguments to ``indicator()`` are the timestep context, current
time, input state :math:`u`, array of event function value, and the
(optional) user-provided context ``eventP``.

The arguments to ``postevent()`` routine are the timestep context,
number of events occurred, indices of events occurred, current time, input
state :math:`u`, a boolean flag indicating forward solve (1) or adjoint
solve (0), and the (optional) user-provided context ``eventP``.

.. _sec_tchem:

Explicit integrators with finite element mass matrices
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Discretized finite element problems often have the form :math:`M \dot u = G(t, u)` where :math:`M` is the mass matrix.
Such problems can be solved using ``DMTSSetIFunction()`` with implicit integrators.
When :math:`M` is nonsingular (i.e., the problem is an ODE, not a DAE), explicit integrators can be applied to :math:`\dot u = M^{-1} G(t, u)` or :math:`\dot u = \hat M^{-1} G(t, u)`, where :math:`\hat M` is the lumped mass matrix.
While the true mass matrix generally has a dense inverse and thus must be solved iteratively, the lumped mass matrix is diagonal (e.g., computed via collocated quadrature or row sums of :math:`M`).
To have PETSc create and apply a (lumped) mass matrix automatically, first use ``DMTSSetRHSFunction()`` to specify :math:`G` and set a ``PetscFE`` using ``DMAddField()`` and ``DMCreateDS()``, then call either ``DMTSCreateRHSMassMatrix()`` or ``DMTSCreateRHSMassMatrixLumped()`` to automatically create the mass matrix and a ``KSP`` that will be used to apply :math:`M^{-1}`.
This ``KSP`` can be customized using the ``"mass_"`` prefix.

.. _section_sa:

Performing sensitivity analysis with the TS ODE Solvers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ``TS`` library provides a framework based on discrete adjoint models
for sensitivity analysis for ODEs and DAEs. The ODE/DAE solution process
(henceforth called the forward run) can be obtained by using either
explicit or implicit solvers in ``TS``, depending on the problem
properties. Currently supported method types are ``TSRK`` (Runge-Kutta)
explicit methods and ``TSTHETA`` implicit methods, which include
``TSBEULER`` and ``TSCN``.

Using the discrete adjoint methods
``````````````````````````````````

Consider the ODE/DAE

.. math:: F(t,y,\dot{y},p) = 0, \quad y(t_0)=y_0(p) \quad t_0 \le t \le t_F

and the cost function(s)

.. math:: \Psi_i(y_0,p) = \Phi_i(y_F,p) + \int_{t_0}^{t_F} r_i(y(t),p,t)dt \quad i=1,...,n_\text{cost}.

The ``TSAdjoint`` routines of PETSc provide

.. math:: \frac{\partial \Psi_i}{\partial y_0} = \lambda_i

and

.. math:: \frac{\partial \Psi_i}{\partial p} = \mu_i + \lambda_i (\frac{\partial y_0}{\partial p}).

To perform the discrete adjoint sensitivity analysis one first sets up
the ``TS`` object for a regular forward run but with one extra function
call

.. code-block::

   TSSetSaveTrajectory(TS ts),

then calls ``TSSolve()`` in the usual manner.

One must create two arrays of :math:`n_\text{cost}` vectors
:math:`\lambda` and :math:`\mu` (if there are no parameters :math:`p`
then one can use ``NULL`` for the :math:`\mu` array.) The
:math:`\lambda` vectors are the same dimension and parallel layout as
the solution vector for the ODE, the :math:`\mu` vectors are of dimension
:math:`p`; when :math:`p` is small usually all its elements are on the
first MPI process, while the vectors have no entries on the other
processes. :math:`\lambda_i` and :math:`\mu_i` should be initialized with
the values :math:`d\Phi_i/dy|_{t=t_F}` and :math:`d\Phi_i/dp|_{t=t_F}`
respectively. Then one calls

.. code-block::

   TSSetCostGradients(TS ts,PetscInt numcost, Vec *lambda,Vec *mu);

where ``numcost`` denotes :math:`n_\text{cost}`.
If :math:`F()` is a function of :math:`p` one needs to also provide the
Jacobian :math:`-F_p` with

.. code-block::

   TSSetRHSJacobianP(TS ts,Mat Amat,PetscErrorCode (*fp)(TS,PetscReal,Vec,Mat,void*),void *ctx)

or

.. code-block::

   TSSetIJacobianP(TS ts,Mat Amat,PetscErrorCode (*fp)(TS,PetscReal,Vec,Vec,PetscReal,Mat,void*),void *ctx)

or both, depending on which form is used to define the ODE.

The arguments for the function ``fp()`` are the timestep context,
current time, :math:`y`, and the (optional) user-provided context.

If there is an integral term in the cost function, i.e. :math:`r` is
nonzero, it can be transformed into another ODE that is augmented to the
original ODE. To evaluate the integral, one needs to create a child
``TS`` objective by calling

.. code-block::

   TSCreateQuadratureTS(TS ts,PetscBool fwd,TS *quadts);

and provide the ODE RHS function (which evaluates the integrand
:math:`r`) with

.. code-block::

   TSSetRHSFunction(TS quadts,Vec R,PetscErrorCode (*rf)(TS,PetscReal,Vec,Vec,void*),void *ctx)

Similar to the settings for the original ODE, Jacobians of the integrand
can be provided with

.. code-block::

   TSSetRHSJacobian(TS quadts,Vec DRDU,Vec DRDU,PetscErrorCode (*drdyf)(TS,PetscReal,Vec,Vec*,void*),void *ctx)
   TSSetRHSJacobianP(TS quadts,Vec DRDU,Vec DRDU,PetscErrorCode (*drdyp)(TS,PetscReal,Vec,Vec*,void*),void *ctx)

where :math:`\mathrm{drdyf}= dr /dy`, :math:`\mathrm{drdpf} = dr /dp`.
Since the integral term is additive to the cost function, its gradient
information will be included in :math:`\lambda` and :math:`\mu`.

Lastly, one starts the backward run by calling

.. code-block::

   TSAdjointSolve(TS ts).

One can obtain the value of the integral term by calling

.. code-block::

   TSGetCostIntegral(TS ts,Vec *q).

or accessing directly the solution vector used by ``quadts``.

The second argument of ``TSCreateQuadratureTS()`` allows one to choose
if the integral term is evaluated in the forward run (inside
``TSSolve()``) or in the backward run (inside ``TSAdjointSolve()``) when
``TSSetCostGradients()`` and ``TSSetCostIntegrand()`` are called before
``TSSolve()``. Note that this also allows for evaluating the integral
without having to use the adjoint solvers.

To provide a better understanding of the use of the adjoint solvers, we
introduce a simple example, corresponding to
`TS Power Grid Tutorial ex3sa <PETSC_DOC_OUT_ROOT_PLACEHOLDER/src/ts/tutorials/power_grid/ex3sa.c.html>`__.
The problem is to study dynamic security of power system when there are
credible contingencies such as short-circuits or loss of generators,
transmission lines, or loads. The dynamic security constraints are
incorporated as equality constraints in the form of discretized
differential equations and inequality constraints for bounds on the
trajectory. The governing ODE system is

.. math::

   \begin{aligned}
       \phi' &= &\omega_B (\omega - \omega_S)  \\
       2H/\omega_S \, \omega' & =& p_m - p_{max} sin(\phi) -D (\omega - \omega_S), \quad t_0 \leq t \leq t_F,\end{aligned}

where :math:`\phi` is the phase angle and :math:`\omega` is the
frequency.

The initial conditions at time :math:`t_0` are

.. math::

   \begin{aligned}
   \phi(t_0) &=& \arcsin \left( p_m / p_{max} \right), \\
   w(t_0) & =& 1.\end{aligned}

:math:`p_{max}` is a positive number when the system operates normally.
At an event such as fault incidence/removal, :math:`p_{max}` will change
to :math:`0` temporarily and back to the original value after the fault
is fixed. The objective is to maximize :math:`p_m` subject to the above
ODE constraints and :math:`\phi<\phi_S` during all times. To accommodate
the inequality constraint, we want to compute the sensitivity of the
cost function

.. math:: \Psi(p_m,\phi) = -p_m + c \int_{t_0}^{t_F} \left( \max(0, \phi - \phi_S ) \right)^2 dt

with respect to the parameter :math:`p_m`. :math:`numcost` is :math:`1`
since it is a scalar function.

For ODE solution, PETSc requires user-provided functions to evaluate the
system :math:`F(t,y,\dot{y},p)` (set by ``TSSetIFunction()`` ) and its
corresponding Jacobian :math:`F_y + \sigma F_{\dot y}` (set by
``TSSetIJacobian()``). Note that the solution state :math:`y` is
:math:`[ \phi \;  \omega ]^T` here. For sensitivity analysis, we need to
provide a routine to compute :math:`\mathrm{f}_p=[0 \; 1]^T` using
``TSASetRHSJacobianP()``, and three routines corresponding to the
integrand :math:`r=c \left( \max(0, \phi - \phi_S ) \right)^2`,
:math:`r_p = [0 \; 0]^T` and
:math:`r_y= [ 2 c \left( \max(0, \phi - \phi_S ) \right) \; 0]^T` using
``TSSetCostIntegrand()``.

In the adjoint run, :math:`\lambda` and :math:`\mu` are initialized as
:math:`[ 0 \;  0 ]^T` and :math:`[-1]` at the final time :math:`t_F`.
After ``TSAdjointSolve()``, the sensitivity of the cost function w.r.t.
initial conditions is given by the sensitivity variable :math:`\lambda`
(at time :math:`t_0`) directly. And the sensitivity of the cost function
w.r.t. the parameter :math:`p_m` can be computed (by users) as

.. math:: \frac{\mathrm{d} \Psi}{\mathrm{d} p_m} = \mu(t_0) + \lambda(t_0)  \frac{\mathrm{d} \left[ \phi(t_0) \; \omega(t_0) \right]^T}{\mathrm{d} p_m}  .

For explicit methods where one does not need to provide the Jacobian
:math:`F_u` for the forward solve one still does need it for the
backward solve and thus must call

.. code-block::

   TSSetRHSJacobian(TS ts,Mat Amat, Mat Pmat,PetscErrorCode (*f)(TS,PetscReal,Vec,Mat,Mat,void*),void *fP);

Examples include:

-  discrete adjoint sensitivity using explicit and implicit time stepping methods for an ODE problem
   `TS Tutorial ex20adj <PETSC_DOC_OUT_ROOT_PLACEHOLDER/src/ts/tutorials/ex20adj.c.html>`__,

-  an optimization problem using the discrete adjoint models of the ERK (for nonstiff ODEs)
   and the Theta methods (for stiff DAEs)
   `TS Tutorial ex20opt_ic <PETSC_DOC_OUT_ROOT_PLACEHOLDER/src/ts/tutorials/ex20opt_ic.c.html>`__
   and
   `TS Tutorial ex20opt_p <PETSC_DOC_OUT_ROOT_PLACEHOLDER/src/ts/tutorials/ex20opt_p.c.html>`__,

-  an ODE-constrained optimization using the discrete adjoint models of the
   Theta methods for cost function with an integral term
   `TS Power Grid Tutorial ex3opt <PETSC_DOC_OUT_ROOT_PLACEHOLDER/src/ts/tutorials/power_grid/ex3opt.c.html>`__,

-  discrete adjoint sensitivity using the Crank-Nicolson methods for DAEs with discontinuities
   `TS Power Grid Stability Tutorial ex9busadj <PETSC_DOC_OUT_ROOT_PLACEHOLDER/src/ts/tutorials/power_grid/stability_9bus/ex9busadj.c.html>`__,

-  a DAE-constrained optimization problem using the discrete adjoint models of the Crank-Nicolson
   methods for cost function with an integral term
   `TS Power Grid Tutorial ex9busopt <PETSC_DOC_OUT_ROOT_PLACEHOLDER/src/ts/tutorials/power_grid/stability_9bus/ex9busopt.c.html>`__,

-  discrete adjoint sensitivity using the Crank-Nicolson methods for a PDE problem
   `TS Advection-Diffusion-Reaction Tutorial ex5adj <PETSC_DOC_OUT_ROOT_PLACEHOLDER/src/ts/tutorials/advection-diffusion-reaction/ex5adj.c.html>`__.

Checkpointing
`````````````

The discrete adjoint model requires the states (and stage values in the
context of multistage timestepping methods) to evaluate the Jacobian
matrices during the adjoint (backward) run. By default, PETSc stores the
whole trajectory to disk as binary files, each of which contains the
information for a single time step including state, time, and stage
values (optional). One can also make PETSc store the trajectory to
memory with the option ``-ts_trajectory_type memory``. However, there
might not be sufficient memory capacity especially for large-scale
problems and long-time integration.

A so-called checkpointing scheme is needed to solve this problem. The
scheme stores checkpoints at selective time steps and recomputes the
missing information. The ``revolve`` library is used by PETSc
``TSTrajectory`` to generate an optimal checkpointing schedule that
minimizes the recomputations given a limited number of available
checkpoints. One can specify the number of available checkpoints with
the option
``-ts_trajectory_max_cps_ram [maximum number of checkpoints in RAM]``.
Note that one checkpoint corresponds to one time step.

The ``revolve`` library also provides an optimal multistage
checkpointing scheme that uses both RAM and disk for storage. This
scheme is automatically chosen if one uses both the option
``-ts_trajectory_max_cps_ram [maximum number of checkpoints in RAM]``
and the option
``-ts_trajectory_max_cps_disk [maximum number of checkpoints on disk]``.

Some other useful options are listed below.

-  ``-ts_trajectory_view`` prints the total number of recomputations,

-  ``-ts_monitor`` and ``-ts_adjoint_monitor`` allow users to monitor
   the progress of the adjoint work flow,

-  ``-ts_trajectory_type visualization`` may be used to save the whole
   trajectory for visualization. It stores the solution and the time,
   but no stage values. The binary files generated can be read into
   MATLAB via the script
   ``$PETSC_DIR/share/petsc/matlab/PetscReadBinaryTrajectory.m``.

.. _sec_sundials:

Using Sundials from PETSc
~~~~~~~~~~~~~~~~~~~~~~~~~

Sundials is a parallel ODE solver developed by Hindmarsh et al. at LLNL.
The ``TS`` library provides an interface to use the CVODE component of
Sundials directly from PETSc. (To configure PETSc to use Sundials, see
the installation guide, ``installation/index.htm``.)

To use the Sundials integrators, call

.. code-block::

   TSSetType(TS ts,TSType TSSUNDIALS);

or use the command line option ``-ts_type`` ``sundials``.

Sundials’ CVODE solver comes with two main integrator families, Adams
and BDF (backward differentiation formula). One can select these with

.. code-block::

   TSSundialsSetType(TS ts,TSSundialsLmmType [SUNDIALS_ADAMS,SUNDIALS_BDF]);

or the command line option ``-ts_sundials_type <adams,bdf>``. BDF is the
default.

Sundials does not use the ``SNES`` library within PETSc for its
nonlinear solvers, so one cannot change the nonlinear solver options via
``SNES``. Rather, Sundials uses the preconditioners within the ``PC``
package of PETSc, which can be accessed via

.. code-block::

   TSSundialsGetPC(TS ts,PC *pc);

The user can then directly set preconditioner options; alternatively,
the usual runtime options can be employed via ``-pc_xxx``.

Finally, one can set the Sundials tolerances via

.. code-block::

   TSSundialsSetTolerance(TS ts,double abs,double rel);

where ``abs`` denotes the absolute tolerance and ``rel`` the relative
tolerance.

Other PETSc-Sundials options include

.. code-block::

   TSSundialsSetGramSchmidtType(TS ts,TSSundialsGramSchmidtType type);

where ``type`` is either ``SUNDIALS_MODIFIED_GS`` or
``SUNDIALS_UNMODIFIED_GS``. This may be set via the options data base
with ``-ts_sundials_gramschmidt_type <modifed,unmodified>``.

The routine

.. code-block::

   TSSundialsSetMaxl(TS ts,PetscInt restart);

sets the number of vectors in the Krylov subpspace used by GMRES. This
may be set in the options database with ``-ts_sundials_maxl`` ``maxl``.


Using TChem from PETSc
~~~~~~~~~~~~~~~~~~~~~~

TChem [6]_ is a package originally developed at Sandia National
Laboratory that can read in CHEMKIN [7]_ data files and compute the
right-hand side function and its Jacobian for a reaction ODE system. To
utilize PETSc’s ODE solvers for these systems, first install PETSc with
the additional ``configure`` option ``--download-tchem``. We currently
provide two examples of its use; one for single cell reaction and one
for an “artificial” one dimensional problem with periodic boundary
conditions and diffusion of all species. The self-explanatory examples
are the
`The TS tutorial extchem <PETSC_DOC_OUT_ROOT_PLACEHOLDER/src/ts/tutorials/extchem.c.html>`__
and
`The TS tutorial extchemfield <PETSC_DOC_OUT_ROOT_PLACEHOLDER/src/ts/tutorials/extchemfield.c.html>`__.

.. [4]
   If the matrix :math:`F_{\dot{u}}(t) = \partial F
   / \partial \dot{u}` is nonsingular then it is an ODE and can be
   transformed to the standard explicit form, although this
   transformation may not lead to efficient algorithms.

.. [5]
   PETSc will automatically translate the function provided to the
   appropriate form.

.. [6]
   `bitbucket.org/jedbrown/tchem <https://bitbucket.org/jedbrown/tchem>`__

.. [7]
   `en.wikipedia.org/wiki/CHEMKIN <https://en.wikipedia.org/wiki/CHEMKIN>`__


.. raw:: html

    <hr>

Solving Steady-State Problems with Pseudo-Timestepping
------------------------------------------------------

**Simple Example:** ``TS`` provides a general code for performing pseudo
timestepping with a variable timestep at each physical node point. For
example, instead of directly attacking the steady-state problem

.. math:: G(u) = 0,

we can use pseudo-transient continuation by solving

.. math:: u_t = G(u).

Using time differencing

.. math:: u_t \doteq \frac{{u^{n+1}} - {u^{n}} }{dt^{n}}

with the backward Euler method, we obtain nonlinear equations at a
series of pseudo-timesteps

.. math:: \frac{1}{dt^n} B (u^{n+1} - u^{n} ) = G(u^{n+1}).

For this problem the user must provide :math:`G(u)`, the time steps
:math:`dt^{n}` and the left-hand-side matrix :math:`B` (or optionally,
if the timestep is position independent and :math:`B` is the identity
matrix, a scalar timestep), as well as optionally the Jacobian of
:math:`G(u)`.

More generally, this can be applied to implicit ODE and DAE for which
the transient form is

.. math:: F(u,\dot{u}) = 0.

For solving steady-state problems with pseudo-timestepping one proceeds
as follows.

-  Provide the function ``G(u)`` with the routine

   ::

       TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *fP);

   The arguments to the function ``f()`` are the timestep context, the
   current time, the input for the function, the output for the function
   and the (optional) user-provided context variable ``fP``.

-  Provide the (approximate) Jacobian matrix of ``G(u)`` and a function
   to compute it at each Newton iteration. This is done with the command

   ::

      TSSetRHSJacobian(TS ts,Mat Amat, Mat Pmat,PetscErrorCode (*f)(TS,PetscReal,Vec,Mat,Mat,void*),void *fP);

   The arguments for the function ``f()`` are the timestep context, the
   current time, the location where the Jacobian is to be computed, the
   (approximate) Jacobian matrix, an alternative approximate Jacobian
   matrix used to construct the preconditioner, and the optional
   user-provided context, passed in as ``fP``. The user must provide the
   Jacobian as a matrix; thus, if using a matrix-free approach, one must
   create a ``MATSHELL`` matrix.

In addition, the user must provide a routine that computes the
pseudo-timestep. This is slightly different depending on if one is using
a constant timestep over the entire grid, or it varies with location.

-  For location-independent pseudo-timestepping, one uses the routine

   ::

      TSPseudoSetTimeStep(TS ts,PetscInt(*dt)(TS,PetscReal*,void*),void* dtctx);

   The function ``dt`` is a user-provided function that computes the
   next pseudo-timestep. As a default one can use
   ``TSPseudoTimeStepDefault(TS,PetscReal*,void*)`` for ``dt``. This
   routine updates the pseudo-timestep with one of two strategies: the
   default

   .. math:: dt^{n} = dt_{\mathrm{increment}}*dt^{n-1}*\frac{|| F(u^{n-1}) ||}{|| F(u^{n})||}

   or, the alternative,

   .. math:: dt^{n} = dt_{\mathrm{increment}}*dt^{0}*\frac{|| F(u^{0}) ||}{|| F(u^{n})||}

   which can be set with the call

   ::

      TSPseudoIncrementDtFromInitialDt(TS ts);

   or the option ``-ts_pseudo_increment_dt_from_initial_dt``. The value
   :math:`dt_{\mathrm{increment}}` is by default :math:`1.1`, but can be
   reset with the call

   ::

      TSPseudoSetTimeStepIncrement(TS ts,PetscReal inc);

   or the option ``-ts_pseudo_increment <inc>``.

-  For location-dependent pseudo-timestepping, the interface function
   has not yet been created.

.. bibliography:: /petsc.bib
   :filter: docname in docnames