1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
|
:orphan:
.. _tut_stokes:
===================================================
Guide to the Stokes Equations using Finite Elements
===================================================
The Stokes equations
.. math::
\begin{aligned}
-\nabla \cdot \left(\mu \left(\nabla u + \nabla u^T \right)\right) + \nabla p + f &= 0 \\
\nabla\cdot u &= 0 \end{aligned}
describe slow flow of an incompressible fluid with velocity :math:`u`, pressure :math:`p`, and body force :math:`f`.
This guide accompanies `SNES Example 62 <PETSC_DOC_OUT_ROOT_PLACEHOLDER/src/snes/tutorials/ex62.c.html>`__ and `SNES Example 69 <PETSC_DOC_OUT_ROOT_PLACEHOLDER/src/snes/tutorials/ex69.c.html>`__.
The Stokes equations for a fluid, a steady-state form of the Navier-Stokes equations, start with the balance of momentum, just as in elastostatics,
.. math::
\nabla \cdot \sigma + f = 0,
where :math:`\sigma` is the stress tensor and :math:`f` is the body force, combined with the conservation of mass
.. math::
\nabla \cdot (\rho u) = 0,
where :math:`\rho` is the density and :math:`u` is the fluid velocity. If we assume that the density is constant, making the fluid incompressible, and that the rheology is Newtonian, meaning that the viscous stress is linearly proportional to the local strain rate, then we have
.. math::
\begin{aligned}
\nabla \cdot \mu \left( \nabla u + \nabla u^T \right) - \nabla p + f &= 0 \\
\nabla \cdot u &= 0
\end{aligned}
where :math:`p` is the pressure, :math:`\mu` is the dynamic shear viscosity, with units :math:`N\cdot s/m^2` or :math:`Pa\cdot s`. If we divide by the constant density, we would have the kinematic viscosity :math:`\nu` and a force per unit mass. The second equation demands that the velocity field be divergence-free, indicating that the flow is incompressible. The pressure in this case can be thought of as the Lagrange multiplier enforcing the incompressibility constraint. In the compressible case, we would need an equation of state to relate the pressure to the density, and perhaps temperature.
We will discretize our Stokes equations with finite elements, so the first step is to write a variational weak form of the equations. We choose to use a Ritz-Galerkin setup, so let our velocity :math:`u \in V` and pressure :math:`p \in Q`, so that
.. math::
\begin{aligned}
\left< \nabla v, \mu \left( \nabla u + \nabla u^T \right) \right> + \left< v, \frac{\partial\sigma}{\partial n} \right>_\Gamma - \left< \nabla\cdot v, p \right> - \left< v, f \right> &= 0 & \text{for all} \ v \in V\\
\left< q, -\nabla \cdot u \right> &= 0 & \text{for all} \ q \in Q
\end{aligned}
where integration by parts has added a boundary integral over the normal derivative of the stress (traction), and natural boundary conditions correspond to stress-free boundaries. We have multiplied the continuity equation by minus one in order to preserve symmetry.
Equation Definition
-------------------
The test functions :math:`v, q` and their derivatives are determined by the discretization, whereas the form of the integrand is determined by the physics. Given a quadrature rule to evaluate the form integral, we would only need the evaluation of the physics integrand at the quadrature points, given the values of the fields and their derivatives. The entire scheme is detailed in :cite:`knepleybrownruppsmith13`. The kernels paired with test functions we will call :math:`f_0` and those paired with gradients of test functions will be called :math:`f_1`.
For example, the kernel for the continuity equation, paired with the pressure test function, is called ``f0_p`` and can be seen here
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: static void f0_p(
:end-at: }
We use the components of the Jacobian of :math:`u` to build up its divergence. For the balance of momentum excluding body force, we test against the gradient of the test function, as seen in ``f1_u``,
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: static void f1_u(
:end-at: }
Notice how the pressure :math:`p` is referred to using ``u[uOff[1]]`` so that we can have many fields with different numbers of components. ``DMPlex`` uses these point functions to construct the residual. A similar set of point functions is also used to build the Jacobian. The last piece of our physics specification is the construction of exact solutions using the Method of Manufactured Solutions (MMS).
MMS Solutions
-------------
An MMS solution is chosen to elucidate some property of the problem, and to check that it is being solved accurately, since the error can be calculated explicitly. For our Stokes problem, we first choose a solution with quadratic velocity and linear pressure,
.. math::
u = \begin{pmatrix} x^2 + y^2 \\ 2 x^2 - 2 x y \end{pmatrix} \quad \mathrm{or} \quad \begin{pmatrix} 2 x^2 + y^2 + z^2 \\ 2 x^2 - 2xy \\ 2 x^2 - 2xz \end{pmatrix}
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: static PetscErrorCode quadratic_u
:end-at: return 0;
:append: }
.. math::
p = x + y - 1 \quad \mathrm{or} \quad x + y + z - \frac{3}{2}
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: static PetscErrorCode quadratic_p
:end-at: return 0;
:append: }
By plugging these solutions into our equations, assuming that the velocity we choose is divergence-free, we can determine the body force necessary to make them satisfy the Stokes equations. For the quadratic solution above, we find
.. math::
f = \begin{pmatrix} 1 - 4\mu \\ 1 - 4\mu \end{pmatrix} \quad \mathrm{or} \quad \begin{pmatrix} 1 - 8\mu \\ 1 - 4\mu \\ 1 - 4\mu \end{pmatrix}
which is implemented in our ``f0_quadratic_u`` pointwise function
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: static void f0_quadratic_u
:end-at: }
We let PETSc know about these solutions
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: PetscCall(PetscDSSetExactSolution(ds, 0
:end-at: PetscCall(PetscDSSetExactSolution(ds, 1
These solutions will be captured exactly by the :math:`P_2-P_1` finite element space. We can use the ``-dmsnes_check`` option to activate function space checks. It gives the :math:`L_2` error, or *discretization* error, of the exact solution, the residual computed using the interpolation of the exact solution into our finite element space, and uses a Taylor test to check that our Jacobian matches the residual. It should converge at order 2, or be exact in the case of linear equations like Stokes. Our :math:`P_2-P_1` runs in the PETSc test section at the bottom of the source file
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: suffix: 2d_p2_p1_check
:lines: 1-3
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: suffix: 3d_p2_p1_check
:lines: 1-3
verify these claims, as we can see from the output files
.. literalinclude:: /../src/snes/tutorials/output/ex62_2d_p2_p1_check.out
:language: none
.. literalinclude:: /../src/snes/tutorials/output/ex62_3d_p2_p1_check.out
:language: none
We can carry out the same tests for the :math:`Q_2-Q_1` element,
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: suffix: 2d_q2_q1_check
:lines: 1-2
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: suffix: 3d_q2_q1_check
:lines: 1-2
The quadratic solution, however, cannot tell us whether our discretization is attaining the correct order of convergence, especially for higher order elements. Thus, we will define another solution based on trigonometric functions.
.. math::
u = \begin{pmatrix} \sin(\pi x) + \sin(\pi y) \\ -\pi \cos(\pi x) y \end{pmatrix} \quad \mathrm{or} \quad
\begin{pmatrix} 2 \sin(\pi x) + \sin(\pi y) + \sin(\pi z) \\ -\pi \cos(\pi x) y \\ -\pi \cos(\pi x) z \end{pmatrix}
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: static PetscErrorCode trig_u
:end-at: return 0;
:append: }
.. math::
p = \sin(2 \pi x) + \sin(2 \pi y) \quad \mathrm{or} \quad \sin(2 \pi x) + \sin(2 \pi y) + \sin(2 \pi z)
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: static PetscErrorCode trig_p
:end-at: return 0;
:append: }
.. math::
f = \begin{pmatrix} 2 \pi \cos(2 \pi x) + \mu \pi^2 \sin(\pi x) + \mu \pi^2 \sin(\pi y) \\ 2 \pi \cos(2 \pi y) - \mu \pi^3 \cos(\pi x) y \end{pmatrix} \quad \mathrm{or} \quad
\begin{pmatrix} 2 \pi \cos(2 \pi x) + 2\mu \pi^2 \sin(\pi x) + \mu \pi^2 \sin(\pi y) + \mu \pi^2 \sin(\pi z) \\ 2 \pi \cos(2 \pi y) - \mu \pi^3 cos(\pi x) y \\ 2 \pi \cos(2 \pi z) - \mu \pi^3 \cos(\pi x) z \end{pmatrix}
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: static void f0_quadratic_u
:end-at: }
:append: }
We can now use ``-snes_convergence_estimate`` to determine the convergence exponent for the discretization. This options solves the problem on a series of refined meshes, calculates the error on each mesh, and determines the slope on a logarithmic scale. For example, we do this in two dimensions, refining our mesh twice using ``-convest_num_refine 2`` in the following test.
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: suffix: 2d_p2_p1_conv
:end-before: test:
However, the test needs an accurate linear solver. Sparse LU factorizations do not, in general, do full pivoting. Thus we must deal with the zero pressure block explicitly. We use the ``PCFIELDSPLIT`` preconditioner and the full Schur complement factorization, but we still need a preconditioner for the Schur complement :math:`B^T A^{-1} B`. We can have PETSc construct that matrix automatically, but the cost rises steeply as the problem size increases. Instead, we use the fact that the Schur complement is spectrally equivalent to the pressure mass matrix :math:`M_p`. We can make a preconditioning matrix, which has the diagonal blocks we will use to build the preconditioners, letting PETSc know that we get the off-diagonal blocks from the original system with ``-pc_fieldsplit_off_diag_use_amat`` and to build the Schur complement from the original matrix using ``-pc_use_amat``,
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: PetscCall(PetscDSSetJacobianPreconditioner(ds, 0
:end-at: PetscCall(PetscDSSetJacobianPreconditioner(ds, 1
Putting this all together, and using exact solvers on the subblocks, we have
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: suffix: 2d_p2_p1_conv
:end-before: test:
and we see it converges, however it is superconverging in the pressure,
.. literalinclude:: /../src/snes/tutorials/output/ex62_2d_p2_p1_conv.out
If we refine the mesh using ``-dm_refine 3``, the convergence rates become ``[3.0, 2.1]``.
Dealing with Parameters
-----------------------
Like most physical problems, the Stokes problem has a parameter, the dynamic shear viscosity, which determines what solution regime we are in. To handle these parameters in PETSc, we first define a C struct to hold them,
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: typedef struct
:end-at: } Parameter;
and then add a ``PetscBag`` object to our application context. We then setup the parameter object,
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-at: static PetscErrorCode SetupParameters
:end-at: PetscFunctionReturn(PETSC_SUCCESS);
:append: }
which will allow us to set the value from the command line using ``-mu``. The ``PetscBag`` can also be persisted to disk with ``PetscBagLoad/View()``. We can make these values available as constant to our pointwise functions through the ``PetscDS`` object.
.. literalinclude:: /../src/snes/tutorials/ex62.c
:start-after: /* Make constant values
:end-at: }
Investigating convergence
-------------------------
In order to look at the convergence of some harder problems, we will examine ``SNES ex69``. This example provides an exact solution to the variable viscosity Stokes equation. The sharp viscosity variation will allow us to investigate convergence of the solver and discretization. Briefly, a sharp viscosity variation is created across the unit square, imposed on a background pressure with given fundamental frequency. For example, we can create examples with period one half and viscosity :math:`e^{2 B x}` (solKx)
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-dm_refine 5 -dm_view hdf5:$PETSC_DIR/sol.h5 -snes_view_solution hdf5:$PETSC_DIR/sol.h5::append -exact_vec_view hdf5:$PETSC_DIR/sol.h5::append -m 2 -n 2 -B 1"
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-dm_refine 5 -dm_view hdf5:$PETSC_DIR/sol.h5 -snes_view_solution hdf5:$PETSC_DIR/sol.h5::append -exact_vec_view hdf5:$PETSC_DIR/sol.h5::append -m 2 -n 2 -B 3.75"
which are show in the figure below.
.. list-table::
* - .. figure:: /images/tutorials/physics/ex69_sol_m_2_n_2_B_1.png
Solution for :math:`m=2`, :math:`n=2`, :math:`B=1`
- .. figure:: /images/tutorials/physics/ex69_sol_m_2_n_2_B_375.png
Solution for :math:`m=2`, :math:`n=2`, :math:`B=3.75`
Debugging
^^^^^^^^^
If we can provide the ``PetscDS`` object in our problem with the exact solution function, PETSc has good support for debugging our discretization and solver. We can use the ``PetscConvEst`` object to check the convergence behavior of our element automatically. For example, if we use the ``-snes_convergence_estimate`` option, PETSc will solve our nonlinear equations on a series of refined meshes, use our exact solution to calculate the error, and then fit this line on a log-log scale to get the convergence rate,
.. literalinclude:: /../src/snes/tutorials/ex69.c
:start-at: suffix: p2p1_conv
:end-before: test:
If we initially refine the mesh twice, ``-dm_refine 2``, we get
L_2 convergence rate: [3.0, 2.2]
which are the convergence rates we expect for the velocity and pressure using a :math:`P_2-P_1` discretization. For :math:`Q_1-P_0`
.. literalinclude:: /../src/snes/tutorials/ex69.c
:start-at: suffix: q1p0_conv
:end-before: test:
we get
L_2 convergence rate: [2.0, 1.0]
This is a sensitive check that everything is working correctly. However, if this is wrong, where can I start? More fine-grained checks are available using the ``-dmsnes_check`` option. Using this for our :math:`P_2-P_1` example (the ``p2p1`` test), we have
.. literalinclude:: /../src/snes/tutorials/output/ex69_p2p1.out
The first line records the discretization error for our exact solution. This means that we project our solution function into the finite element space and then calculate the :math:`L_2` norm of the difference between the exact solution and its projection. The norm is computed for each field separately. Next, PETSc calculates the residual using the projected exact solution as input. This should be small, and as the mesh is refined it should approach zero. Last, PETSc uses a Taylor test to try and determine how the error in the linear model scales as a function of the perturbation :math:`h`. Thus, in a nonlinear situation we would expect
Taylor approximation converging at order 2.0
In this case, since the viscosity does not depend on the velocity or pressure fields, we detect that the linear model is exact
Function appears to be linear
Suppose that we have made an error in the Jacobian. For instance, let us accidentally flip the sign of the pressure term in the momentum Jacobian.
.. literalinclude:: /../src/snes/tutorials/ex69.c
:start-at: static void stokes_momentum_pres_J
:end-at: }
When we run, we get a failure of the nonlinear solver. Our checking reveals that the Jacobian is wrong because it is converging at order 1 instead of 2, meaning the linear term is not correct in our model.
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-snes_monitor -ksp_monitor_true_residual -ksp_converged_reason"
L_2 Error: [0.000439127, 0.0376629]
L_2 Residual: 0.0453958
Taylor approximation converging at order 1.00
0 SNES Function norm 1.170604545948e-01
0 KSP preconditioned resid norm 4.965098891419e-01 true resid norm 1.170604545948e-01 ||r(i)||/||b|| 1.000000000000e+00
1 KSP preconditioned resid norm 9.236805404733e-11 true resid norm 1.460082233654e-12 ||r(i)||/||b|| 1.247289051378e-11
Linear solve converged due to CONVERGED_ATOL iterations 1
[0]PETSC ERROR: --------------------- Error Message --------------------------------------------------------------
[0]PETSC ERROR:
[0]PETSC ERROR: SNESSolve has not converged
In order to track down the error, we can use ``-snes_test_jacobian`` which computes a finite difference approximation to the Jacobian and compares that to the analytic Jacobian. We ignore the first test, which occurs during our testing of the Jacobian, and look at the test that happens during the first Newton iterate. We see that the relative error in the Frobenius norm is about one percent, which indicates we have a real problem.
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-snes_monitor -ksp_monitor_true_residual -ksp_converged_reason -snes_test_jacobian"
L_2 Error: [0.000439127, 0.0376629]
L_2 Residual: 0.0453958
---------- Testing Jacobian -------------
Run with -snes_test_jacobian_view and optionally -snes_test_jacobian <threshold> to show difference
of hand-coded and finite difference Jacobian entries greater than <threshold>.
Testing hand-coded Jacobian, if (for double precision runs) ||J - Jfd||_F/||J||_F is
O(1.e-8), the hand-coded Jacobian is probably correct.
||J - Jfd||_F/||J||_F = 136.793, ||J - Jfd||_F = 136.793
---------- Testing Jacobian for preconditioner -------------
||J - Jfd||_F/||J||_F = 136.793, ||J - Jfd||_F = 136.793
Taylor approximation converging at order 1.00
0 SNES Function norm 1.170604545948e-01
---------- Testing Jacobian -------------
||J - Jfd||_F/||J||_F = 0.0119377, ||J - Jfd||_F = 1.63299
---------- Testing Jacobian for preconditioner -------------
||J - Jfd||_F/||J||_F = 0.008471, ||J - Jfd||_F = 1.15873
0 KSP preconditioned resid norm 4.965098891419e-01 true resid norm 1.170604545948e-01 ||r(i)||/||b|| 1.000000000000e+00
1 KSP preconditioned resid norm 9.236804064319e-11 true resid norm 1.460031196842e-12 ||r(i)||/||b|| 1.247245452699e-11
Linear solve converged due to CONVERGED_ATOL iterations 1
[0]PETSC ERROR: --------------------- Error Message --------------------------------------------------------------
[0]PETSC ERROR:
[0]PETSC ERROR: SNESSolve has not converged
At this point, we could just go back and check the code. However, PETSc will also print out the differences between the analytic and approximate Jacobians. When we give the ``-snes_test_jacobian_view`` option, the code will print both Jacobians (which we omit) and then their difference, and will also do this for the preconditioning matrix (which we omit). It is clear from the output that the :math:`u-p` block of the Jacobian is wrong, and thus we know right where to look for our error. Moreover, if we look at the values in row 15, we see that the values just differ by a sign.
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-snes_monitor -ksp_monitor_true_residual -ksp_converged_reason -snes_test_jacobian"
Hand-coded minus finite-difference Jacobian with tolerance 1e-05 ----------
Mat Object: 1 MPI process
type: seqaij
row 0:
row 1:
row 2:
row 3:
row 4:
row 5:
row 6:
row 7:
row 8:
row 9:
row 10:
row 11:
row 12:
row 13:
row 14:
row 15: (0, 0.166667) (2, -0.166667)
row 16: (0, 0.166667) (2, -0.166667) (5, 0.166667) (8, -0.166667)
row 17: (0, 0.166667) (2, 0.166667) (5, -0.166667) (8, -0.166667)
row 18: (0, 0.166667) (5, -0.166667)
row 19: (5, 0.166667) (8, -0.166667) (11, 0.166667) (13, -0.166667)
row 20: (5, 0.166667) (8, 0.166667) (11, -0.166667) (13, -0.166667)
row 21: (5, 0.166667) (11, -0.166667)
row 22: (5, 0.333333) (8, -0.333333)
row 23: (2, 0.166667) (5, 0.166667) (8, -0.166667) (11, -0.166667)
row 24: (2, 0.166667) (3, -0.166667) (5, 0.166667) (8, -0.166667)
row 25: (2, 0.333333) (8, -0.333333)
row 26: (2, 0.166667) (3, -0.166667) (8, 0.166667) (10, -0.166667)
row 27: (2, 0.166667) (3, 0.166667) (8, -0.166667) (10, -0.166667)
row 28: (3, 0.166667) (10, -0.166667)
row 29: (8, 0.333333) (10, -0.333333)
row 30: (3, 0.166667) (8, 0.166667) (10, -0.166667) (13, -0.166667)
row 31: (2, 0.166667) (3, -0.166667)
row 32: (8, 0.166667) (10, -0.166667) (13, 0.166667) (14, -0.166667)
row 33: (8, 0.166667) (10, 0.166667) (13, -0.166667) (14, -0.166667)
row 34: (10, 0.166667) (14, -0.166667)
row 35: (13, 0.166667) (14, -0.166667)
row 36: (8, 0.166667) (10, -0.166667) (11, 0.166667) (13, -0.166667)
row 37: (8, 0.333333) (13, -0.333333)
row 38: (11, 0.166667) (13, -0.166667)
0 KSP preconditioned resid norm 4.965098891419e-01 true resid norm 1.170604545948e-01 ||r(i)||/||b|| 1.000000000000e+00
1 KSP preconditioned resid norm 9.236804067326e-11 true resid norm 1.460031196842e-12 ||r(i)||/||b|| 1.247245452699e-11
Linear solve converged due to CONVERGED_ATOL iterations 1
[0]PETSC ERROR: --------------------- Error Message --------------------------------------------------------------
[0]PETSC ERROR:
[0]PETSC ERROR: SNESSolve has not converged
Can we see that the Schur complement of Q1-P0 is ill-conditioned?
Optimizing the Solver
^^^^^^^^^^^^^^^^^^^^^
In order to see exactly what solver we have employed, we can use the ``-snes_view`` option. When checking :math:`P_2-P_1` convergence, we use an exact solver, but it must have several parts in order to deal with the saddle-point in the Jacobian. Using the test system to provide our extra option, we get
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-snes_view"
SNES Object: 1 MPI process
type: newtonls
maximum iterations=50, maximum function evaluations=10000
tolerances: relative=1e-08, absolute=1e-50, solution=1e-08
total number of linear solver iterations=1
total number of function evaluations=2
norm schedule ALWAYS
SNESLineSearch Object: 1 MPI process
type: bt
interpolation: cubic
alpha=1.000000e-04
maxstep=1.000000e+08, minlambda=1.000000e-12
tolerances: relative=1.000000e-08, absolute=1.000000e-15, lambda=1.000000e-08
maximum iterations=40
KSP Object: 1 MPI process
type: gmres
restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
happy breakdown tolerance 1e-30
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-09, absolute=1e-10, divergence=10000.
left preconditioning
using PRECONDITIONED norm type for convergence test
PC Object: 1 MPI process
type: fieldsplit
FieldSplit with Schur preconditioner, factorization FULL
Preconditioner for the Schur complement formed from A11
Split info:
Split number 0 Defined by IS
Split number 1 Defined by IS
KSP solver for A00 block
KSP Object: (fieldsplit_velocity_) 1 MPI process
type: gmres
restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
happy breakdown tolerance 1e-30
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000.
left preconditioning
using PRECONDITIONED norm type for convergence test
PC Object: (fieldsplit_velocity_) 1 MPI process
type: lu
out-of-place factorization
tolerance for zero pivot 2.22045e-14
matrix ordering: nd
factor fill ratio given 5., needed 1.15761
Factored matrix follows:
Mat Object: 1 MPI process
type: seqaij
rows=30, cols=30
package used to perform factorization: petsc
total: nonzeros=426, allocated nonzeros=426
using I-node routines: found 17 nodes, limit used is 5
linear system matrix followed by preconditioner matrix:
Mat Object: 1 MPI process
type: seqaij
rows=30, cols=30
total: nonzeros=368, allocated nonzeros=368
total number of mallocs used during MatSetValues calls=0
using I-node routines: found 20 nodes, limit used is 5
Mat Object: (fieldsplit_velocity_) 1 MPI process
type: seqaij
rows=30, cols=30
total: nonzeros=368, allocated nonzeros=368
total number of mallocs used during MatSetValues calls=0
using I-node routines: found 20 nodes, limit used is 5
KSP solver for S = A11 - A10 inv(A00) A01
KSP Object: (fieldsplit_pressure_) 1 MPI process
type: gmres
restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
happy breakdown tolerance 1e-30
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-09, absolute=1e-50, divergence=10000.
left preconditioning
using PRECONDITIONED norm type for convergence test
PC Object: (fieldsplit_pressure_) 1 MPI process
type: lu
out-of-place factorization
tolerance for zero pivot 2.22045e-14
matrix ordering: nd
factor fill ratio given 5., needed 1.2439
Factored matrix follows:
Mat Object: 1 MPI process
type: seqaij
rows=9, cols=9
package used to perform factorization: petsc
total: nonzeros=51, allocated nonzeros=51
not using I-node routines
linear system matrix followed by preconditioner matrix:
Mat Object: (fieldsplit_pressure_) 1 MPI process
type: schurcomplement
rows=9, cols=9
has attached null space
Schur complement A11 - A10 inv(A00) A01
A11
Mat Object: 1 MPI process
type: seqaij
rows=9, cols=9
total: nonzeros=41, allocated nonzeros=41
total number of mallocs used during MatSetValues calls=0
has attached null space
not using I-node routines
A10
Mat Object: 1 MPI process
type: seqaij
rows=9, cols=30
total: nonzeros=122, allocated nonzeros=122
total number of mallocs used during MatSetValues calls=0
not using I-node routines
KSP solver for A00 block viewable with the additional option -fc_fieldsplit_velocity_ksp_view
A01
Mat Object: 1 MPI process
type: seqaij
rows=30, cols=9
total: nonzeros=122, allocated nonzeros=122
total number of mallocs used during MatSetValues calls=0
using I-node routines: found 20 nodes, limit used is 5
Mat Object: (fieldsplit_pressure_) 1 MPI process
type: seqaij
rows=9, cols=9
total: nonzeros=41, allocated nonzeros=41
total number of mallocs used during MatSetValues calls=0
not using I-node routines
linear system matrix followed by preconditioner matrix:
Mat Object: 1 MPI process
type: seqaij
rows=39, cols=39
total: nonzeros=653, allocated nonzeros=653
total number of mallocs used during MatSetValues calls=0
has attached null space
using I-node routines: found 24 nodes, limit used is 5
Mat Object: (prec_) 1 MPI process
type: seqaij
rows=39, cols=39
total: nonzeros=653, allocated nonzeros=653
total number of mallocs used during MatSetValues calls=0
using I-node routines: found 24 nodes, limit used is 5
Going through this piece-by-piece, we can see all the parts of our solver. At the top level, we have a ``SNES`` using Newton's method
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-snes_view"
SNES Object: 1 MPI process
type: newtonls
maximum iterations=50, maximum function evaluations=10000
tolerances: relative=1e-08, absolute=1e-50, solution=1e-08
total number of linear solver iterations=1
total number of function evaluations=2
norm schedule ALWAYS
SNESLineSearch Object: 1 MPI process
type: bt
interpolation: cubic
alpha=1.000000e-04
maxstep=1.000000e+08, minlambda=1.000000e-12
tolerances: relative=1.000000e-08, absolute=1.000000e-15, lambda=1.000000e-08
maximum iterations=40
For each nonlinear step, we use ``KSPGMRES`` to solve the Newton equation, preconditioned by ``PCFIELDSPLIT``. We split the problem into two blocks, with the split determined by our ``DM``, and combine those blocks using a Schur complement. The Schur complement is faithful since we use the ``FULL`` factorization type.
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-snes_view"
KSP Object: 1 MPI process
type: gmres
restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
happy breakdown tolerance 1e-30
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-09, absolute=1e-10, divergence=10000.
left preconditioning
using PRECONDITIONED norm type for convergence test
PC Object: 1 MPI process
type: fieldsplit
FieldSplit with Schur preconditioner, factorization FULL
Preconditioner for the Schur complement formed from A11
Split info:
Split number 0 Defined by IS
Split number 1 Defined by IS
We form the preconditioner for the Schur complement from the (1,1) block of our preconditioning matrix, which we have set to be the viscosity-weighted mass matrix
.. literalinclude:: /../src/snes/tutorials/ex69.c
:start-at: static void stokes_identity_J_kx
:end-before: /*
The solver for the first block, representing the velocity, is GMRES/LU. Note that the prefix is ``fieldsplit_velocity_``, constructed automatically from the name of the field in our DM. Also note that there are two matrices, one from our original matrix, and one from our preconditioning matrix, but they are identical. In an optimized, scalable solver, this block would likely be solved by multigrid, but here we use LU for verification purposes.
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-snes_view"
KSP solver for A00 block
KSP Object: (fieldsplit_velocity_) 1 MPI process
type: gmres
restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
happy breakdown tolerance 1e-30
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000.
left preconditioning
using PRECONDITIONED norm type for convergence test
PC Object: (fieldsplit_velocity_) 1 MPI process
type: lu
out-of-place factorization
tolerance for zero pivot 2.22045e-14
matrix ordering: nd
factor fill ratio given 5., needed 1.15761
Factored matrix follows:
Mat Object: 1 MPI process
type: seqaij
rows=30, cols=30
package used to perform factorization: petsc
total: nonzeros=426, allocated nonzeros=426
using I-node routines: found 17 nodes, limit used is 5
linear system matrix followed by preconditioner matrix:
Mat Object: 1 MPI process
type: seqaij
rows=30, cols=30
total: nonzeros=368, allocated nonzeros=368
total number of mallocs used during MatSetValues calls=0
using I-node routines: found 20 nodes, limit used is 5
Mat Object: (fieldsplit_velocity_) 1 MPI process
type: seqaij
rows=30, cols=30
total: nonzeros=368, allocated nonzeros=368
total number of mallocs used during MatSetValues calls=0
using I-node routines: found 20 nodes, limit used is 5
The solver for the second block, with prefix ``fieldsplit_pressure_``, is also GMRES/LU, however we cannot factor the Schur complement operator since we never explicitly assemble it. Thus we assemble the viscosity-weighted mass matrix on the pressure space as an approximation. Notice that the Schur complement has the velocity solver embedded in it.
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-snes_view"
KSP solver for S = A11 - A10 inv(A00) A01
KSP Object: (fieldsplit_pressure_) 1 MPI process
type: gmres
restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
happy breakdown tolerance 1e-30
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-09, absolute=1e-50, divergence=10000.
left preconditioning
using PRECONDITIONED norm type for convergence test
PC Object: (fieldsplit_pressure_) 1 MPI process
type: lu
out-of-place factorization
tolerance for zero pivot 2.22045e-14
matrix ordering: nd
factor fill ratio given 5., needed 1.2439
Factored matrix follows:
Mat Object: 1 MPI process
type: seqaij
rows=9, cols=9
package used to perform factorization: petsc
total: nonzeros=51, allocated nonzeros=51
not using I-node routines
linear system matrix followed by preconditioner matrix:
Mat Object: (fieldsplit_pressure_) 1 MPI process
type: schurcomplement
rows=9, cols=9
has attached null space
Schur complement A11 - A10 inv(A00) A01
A11
Mat Object: 1 MPI process
type: seqaij
rows=9, cols=9
total: nonzeros=41, allocated nonzeros=41
total number of mallocs used during MatSetValues calls=0
has attached null space
not using I-node routines
A10
Mat Object: 1 MPI process
type: seqaij
rows=9, cols=30
total: nonzeros=122, allocated nonzeros=122
total number of mallocs used during MatSetValues calls=0
not using I-node routines
KSP of A00
KSP Object: (fieldsplit_velocity_) 1 MPI process
type: gmres
restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
happy breakdown tolerance 1e-30
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000.
left preconditioning
using PRECONDITIONED norm type for convergence test
PC Object: (fieldsplit_velocity_) 1 MPI process
type: lu
out-of-place factorization
tolerance for zero pivot 2.22045e-14
matrix ordering: nd
factor fill ratio given 5., needed 1.15761
Factored matrix follows:
Mat Object: 1 MPI process
type: seqaij
rows=30, cols=30
package used to perform factorization: petsc
total: nonzeros=426, allocated nonzeros=426
using I-node routines: found 17 nodes, limit used is 5
linear system matrix followed by preconditioner matrix:
Mat Object: 1 MPI process
type: seqaij
rows=30, cols=30
total: nonzeros=368, allocated nonzeros=368
total number of mallocs used during MatSetValues calls=0
using I-node routines: found 20 nodes, limit used is 5
Mat Object: (fieldsplit_velocity_) 1 MPI process
type: seqaij
rows=30, cols=30
total: nonzeros=368, allocated nonzeros=368
total number of mallocs used during MatSetValues calls=0
using I-node routines: found 20 nodes, limit used is 5
A01
Mat Object: 1 MPI process
type: seqaij
rows=30, cols=9
total: nonzeros=122, allocated nonzeros=122
total number of mallocs used during MatSetValues calls=0
using I-node routines: found 20 nodes, limit used is 5
Mat Object: (fieldsplit_pressure_) 1 MPI process
type: seqaij
rows=9, cols=9
total: nonzeros=41, allocated nonzeros=41
total number of mallocs used during MatSetValues calls=0
not using I-node routines
Finally, the SNES viewer reports the system matrix and preconditioning matrix
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-snes_view"
linear system matrix followed by preconditioner matrix:
Mat Object: 1 MPI process
type: seqaij
rows=39, cols=39
total: nonzeros=653, allocated nonzeros=653
total number of mallocs used during MatSetValues calls=0
has attached null space
using I-node routines: found 24 nodes, limit used is 5
Mat Object: (prec_) 1 MPI process
type: seqaij
rows=39, cols=39
total: nonzeros=653, allocated nonzeros=653
total number of mallocs used during MatSetValues calls=0
using I-node routines: found 24 nodes, limit used is 5
We see that they have the same nonzero pattern, even though the preconditioning matrix only contains the diagonal blocks. This is because zeros were inserted to define the nonzero structure. We can remove these nonzeros by telling the DM not to insert zero at preallocation time, and also telling the matrix itself to ignore the zeros from the assembly process.
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-snes_view -dm_preallocate_only -prec_mat_ignore_zero_entries"
linear system matrix followed by preconditioner matrix:
Mat Object: 1 MPI process
type: seqaij
rows=39, cols=39
total: nonzeros=653, allocated nonzeros=653
total number of mallocs used during MatSetValues calls=0
has attached null space
using I-node routines: found 24 nodes, limit used is 5
Mat Object: (prec_) 1 MPI process
type: seqaij
rows=39, cols=39
total: nonzeros=409, allocated nonzeros=653
total number of mallocs used during MatSetValues calls=0
using I-node routines: found 29 nodes, limit used is 5
We can see a sparsity portrait of the system and preconditioning matrices if the installation supports X-windows visualization
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-ksp_view_mat draw -prec_mat_view draw -draw_pause -1"
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-ksp_view_mat draw -prec_mat_view draw -draw_save $PETSC_DIR/mat.png"
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-dm_preallocate_only -mat_ignore_zero_entries -prec_mat_ignore_zero_entries -ksp_view_mat draw -prec_mat_view draw -draw_save $PETSC_DIR/mat_sparse.png"
.. list-table::
* - .. figure:: /images/tutorials/physics/stokes_p2p1_sys_mat.png
System matrix
- .. figure:: /images/tutorials/physics/stokes_p2p1_sys_mat_sparse.png
System matrix with sparse stencil
* - .. figure:: /images/tutorials/physics/stokes_p2p1_prec_mat.png
Preconditioning matrix
- .. figure:: /images/tutorials/physics/stokes_p2p1_prec_mat_sparse.png
Preconditioning matrix with sparse stencil
If we want to check the convergence of the solver, we can also do that using options. Both the linear and nonlinear solvers converge in a single iteration, which is exactly what we want. In order to have this happen, we must have the tolerance on both the outer KSP solver and the inner Schur complement solver be low enough. Notice that the sure complement solver is used twice, and converges in seven iterates each time.
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-snes_monitor -ksp_monitor_true_residual -ksp_converged_reason -fieldsplit_pressure_ksp_converged_reason"
0 SNES Function norm 1.170604545948e-01
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 7
0 KSP preconditioned resid norm 4.965098891419e-01 true resid norm 1.170604545948e-01 ||r(i)||/||b|| 1.000000000000e+00
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 7
1 KSP preconditioned resid norm 9.236813926190e-11 true resid norm 1.460072673561e-12 ||r(i)||/||b|| 1.247280884579e-11
Linear solve converged due to CONVERGED_ATOL iterations 1
1 SNES Function norm 1.460070661322e-12
We can look at the scalability of the solve by refining the mesh. We see that the Schur complement solve looks robust to grid refinement.
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-dm_refine 2 -snes_monitor -ksp_monitor_true_residual -ksp_converged_reason -fieldsplit_pressure_ksp_converged_reason"
0 SNES Function norm 3.503062983054e-02
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 8
0 KSP preconditioned resid norm 9.943095979973e-01 true resid norm 3.503062983054e-02 ||r(i)||/||b|| 1.000000000000e+00
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 8
1 KSP preconditioned resid norm 1.148772629230e-10 true resid norm 2.693482255004e-13 ||r(i)||/||b|| 7.688934706664e-12
Linear solve converged due to CONVERGED_RTOL iterations 1
1 SNES Function norm 2.693649920420e-13
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-dm_refine 4 -snes_monitor -ksp_monitor_true_residual -ksp_converged_reason -fieldsplit_pressure_ksp_converged_reason"
0 SNES Function norm 8.969202737759e-03
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 6
0 KSP preconditioned resid norm 3.322375727167e+00 true resid norm 8.969202737759e-03 ||r(i)||/||b|| 1.000000000000e+00
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 6
1 KSP preconditioned resid norm 6.112282404006e-10 true resid norm 8.543800889926e-14 ||r(i)||/||b|| 9.525708292843e-12
Linear solve converged due to CONVERGED_RTOL iterations 1
1 SNES Function norm 8.543893996362e-14
Starting off with an exact solver allows us to check that the discretization, equations, and boundary conditions are correct. Moreover, choosing the Schur complement formulation, rather than a sparse direct solve, gives us a path to incremental boost the scalability. Our first step will be to replace the direct solve of the momentum operator, which has cost superlinear in :math:`N`, with a more scalable alternative. Since the operator is still elliptic, despite the viscosity variation, we should be able to use some form of multigrid. We will start with algebraic multigrid because it handles coefficient variation well, even if the setup time is larger than the geometric variant.
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1" EXTRA_OPTIONS="-dm_refine 2 -snes_monitor -ksp_monitor_true_residual -ksp_converged_reason -fieldsplit_pressure_ksp_converged_reason -fieldsplit_velocity_pc_type gamg -fieldsplit_velocity_ksp_converged_reason"
0 SNES Function norm 3.503062983054e-02
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 8
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 10
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 8
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 8
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 8
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
0 KSP preconditioned resid norm 9.943097452179e-01 true resid norm 3.503062983054e-02 ||r(i)||/||b|| 1.000000000000e+00
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 8
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 10
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 8
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 8
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 8
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
1 KSP preconditioned resid norm 1.503326145261e-05 true resid norm 1.089276827085e-06 ||r(i)||/||b|| 3.109498265814e-05
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 10
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 10
2 KSP preconditioned resid norm 1.353007845554e-10 true resid norm 6.056095141823e-11 ||r(i)||/||b|| 1.728799959098e-09
Linear solve converged due to CONVERGED_RTOL iterations 2
1 SNES Function norm 6.056096909907e-11
This looks alright, but the number of iterates grows with refinement. At 3 refinements, it is 16, 30 at 4 refinements, and 70 at 5 refinements. Increasing the number of smoother iterates to four, ``-fieldsplit_velocity_mg_levels_ksp_max_it 4``, brings down the number of iterates, but not the growth. Using w-cycles and full multigrid does not help either. It is likely that the coarse grids made by MIS are inaccurate for the :math:`P_2` discretization.
We can instead use geometric multigrid, and we would hope get more accurate coarse bases. The ``-dm_refine_hierarchy`` allows us to make a hierarchy of refined meshes and sets the number of multigrid levels automatically. Then all we need to specify is ``-fieldsplit_velocity_pc_type mg``, as we see in the test
.. literalinclude:: /../src/snes/tutorials/ex69.c
:start-at: suffix: p2p1_gmg
:end-before: test:
This behaves well for the initial mesh,
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1_gmg" EXTRA_OPTIONS="-dm_refine_hierarchy 2 -snes_monitor -ksp_monitor_true_residual -ksp_converged_reason -fieldsplit_pressure_ksp_converged_reason -fieldsplit_velocity_ksp_converged_reason"
0 SNES Function norm 3.503062983054e-02
0 KSP unpreconditioned resid norm 3.503062983054e-02 true resid norm 3.503062983054e-02 ||r(i)||/||b|| 1.000000000000e+00
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 5
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 5
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 8
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
1 KSP unpreconditioned resid norm 4.643855168829e-06 true resid norm 4.643855168807e-06 ||r(i)||/||b|| 1.325655630878e-04
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 5
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 5
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 5
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 5
2 KSP unpreconditioned resid norm 1.520240889941e-11 true resid norm 1.520239396618e-11 ||r(i)||/||b|| 4.339743258890e-10
Linear solve converged due to CONVERGED_ATOL iterations 2
1 SNES Function norm 1.520237877998e-11
and is also stable under refinement
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1_gmg" EXTRA_OPTIONS="-dm_refine_hierarchy 4 -snes_monitor -ksp_monitor_true_residual -ksp_converged_reason -fieldsplit_pressure_ksp_converged_reason -fieldsplit_velocity_ksp_converged_reason"
0 SNES Function norm 3.503062983054e-02
0 KSP unpreconditioned resid norm 3.503062983054e-02 true resid norm 3.503062983054e-02 ||r(i)||/||b|| 1.000000000000e+00
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 5
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 5
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 8
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
1 KSP unpreconditioned resid norm 4.643855168829e-06 true resid norm 4.643855168807e-06 ||r(i)||/||b|| 1.325655630878e-04
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 5
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 5
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 4
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 5
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 9
Linear fieldsplit_velocity_ solve converged due to CONVERGED_RTOL iterations 5
2 KSP unpreconditioned resid norm 1.520240889941e-11 true resid norm 1.520239396618e-11 ||r(i)||/||b|| 4.339743258890e-10
Linear solve converged due to CONVERGED_ATOL iterations 2
1 SNES Function norm 1.520237877998e-11
Finally, we can back off the pressure solve. ``ILU(0)`` is good enough to maintain a constant number of iterates as we refine the grid. We could continue to refine our preconditioner by playing with the tolerance of the inner multigrid and Schur complement solves, trading fewer inner iterates for more outer iterates.
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1_gmg" EXTRA_OPTIONS="-dm_refine_hierarchy 2 -snes_monitor -ksp_monitor_true_residual -ksp_converged_reason -fieldsplit_pressure_ksp_converged_reason -fieldsplit_pressure_pc_type ilu"
0 SNES Function norm 3.503062983054e-02
0 KSP unpreconditioned resid norm 3.503062983054e-02 true resid norm 3.503062983054e-02 ||r(i)||/||b|| 1.000000000000e+00
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 10
1 KSP unpreconditioned resid norm 4.643855785779e-06 true resid norm 4.643855785812e-06 ||r(i)||/||b|| 1.325655807011e-04
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 10
2 KSP unpreconditioned resid norm 1.521944777036e-11 true resid norm 1.521942998859e-11 ||r(i)||/||b|| 4.344606437913e-10
Linear solve converged due to CONVERGED_ATOL iterations 2
1 SNES Function norm 1.521943449163e-11
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1_gmg" EXTRA_OPTIONS="-dm_refine_hierarchy 4 -snes_monitor -ksp_monitor_true_residual -ksp_converged_reason -fieldsplit_pressure_ksp_converged_reason -fieldsplit_pressure_pc_type ilu"
0 SNES Function norm 8.969202737759e-03
0 KSP unpreconditioned resid norm 8.969202737759e-03 true resid norm 8.969202737759e-03 ||r(i)||/||b|| 1.000000000000e+00
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 10
1 KSP unpreconditioned resid norm 2.234849111673e-05 true resid norm 2.234849111674e-05 ||r(i)||/||b|| 2.491692045566e-03
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 10
2 KSP unpreconditioned resid norm 1.205594722917e-10 true resid norm 1.205594316079e-10 ||r(i)||/||b|| 1.344148807121e-08
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 10
3 KSP unpreconditioned resid norm 1.461086575333e-15 true resid norm 2.284323415523e-15 ||r(i)||/||b|| 2.546852247977e-13
Linear solve converged due to CONVERGED_ATOL iterations 3
1 SNES Function norm 2.317901194143e-15
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1_gmg" EXTRA_OPTIONS="-dm_refine_hierarchy 6 -snes_monitor -ksp_monitor_true_residual -ksp_converged_reason -fieldsplit_pressure_ksp_converged_reason -fieldsplit_pressure_pc_type ilu"
0 SNES Function norm 2.252260693635e-03
0 KSP unpreconditioned resid norm 2.252260693635e-03 true resid norm 2.252260693635e-03 ||r(i)||/||b|| 1.000000000000e+00
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 9
1 KSP unpreconditioned resid norm 1.220195757583e-05 true resid norm 1.220195757579e-05 ||r(i)||/||b|| 5.417648858445e-03
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 10
2 KSP unpreconditioned resid norm 2.683367607036e-09 true resid norm 2.683367591382e-09 ||r(i)||/||b|| 1.191410745197e-06
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 10
3 KSP unpreconditioned resid norm 5.510932827474e-13 true resid norm 5.511665167379e-13 ||r(i)||/||b|| 2.447170162386e-10
Linear solve converged due to CONVERGED_ATOL iterations 3
1 SNES Function norm 5.511916500930e-13
We can make the problem harder by increasing the wave number and size of the viscosity perturbation. If we set the :math:`B` parameter to 6.9, we have a factor of one million increase in viscosity across the cell. At this scale, we see that we lose enough accuracy in our Jacobian calculation to defeat our Taylor test, but we are still able to solve the problem efficiently.
.. code-block:: console
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1_gmg" EXTRA_OPTIONS="-dm_refine_hierarchy 2 -snes_monitor -ksp_monitor_true_residual -ksp_converged_reason -fieldsplit_pressure_ksp_converged_reason -fieldsplit_pressure_pc_type ilu -m 2 -n 2 -B 6.9"
L_2 Error: [4.07817e-06, 0.0104694]
L_2 Residual: 0.0145403
Taylor approximation converging at order 1.00
0 SNES Function norm 3.421266970274e-02
0 KSP unpreconditioned resid norm 3.421266970274e-02 true resid norm 3.421266970274e-02 ||r(i)||/||b|| 1.000000000000e+00
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 21
1 KSP unpreconditioned resid norm 2.066264276201e-05 true resid norm 2.066264276201e-05 ||r(i)||/||b|| 6.039471032675e-04
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 20
2 KSP unpreconditioned resid norm 1.295461366009e-10 true resid norm 1.295461419342e-10 ||r(i)||/||b|| 3.786496144842e-09
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 20
3 KSP unpreconditioned resid norm 1.954355290546e-15 true resid norm 1.954135246291e-15 ||r(i)||/||b|| 5.711729786858e-14
Linear solve converged due to CONVERGED_ATOL iterations 3
1 SNES Function norm 1.946196473520e-15
$ make -f ./gmakefile test globsearch="snes_tutorials-ex69_p2p1_gmg" EXTRA_OPTIONS="-dm_refine_hierarchy 6 -snes_monitor -ksp_monitor_true_residual -ksp_converged_reason -fieldsplit_pressure_ksp_converged_reason -fieldsplit_pressure_pc_type ilu -m 2 -n 2 -B 6.9"
L_2 Error: [1.52905e-09, 4.72606e-05]
L_2 Residual: 7.18836e-06
Taylor approximation converging at order 1.00
0 SNES Function norm 2.252034794902e-03
0 KSP unpreconditioned resid norm 2.252034794902e-03 true resid norm 2.252034794902e-03 ||r(i)||/||b|| 1.000000000000e+00
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 19
1 KSP unpreconditioned resid norm 1.843225742581e-05 true resid norm 1.843225742582e-05 ||r(i)||/||b|| 8.184712539768e-03
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 19
2 KSP unpreconditioned resid norm 1.410472862037e-09 true resid norm 1.410472860342e-09 ||r(i)||/||b|| 6.263104209294e-07
Linear fieldsplit_pressure_ solve converged due to CONVERGED_RTOL iterations 19
3 KSP unpreconditioned resid norm 1.051996270409e-14 true resid norm 1.064465321443e-14 ||r(i)||/||b|| 4.726682393419e-12
Linear solve converged due to CONVERGED_ATOL iterations 3
1 SNES Function norm 1.063917948054e-14
Bibliography
------------
.. bibliography:: /petsc.bib
:filter: docname in docnames
|