File: snes.html

package info (click to toggle)
petsc 3.23.1%2Bdfsg1-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 515,576 kB
  • sloc: ansic: 751,607; cpp: 51,542; python: 38,598; f90: 17,352; javascript: 3,493; makefile: 3,157; sh: 1,502; xml: 619; objc: 445; java: 13; csh: 1
file content (3159 lines) | stat: -rw-r--r-- 398,218 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159

<!DOCTYPE html>


<html lang="en" data-content_root="../" >

  <head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />

    <title>SNES: Nonlinear Solvers &#8212; PETSc 3.23.1 documentation</title>
  
  
  
  <script data-cfasync="false">
    document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
    document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
  </script>
  
  <!-- Loaded before other Sphinx assets -->
  <link href="../_static/styles/theme.css?digest=bd9e20870c6007c4c509" rel="stylesheet" />
<link href="../_static/styles/bootstrap.css?digest=bd9e20870c6007c4c509" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=bd9e20870c6007c4c509" rel="stylesheet" />

  
  <link href="../_static/vendor/fontawesome/6.5.1/css/all.min.css?digest=bd9e20870c6007c4c509" rel="stylesheet" />
  <link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.1/webfonts/fa-solid-900.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.1/webfonts/fa-brands-400.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.1/webfonts/fa-regular-400.woff2" />

    <link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=8f2a1f02" />
    <link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
    <link rel="stylesheet" type="text/css" href="../_static/sphinx-design.min.css?v=87e54e7c" />
    <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/npm/katex@0.16.10/dist/katex.min.css" />
    <link rel="stylesheet" type="text/css" href="../_static/katex-math.css?v=91adb8b6" />
    <link rel="stylesheet" type="text/css" href="../_static/css/custom.css?v=dbe1606d" />
  
  <!-- Pre-loaded scripts that we'll load fully later -->
  <link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=bd9e20870c6007c4c509" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=bd9e20870c6007c4c509" />
  <script src="../_static/vendor/fontawesome/6.5.1/js/all.min.js?digest=bd9e20870c6007c4c509"></script>

    <script src="../_static/documentation_options.js?v=34da53a5"></script>
    <script src="../_static/doctools.js?v=9a2dae69"></script>
    <script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
    <script src="../_static/clipboard.min.js?v=a7894cd8"></script>
    <script src="../_static/copybutton.js?v=a56c686a"></script>
    <script src="../_static/design-tabs.js?v=f930bc37"></script>
    <script src="../_static/katex.min.js?v=be8ff15f"></script>
    <script src="../_static/auto-render.min.js?v=ad136472"></script>
    <script src="../_static/katex_autorenderer.js?v=bebc588a"></script>
    <script>DOCUMENTATION_OPTIONS.pagename = 'manual/snes';</script>
    <link rel="icon" href="../_static/petsc_favicon.png"/>
    <link rel="index" title="Index" href="../genindex.html" />
    <link rel="search" title="Search" href="../search.html" />
    <link rel="next" title="TS: Scalable ODE and DAE Solvers" href="ts.html" />
    <link rel="prev" title="KSP: Linear System Solvers" href="ksp.html" />
  <meta name="viewport" content="width=device-width, initial-scale=1"/>
  <meta name="docsearch:language" content="en"/>
    <meta name="docbuild:last-update" content="2025-04-30T13:10:40-0500 (v3.23.1)"/>
  </head>
  
  
  <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">

  
  
  <a id="pst-skip-link" class="skip-link" href="#main-content">Skip to main content</a>
  
  <div id="pst-scroll-pixel-helper"></div>

  
  <button type="button" class="btn rounded-pill" id="pst-back-to-top">
    <i class="fa-solid fa-arrow-up"></i>
    Back to top
  </button>

  
  <input type="checkbox"
          class="sidebar-toggle"
          name="__primary"
          id="__primary"/>
  <label class="overlay overlay-primary" for="__primary"></label>
  
  <input type="checkbox"
          class="sidebar-toggle"
          name="__secondary"
          id="__secondary"/>
  <label class="overlay overlay-secondary" for="__secondary"></label>
  
  <div class="search-button__wrapper">
    <div class="search-button__overlay"></div>
    <div class="search-button__search-container">
<form class="bd-search d-flex align-items-center"
      action="../search.html"
      method="get">
  <i class="fa-solid fa-magnifying-glass"></i>
  <input type="search"
         class="form-control"
         name="q"
         id="search-input"
         placeholder="Search the docs ..."
         aria-label="Search the docs ..."
         autocomplete="off"
         autocorrect="off"
         autocapitalize="off"
         spellcheck="false"/>
  <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form></div>
  </div>

  <header>
  
    <div class="bd-header navbar navbar-expand-lg bd-navbar">
<div class="bd-header__inner bd-page-width">
  <label class="sidebar-toggle primary-toggle" for="__primary">
    <span class="fa-solid fa-bars"></span>
  </label>
  
  
  <div class="col-lg-3 navbar-header-items__start">
    
      <div class="navbar-item">

  

<a class="navbar-brand logo" href="../index.html">
  
  
  
  
  
    
    
      
    
    
    <img src="../_static/PETSc-TAO_RGB.svg" class="logo__image only-light" alt="PETSc 3.23.1 documentation - Home"/>
    <script>document.write(`<img src="../_static/PETSc-TAO_RGB_white.svg" class="logo__image only-dark" alt="PETSc 3.23.1 documentation - Home"/>`);</script>
  
  
</a></div>
    
  </div>
  
  <div class="col-lg-9 navbar-header-items">
    
    <div class="me-auto navbar-header-items__center">
      
        <div class="navbar-item">
<nav class="navbar-nav">
  <ul class="bd-navbar-elements navbar-nav">
    
                    <li class="nav-item current active">
                      <a class="nav-link nav-internal" href="../overview/index.html">
                        Overview
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../install/index.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../tutorials/index.html">
                        Tutorials
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="index.html">
                        User-Guide
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../manualpages/index.html">
                        C/Fortran API
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../petsc4py/index.html">
                        petsc4py API
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../faq/index.html">
                        FAQ
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../community/index.html">
                        Community
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../developers/index.html">
                        Developers
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../miscellaneous/index.html">
                        Misc.
                      </a>
                    </li>
                
  </ul>
</nav></div>
      
    </div>
    
    
    <div class="navbar-header-items__end">
      
        <div class="navbar-item navbar-persistent--container">
          

 <script>
 document.write(`
   <button class="btn navbar-btn search-button-field search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <i class="fa-solid fa-magnifying-glass"></i>
    <span class="search-button__default-text">Search</span>
    <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
   </button>
 `);
 </script>
        </div>
      
      
        <div class="navbar-item">

<script>
document.write(`
  <button class="btn btn-sm navbar-btn theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <span class="theme-switch nav-link" data-mode="light"><i class="fa-solid fa-sun fa-lg"></i></span>
    <span class="theme-switch nav-link" data-mode="dark"><i class="fa-solid fa-moon fa-lg"></i></span>
    <span class="theme-switch nav-link" data-mode="auto"><i class="fa-solid fa-circle-half-stroke fa-lg"></i></span>
  </button>
`);
</script></div>
      
        <div class="navbar-item"><ul class="navbar-icon-links navbar-nav"
    aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          
          <a href="https://gitlab.com/petsc/petsc" title="GitLab" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fab fa-gitlab fa-lg" aria-hidden="true"></i></span>
            <span class="sr-only">GitLab</span></a>
        </li>
</ul></div>
      
    </div>
    
  </div>
  
  
    <div class="navbar-persistent--mobile">

 <script>
 document.write(`
   <button class="btn navbar-btn search-button-field search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <i class="fa-solid fa-magnifying-glass"></i>
    <span class="search-button__default-text">Search</span>
    <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
   </button>
 `);
 </script>
    </div>
  

  
    <label class="sidebar-toggle secondary-toggle" for="__secondary" tabindex="0">
      <span class="fa-solid fa-outdent"></span>
    </label>
  
</div>

    </div>
  
  </header>

  <div class="bd-container">
    <div class="bd-container__inner bd-page-width">
      
      
      
      <div class="bd-sidebar-primary bd-sidebar">
        

  
  <div class="sidebar-header-items sidebar-primary__section">
    
    
      <div class="sidebar-header-items__center">
        
          <div class="navbar-item">
<nav class="navbar-nav">
  <ul class="bd-navbar-elements navbar-nav">
    
                    <li class="nav-item current active">
                      <a class="nav-link nav-internal" href="../overview/index.html">
                        Overview
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../install/index.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../tutorials/index.html">
                        Tutorials
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="index.html">
                        User-Guide
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../manualpages/index.html">
                        C/Fortran API
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../petsc4py/index.html">
                        petsc4py API
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../faq/index.html">
                        FAQ
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../community/index.html">
                        Community
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../developers/index.html">
                        Developers
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../miscellaneous/index.html">
                        Misc.
                      </a>
                    </li>
                
  </ul>
</nav></div>
        
      </div>
    
    
    
      <div class="sidebar-header-items__end">
        
          <div class="navbar-item">

<script>
document.write(`
  <button class="btn btn-sm navbar-btn theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <span class="theme-switch nav-link" data-mode="light"><i class="fa-solid fa-sun fa-lg"></i></span>
    <span class="theme-switch nav-link" data-mode="dark"><i class="fa-solid fa-moon fa-lg"></i></span>
    <span class="theme-switch nav-link" data-mode="auto"><i class="fa-solid fa-circle-half-stroke fa-lg"></i></span>
  </button>
`);
</script></div>
        
          <div class="navbar-item"><ul class="navbar-icon-links navbar-nav"
    aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          
          <a href="https://gitlab.com/petsc/petsc" title="GitLab" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fab fa-gitlab fa-lg" aria-hidden="true"></i></span>
            <span class="sr-only">GitLab</span></a>
        </li>
</ul></div>
        
      </div>
    
  </div>
  
    <div class="sidebar-primary-items__start sidebar-primary__section">
        <div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
     aria-label="Section Navigation">
  <p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
  <div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../overview/nutshell.html">PETSc in a nutshell</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/features.html">Supported Systems</a></li>

<li class="toctree-l1"><a class="reference internal" href="../overview/gpu_roadmap.html">GPU Support Roadmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/vector_table.html">Summary of Vector Types Available In PETSc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/matrix_table.html">Summary of Matrix Types Available In PETSc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/linear_solve_table.html">Summary of Sparse Linear Solvers Available In PETSc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/nonlinear_solve_table.html">Summary of Nonlinear Solvers Available In PETSc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/integrator_table.html">Summary of Time Integrators Available In PETSc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/tao_solve_table.html">Summary of Tao Solvers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/discrete_table.html">Summary of Discretization Management Systems</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/plex_transform_table.html">Summary of Unstructured Mesh Transformations</a></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="index.html">User-Guide</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-1"><i class="fa-solid fa-chevron-down"></i></label><ul class="current">
<li class="toctree-l2 has-children"><a class="reference internal" href="introduction.html">Introduction to PETSc</a><input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-2"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="about_this_manual.html">About This Manual</a></li>
<li class="toctree-l3"><a class="reference internal" href="getting_started.html">Getting Started</a></li>






</ul>
</li>
<li class="toctree-l2 current active has-children"><a class="reference internal" href="programming.html">The Solvers in PETSc/TAO</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-3"><i class="fa-solid fa-chevron-down"></i></label><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="vec.html">Vectors and Parallel Data</a></li>
<li class="toctree-l3"><a class="reference internal" href="mat.html">Matrices</a></li>
<li class="toctree-l3"><a class="reference internal" href="ksp.html">KSP: Linear System Solvers</a></li>
<li class="toctree-l3 current active"><a class="current reference internal" href="#">SNES: Nonlinear Solvers</a></li>
<li class="toctree-l3"><a class="reference internal" href="ts.html">TS: Scalable ODE and DAE Solvers</a></li>

<li class="toctree-l3"><a class="reference internal" href="tao.html">TAO: Optimization Solvers</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="dm.html">DM: Interfacing Between Solvers and Models/Discretizations</a><input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-4"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="dmbase.html">DM Basics</a></li>
<li class="toctree-l3"><a class="reference internal" href="section.html">PetscSection: Connecting Grids to Data</a></li>
<li class="toctree-l3"><a class="reference internal" href="dmplex.html">DMPlex: Unstructured Grids</a></li>
<li class="toctree-l3"><a class="reference internal" href="dmstag.html">DMSTAG: Staggered, Structured Grid</a></li>
<li class="toctree-l3"><a class="reference internal" href="dmnetwork.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="dt.html">PetscDT: Discretization Technology in PETSc</a></li>
<li class="toctree-l3"><a class="reference internal" href="fe.html">PetscFE: Finite Element Infrastructure in PETSc</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="additional.html">Additional Information</a><input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-5"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="fortran.html">PETSc for Fortran Users</a></li>
<li class="toctree-l3"><a class="reference internal" href="versionchecking.html">Checking the PETSc version</a></li>
<li class="toctree-l3"><a class="reference internal" href="matlab.html">Using MATLAB with PETSc</a></li>
<li class="toctree-l3"><a class="reference internal" href="profiling.html">Profiling</a></li>
<li class="toctree-l3"><a class="reference internal" href="performance.html">Hints for Performance Tuning</a></li>
<li class="toctree-l3"><a class="reference internal" href="streams.html">STREAMS: Example Study</a></li>
<li class="toctree-l3"><a class="reference internal" href="blas-lapack.html">The Use of BLAS and LAPACK in PETSc and external libraries</a></li>
<li class="toctree-l3"><a class="reference internal" href="other.html">Other PETSc Features</a></li>

<li class="toctree-l3"><a class="reference internal" href="advanced.html">Advanced Features of Matrices and Solvers</a></li>
<li class="toctree-l3"><a class="reference internal" href="tests.html">Running PETSc Tests</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../manualpages/index.html">C/Fortran API</a><input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-6"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Vector.html">Vectors and Index Sets</a><input class="toctree-checkbox" id="toctree-checkbox-7" name="toctree-checkbox-7" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-7"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Vec/index.html">Vector Operations (Vec)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/IS/index.html">Index sets (IS)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Matrix.html">Matrices and Matrix Operations</a><input class="toctree-checkbox" id="toctree-checkbox-8" name="toctree-checkbox-8" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-8"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Mat/index.html">Matrix Operations (Mat)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/MatGraphOperations/index.html">Matrix colorings (MatColoring), orderings (MatOrdering), partitionings (MatPartitioning), and coarsening (MatCoarsen)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/MatFD/index.html">Finite difference computation of Jacobians (MatFD)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/DataLayout.html">Data Layout and Communication</a><input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-9"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/PetscSF/index.html">Star Forest Communication (PetscSF)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/PetscSection/index.html">Section Data Layout (PetscSection)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/AO/index.html">Application Orderings (AO)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/DataManagement.html">Data Management between Vec and Mat, and Distributed Mesh Data Structures</a><input class="toctree-checkbox" id="toctree-checkbox-10" name="toctree-checkbox-10" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-10"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DM/index.html">Data Management (DM)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMDA/index.html">Structured Grids (DMDA)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMStag/index.html">Staggered, Structured Grids (DMSTAG)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMPlex/index.html">Unstructured Grids and Cell Complexes (DMPLEX)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMNetwork/index.html">Graphs and Networks (DMNETWORK)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMForest/index.html">A Forest of Trees and Structured Adaptive Refinement (DMFOREST)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMPatch/index.html">Sequences of parallel mesh patches (DMPATCH)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMSwarm/index.html">Particle Discretizations (DMSWARM)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMMOAB/index.html">MOAB Mesh Representation (DMMOAB)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMLabel/index.html">Selecting Parts of Meshes (DMLabel)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMPRODUCT/index.html">Tensor products of meshes (DMRODUCT)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMComposite/index.html">DMComposite</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Discretization.html">Discretization and Function Spaces</a><input class="toctree-checkbox" id="toctree-checkbox-11" name="toctree-checkbox-11" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-11"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DT/index.html">Discretization Technology and Quadrature (DT)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/SPACE/index.html">Function Spaces (PetscSpace)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DUALSPACE/index.html">Dual Spaces (PetscDualSpace)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/FE/index.html">Finite Elements (PetscFE)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/FV/index.html">Finite Volumes (PetscFV)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/PF/index.html">Defining your own mathematical functions (PF)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/LANDAU/index.html">Landau Collision Operator</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/LinearSolvers.html">Linear Solvers and Preconditioners</a><input class="toctree-checkbox" id="toctree-checkbox-12" name="toctree-checkbox-12" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-12"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/KSP/index.html">Linear Solvers and Krylov Methods (KSP)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/PC/index.html">Preconditioners (PC)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/NonlinearSolvers.html">Nonlinear Solvers</a><input class="toctree-checkbox" id="toctree-checkbox-13" name="toctree-checkbox-13" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-13"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/SNES/index.html">Nonlinear Solvers (SNES)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/SNESFAS/index.html">Full Approximation Scheme (FAS) nonlinear multigrid</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Timestepping.html">Forward and Adjoint Timestepping</a><input class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-14"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/TS/index.html">Time Stepping ODE and DAE Solvers (TS)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Sensitivity/index.html">Sensitivity Analysis for ODE and DAE</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Characteristic/index.html">Semi-Lagrangian Solves using the Method of Characteristics</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Optimization.html">Optimization</a><input class="toctree-checkbox" id="toctree-checkbox-15" name="toctree-checkbox-15" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-15"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Tao/index.html">Optimization Solvers (Tao)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/TaoLineSearch/index.html">Optimization Line Search (TaoLineSearch)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Visualization.html">Graphics and Visualization</a><input class="toctree-checkbox" id="toctree-checkbox-16" name="toctree-checkbox-16" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-16"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Draw/index.html">Graphics (Draw)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Viewer/index.html">Viewing Objects (Viewer)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/System.html">System Routines, Profiling, Data Structures</a><input class="toctree-checkbox" id="toctree-checkbox-17" name="toctree-checkbox-17" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-17"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Sys/index.html">PETSc Options, IO, and System Utilities</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/PetscH/index.html">Hash Tables</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Log/index.html">Profiling and Logging</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Device/index.html">Device</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Matlab/index.html">Matlab</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Bag/index.html">Bag</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/BM/index.html">Benchmarks (BM)</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../changes/index.html">Changes for each release</a></li>
<li class="toctree-l2"><a class="reference internal" href="../manualpages/singleindex.html">Single Index of all PETSc Manual Pages</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../changes/index.html">Changes for each release</a></li>
<li class="toctree-l1"><a class="reference internal" href="../manualpages/singleindex.html">Single Index of all PETSc Manual Pages</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../overview/previous_release_docs.html">Documentation for previous PETSc releases</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-18"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.22/docs"> 3.22</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.21/docs"> 3.21</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.20/docs"> 3.20</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.19/docs"> 3.19</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.18/docs"> 3.18</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.17/docs"> 3.17</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.16/docs"> 3.16</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.15/docs"> 3.15</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.14/docs"> 3.14</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.13/docs"> 3.13</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.12/docs"> 3.12</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.11/docs"> 3.11</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.10/docs"> 3.10</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.9/docs"> 3.9</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.8/docs"> 3.8</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.7/docs"> 3.7</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.6/docs"> 3.6</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.5/docs"> 3.5</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.4/docs"> 3.4</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.3/docs"> 3.3</a></li>
</ul>
</li>
</ul>
</div>
</nav></div>
    </div>
  
  
  <div class="sidebar-primary-items__end sidebar-primary__section">
  </div>
  
  <div id="rtd-footer-container"></div>


      </div>
      
      <main id="main-content" class="bd-main">
        
        
          <div class="bd-content">
            <div class="bd-article-container">
              
              <div class="bd-header-article">
<div class="header-article-items header-article__inner">
  
    <div class="header-article-items__start">
      
        <div class="header-article-item">





<nav aria-label="Breadcrumb">
  <ul class="bd-breadcrumbs">
    
    <li class="breadcrumb-item breadcrumb-home">
      <a href="../index.html" class="nav-link" aria-label="Home">
        <i class="fa-solid fa-home"></i>
      </a>
    </li>
    
    <li class="breadcrumb-item"><a href="../overview/index.html" class="nav-link">Overview</a></li>
    
    
    <li class="breadcrumb-item"><i class="fa-solid fa-ellipsis"></i></li>
    
    
    <li class="breadcrumb-item"><a href="programming.html" class="nav-link">The Solvers in PETSc/TAO</a></li>
    
    <li class="breadcrumb-item active" aria-current="page">SNES:...</li>
  </ul>
</nav>
</div>
      
    </div>
  
  
</div>
</div>
              
              
              
                
<div id="searchbox"></div>
                <article class="bd-article">
                  
  <section class="tex2jax_ignore mathjax_ignore" id="snes-nonlinear-solvers">
<span id="ch-snes"></span><h1>SNES: Nonlinear Solvers<a class="headerlink" href="#snes-nonlinear-solvers" title="Link to this heading">#</a></h1>
<p>The solution of large-scale nonlinear problems pervades many facets of
computational science and demands robust and flexible solution
strategies. The <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> library of PETSc provides a powerful suite of
data-structure-neutral numerical routines for such problems. Built on
top of the linear solvers and data structures discussed in preceding
chapters, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> enables the user to easily customize the nonlinear
solvers according to the application at hand. Also, the <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code>
interface is <em>identical</em> for the uniprocess and parallel cases; the only
difference in the parallel version is that each process typically forms
only its local contribution to various matrices and vectors.</p>
<p>The <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> class includes methods for solving systems of nonlinear
equations of the form</p>
<div class="math" id="equation-fx0">
<span class="eqno">(3)<a class="headerlink" href="#equation-fx0" title="Permalink to this equation">#</a></span>\[
\mathbf{F}(\mathbf{x}) = 0,
\]</div>
<p>where <span class="math">\(\mathbf{F}: \, \Re^n \to \Re^n\)</span>. Newton-like methods provide the
core of the package, including both line search and trust region
techniques. A suite of nonlinear Krylov methods and methods based upon
problem decomposition are also included. The solvers are discussed
further in <a class="reference internal" href="#sec-nlsolvers"><span class="std std-ref">The Nonlinear Solvers</span></a>. Following the PETSc design
philosophy, the interfaces to the various solvers are all virtually
identical. In addition, the <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> software is completely flexible, so
that the user can at runtime change any facet of the solution process.</p>
<p>PETSc’s default method for solving the nonlinear equation is Newton’s
method with line search, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNEWTONLS.html">SNESNEWTONLS</a></span></code>. The general form of the <span class="math">\(n\)</span>-dimensional Newton’s method
for solving <a class="reference internal" href="#equation-fx0">(3)</a> is</p>
<div class="math" id="equation-newton">
<span class="eqno">(4)<a class="headerlink" href="#equation-newton" title="Permalink to this equation">#</a></span>\[
\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{J}(\mathbf{x}_k)^{-1} \mathbf{F}(\mathbf{x}_k), \;\; k=0,1, \ldots,
\]</div>
<p>where <span class="math">\(\mathbf{x}_0\)</span> is an initial approximation to the solution and
<span class="math">\(\mathbf{J}(\mathbf{x}_k) = \mathbf{F}'(\mathbf{x}_k)\)</span>, the Jacobian, is nonsingular at each
iteration. In practice, the Newton iteration <a class="reference internal" href="#equation-newton">(4)</a> is
implemented by the following two steps:</p>
<div class="math">
\[
\begin{aligned}
1. & \text{(Approximately) solve} & \mathbf{J}(\mathbf{x}_k) \Delta \mathbf{x}_k &= -\mathbf{F}(\mathbf{x}_k). \\
2. & \text{Update} & \mathbf{x}_{k+1} &\gets \mathbf{x}_k + \Delta \mathbf{x}_k.
\end{aligned}
\]</div>
<p>Other defect-correction algorithms can be implemented by using different
choices for <span class="math">\(J(\mathbf{x}_k)\)</span>.</p>
<section id="basic-snes-usage">
<span id="sec-snesusage"></span><h2>Basic SNES Usage<a class="headerlink" href="#basic-snes-usage" title="Link to this heading">#</a></h2>
<p>In the simplest usage of the nonlinear solvers, the user must merely
provide a C, C++, Fortran, or Python routine to evaluate the nonlinear function
<a class="reference internal" href="#equation-fx0">(3)</a>. The corresponding Jacobian matrix
can be approximated with finite differences. For codes that are
typically more efficient and accurate, the user can provide a routine to
compute the Jacobian; details regarding these application-provided
routines are discussed below. To provide an overview of the use of the
nonlinear solvers, browse the concrete example in <a class="reference internal" href="other.html#snes-ex1"><span class="std std-ref">ex1.c</span></a> or skip ahead to the discussion.</p>
<div class="admonition-listing-src-snes-tutorials-ex1-c admonition" id="snes-ex1">
<p class="admonition-title">Listing: <code class="docutils notranslate"><span class="pre">src/snes/tutorials/ex1.c</span></code></p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="k">static</span><span class="w"> </span><span class="kt">char</span><span class="w"> </span><span class="n">help</span><span class="p">[]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;Newton&#39;s method for a two-variable system, sequential.</span><span class="se">\n\n</span><span class="s">&quot;</span><span class="p">;</span>

<span class="cm">/*</span>
<span class="cm">   Include &quot;petscsnes.h&quot; so that we can use <a href="../manualpages/SNES/SNES.html">SNES</a> solvers.  Note that this</span>
<span class="cm">   file automatically includes:</span>
<span class="cm">     petscsys.h       - base PETSc routines   petscvec.h - vectors</span>
<span class="cm">     petscmat.h - matrices</span>
<span class="cm">     petscis.h     - index sets            petscksp.h - Krylov subspace methods</span>
<span class="cm">     petscviewer.h - viewers               petscpc.h  - preconditioners</span>
<span class="cm">     petscksp.h   - linear solvers</span>
<span class="cm">*/</span>
<span class="cm">/*F</span>
<span class="cm">This examples solves either</span>
<span class="cm">\begin{equation}</span>
<span class="cm">  F\genfrac{(}{)}{0pt}{}{x_0}{x_1} = \genfrac{(}{)}{0pt}{}{x^2_0 + x_0 x_1 - 3}{x_0 x_1 + x^2_1 - 6}</span>
<span class="cm">\end{equation}</span>
<span class="cm">or if the {\tt -hard} options is given</span>
<span class="cm">\begin{equation}</span>
<span class="cm">  F\genfrac{(}{)}{0pt}{}{x_0}{x_1} = \genfrac{(}{)}{0pt}{}{\sin(3 x_0) + x_0}{x_1}</span>
<span class="cm">\end{equation}</span>
<span class="cm">F*/</span>
<span class="cp">#include</span><span class="w"> </span><span class="cpf">&lt;petscsnes.h&gt;</span>

<span class="cm">/*</span>
<span class="cm">   User-defined routines</span>
<span class="cm">*/</span>
<span class="k">extern</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">FormJacobian1</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="p">);</span>
<span class="k">extern</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">FormFunction1</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="p">);</span>
<span class="k">extern</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">FormJacobian2</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="p">);</span>
<span class="k">extern</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">FormFunction2</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="p">);</span>

<span class="kt">int</span><span class="w"> </span><span class="nf">main</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">argc</span><span class="p">,</span><span class="w"> </span><span class="kt">char</span><span class="w"> </span><span class="o">**</span><span class="n">argv</span><span class="p">)</span>
<span class="p">{</span>
<span class="w">  </span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w">        </span><span class="n">snes</span><span class="p">;</span><span class="w"> </span><span class="cm">/* nonlinear solver context */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/KSP/KSP.html">KSP</a></span><span class="w">         </span><span class="n">ksp</span><span class="p">;</span><span class="w">  </span><span class="cm">/* linear solver context */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/PC/PC.html">PC</a></span><span class="w">          </span><span class="n">pc</span><span class="p">;</span><span class="w">   </span><span class="cm">/* preconditioner context */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w">         </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n">r</span><span class="p">;</span><span class="w"> </span><span class="cm">/* solution, residual vectors */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w">         </span><span class="n">J</span><span class="p">;</span><span class="w">    </span><span class="cm">/* Jacobian matrix */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscMPIInt.html">PetscMPIInt</a></span><span class="w"> </span><span class="n">size</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w"> </span><span class="n">pfive</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">.5</span><span class="p">,</span><span class="w"> </span><span class="o">*</span><span class="n">xx</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w">   </span><span class="n">flg</span><span class="p">;</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionBeginUser.html">PetscFunctionBeginUser</a></span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscInitialize.html">PetscInitialize</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">argc</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">argv</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="n">help</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCallMPI.html">PetscCallMPI</a></span><span class="p">(</span><span class="n"><a href="http://www.mpich.org/static/docs/latest/www3/MPI_Comm_size.html#MPI_Comm_size">MPI_Comm_size</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">size</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCheck.html">PetscCheck</a></span><span class="p">(</span><span class="n">size</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PETSC_ERR_WRONG_MPI_SIZE</a></span><span class="p">,</span><span class="w"> </span><span class="s">&quot;Example is only for sequential runs&quot;</span><span class="p">);</span>

<span class="w">  </span><span class="cm">/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</span>
<span class="cm">     Create nonlinear solver context</span>
<span class="cm">     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESCreate.html">SNESCreate</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">snes</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESSetType.html">SNESSetType</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/SNES/SNESNEWTONLS.html">SNESNEWTONLS</a></span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESSetOptionsPrefix.html">SNESSetOptionsPrefix</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;mysolver_&quot;</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</span>
<span class="cm">     Create matrix and vector data structures; set corresponding routines</span>
<span class="cm">     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */</span>
<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Create vectors for solution and nonlinear function</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecCreate.html">VecCreate</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">x</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecSetSizes.html">VecSetSizes</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_DECIDE.html">PETSC_DECIDE</a></span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecSetFromOptions.html">VecSetFromOptions</a></span><span class="p">(</span><span class="n">x</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecDuplicate.html">VecDuplicate</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">r</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Create Jacobian matrix data structure</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatCreate.html">MatCreate</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">J</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatSetSizes.html">MatSetSizes</a></span><span class="p">(</span><span class="n">J</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_DECIDE.html">PETSC_DECIDE</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_DECIDE.html">PETSC_DECIDE</a></span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatSetFromOptions.html">MatSetFromOptions</a></span><span class="p">(</span><span class="n">J</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatSetUp.html">MatSetUp</a></span><span class="p">(</span><span class="n">J</span><span class="p">));</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscOptionsHasName.html">PetscOptionsHasName</a></span><span class="p">(</span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;-hard&quot;</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">flg</span><span class="p">));</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">flg</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="cm">/*</span>
<span class="cm">     Set function evaluation routine and vector.</span>
<span class="cm">    */</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESSetFunction.html">SNESSetFunction</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n">r</span><span class="p">,</span><span class="w"> </span><span class="n">FormFunction1</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>

<span class="w">    </span><span class="cm">/*</span>
<span class="cm">     Set Jacobian matrix data structure and Jacobian evaluation routine</span>
<span class="cm">    */</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESSetJacobian.html">SNESSetJacobian</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n">J</span><span class="p">,</span><span class="w"> </span><span class="n">J</span><span class="p">,</span><span class="w"> </span><span class="n">FormJacobian1</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESSetFunction.html">SNESSetFunction</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n">r</span><span class="p">,</span><span class="w"> </span><span class="n">FormFunction2</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESSetJacobian.html">SNESSetJacobian</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n">J</span><span class="p">,</span><span class="w"> </span><span class="n">J</span><span class="p">,</span><span class="w"> </span><span class="n">FormJacobian2</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span>

<span class="w">  </span><span class="cm">/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</span>
<span class="cm">     Customize nonlinear solver; set runtime options</span>
<span class="cm">   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */</span>
<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Set linear solver defaults for this problem. By extracting the</span>
<span class="cm">     <a href="../manualpages/KSP/KSP.html">KSP</a> and <a href="../manualpages/PC/PC.html">PC</a> contexts from the <a href="../manualpages/SNES/SNES.html">SNES</a> context, we can then</span>
<span class="cm">     directly call any <a href="../manualpages/KSP/KSP.html">KSP</a> and <a href="../manualpages/PC/PC.html">PC</a> routines to set various options.</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESGetKSP.html">SNESGetKSP</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ksp</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/KSP/KSPGetPC.html">KSPGetPC</a></span><span class="p">(</span><span class="n">ksp</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">pc</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/PC/PCSetType.html">PCSetType</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/PC/PCNONE.html">PCNONE</a></span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/KSP/KSPSetTolerances.html">KSPSetTolerances</a></span><span class="p">(</span><span class="n">ksp</span><span class="p">,</span><span class="w"> </span><span class="mf">1.</span><span class="n">e</span><span class="mi">-4</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_CURRENT.html">PETSC_CURRENT</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_CURRENT.html">PETSC_CURRENT</a></span><span class="p">,</span><span class="w"> </span><span class="mi">20</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Set <a href="../manualpages/SNES/SNES.html">SNES</a>/<a href="../manualpages/KSP/KSP.html">KSP</a>/<a href="../manualpages/KSP/KSP.html">KSP</a>/<a href="../manualpages/PC/PC.html">PC</a> runtime options, e.g.,</span>
<span class="cm">         -snes_view -snes_monitor -ksp_type &lt;ksp&gt; -pc_type &lt;pc&gt;</span>
<span class="cm">     These options will override those specified above as long as</span>
<span class="cm">     <a href="../manualpages/SNES/SNESSetFromOptions.html">SNESSetFromOptions</a>() is called _after_ any other customization</span>
<span class="cm">     routines.</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESSetFromOptions.html">SNESSetFromOptions</a></span><span class="p">(</span><span class="n">snes</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</span>
<span class="cm">     Evaluate initial guess; then solve nonlinear system</span>
<span class="cm">   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">flg</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecSet.html">VecSet</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n">pfive</span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecGetArray.html">VecGetArray</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xx</span><span class="p">));</span>
<span class="w">    </span><span class="n">xx</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">2.0</span><span class="p">;</span>
<span class="w">    </span><span class="n">xx</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3.0</span><span class="p">;</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecRestoreArray.html">VecRestoreArray</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xx</span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span>
<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Note: The user should initialize the vector, x, with the initial guess</span>
<span class="cm">     for the nonlinear solver prior to calling <a href="../manualpages/SNES/SNESSolve.html">SNESSolve</a>().  In particular,</span>
<span class="cm">     to employ an initial guess of zero, the user should explicitly set</span>
<span class="cm">     this vector to zero by calling <a href="../manualpages/Vec/VecSet.html">VecSet</a>().</span>
<span class="cm">  */</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESSolve.html">SNESSolve</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="n">x</span><span class="p">));</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">flg</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">f</span><span class="p">;</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecView.html">VecView</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Viewer/PETSC_VIEWER_STDOUT_WORLD.html">PETSC_VIEWER_STDOUT_WORLD</a></span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESGetFunction.html">SNESGetFunction</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">f</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecView.html">VecView</a></span><span class="p">(</span><span class="n">r</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Viewer/PETSC_VIEWER_STDOUT_WORLD.html">PETSC_VIEWER_STDOUT_WORLD</a></span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span>

<span class="w">  </span><span class="cm">/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</span>
<span class="cm">     Free work space.  All PETSc objects should be destroyed when they</span>
<span class="cm">     are no longer needed.</span>
<span class="cm">   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecDestroy.html">VecDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">x</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecDestroy.html">VecDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">r</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatDestroy.html">MatDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">J</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESDestroy.html">SNESDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">snes</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscFinalize.html">PetscFinalize</a></span><span class="p">());</span>
<span class="w">  </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<span class="p">}</span>
<span class="cm">/* ------------------------------------------------------------------- */</span>
<span class="cm">/*</span>
<span class="cm">   FormFunction1 - Evaluates nonlinear function, F(x).</span>

<span class="cm">   Input Parameters:</span>
<span class="cm">.  snes - the <a href="../manualpages/SNES/SNES.html">SNES</a> context</span>
<span class="cm">.  x    - input vector</span>
<span class="cm">.  ctx  - optional user-defined context</span>

<span class="cm">   Output Parameter:</span>
<span class="cm">.  f - function vector</span>
<span class="cm"> */</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">FormFunction1</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">f</span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">)</span>
<span class="p">{</span>
<span class="w">  </span><span class="k">const</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w"> </span><span class="o">*</span><span class="n">xx</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w">       </span><span class="o">*</span><span class="n">ff</span><span class="p">;</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionBeginUser.html">PetscFunctionBeginUser</a></span><span class="p">;</span>
<span class="w">  </span><span class="cm">/*</span>
<span class="cm">   Get pointers to vector data.</span>
<span class="cm">      - For default PETSc vectors, <a href="../manualpages/Vec/VecGetArray.html">VecGetArray</a>() returns a pointer to</span>
<span class="cm">        the data array.  Otherwise, the routine is implementation dependent.</span>
<span class="cm">      - You MUST call <a href="../manualpages/Vec/VecRestoreArray.html">VecRestoreArray</a>() when you no longer need access to</span>
<span class="cm">        the array.</span>
<span class="cm">   */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecGetArrayRead.html">VecGetArrayRead</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xx</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecGetArray.html">VecGetArray</a></span><span class="p">(</span><span class="n">f</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ff</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/* Compute function */</span>
<span class="w">  </span><span class="n">ff</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">3.0</span><span class="p">;</span>
<span class="w">  </span><span class="n">ff</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">6.0</span><span class="p">;</span>

<span class="w">  </span><span class="cm">/* Restore vectors */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecRestoreArrayRead.html">VecRestoreArrayRead</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xx</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecRestoreArray.html">VecRestoreArray</a></span><span class="p">(</span><span class="n">f</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ff</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionReturn.html">PetscFunctionReturn</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PETSC_SUCCESS</a></span><span class="p">);</span>
<span class="p">}</span>
<span class="cm">/* ------------------------------------------------------------------- */</span>
<span class="cm">/*</span>
<span class="cm">   FormJacobian1 - Evaluates Jacobian matrix.</span>

<span class="cm">   Input Parameters:</span>
<span class="cm">.  snes - the <a href="../manualpages/SNES/SNES.html">SNES</a> context</span>
<span class="cm">.  x - input vector</span>
<span class="cm">.  dummy - optional user-defined context (not used here)</span>

<span class="cm">   Output Parameters:</span>
<span class="cm">.  jac - Jacobian matrix</span>
<span class="cm">.  B - optionally different preconditioning matrix</span>

<span class="cm">*/</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">FormJacobian1</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">jac</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">B</span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">dummy</span><span class="p">)</span>
<span class="p">{</span>
<span class="w">  </span><span class="k">const</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w"> </span><span class="o">*</span><span class="n">xx</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w">        </span><span class="n">A</span><span class="p">[</span><span class="mi">4</span><span class="p">];</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w">           </span><span class="n">idx</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">1</span><span class="p">};</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionBeginUser.html">PetscFunctionBeginUser</a></span><span class="p">;</span>
<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Get pointer to vector data</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecGetArrayRead.html">VecGetArrayRead</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xx</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Compute Jacobian entries and insert into matrix.</span>
<span class="cm">      - Since this is such a small problem, we set all entries for</span>
<span class="cm">        the matrix at once.</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n">A</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">2.0</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">1</span><span class="p">];</span>
<span class="w">  </span><span class="n">A</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">0</span><span class="p">];</span>
<span class="w">  </span><span class="n">A</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">1</span><span class="p">];</span>
<span class="w">  </span><span class="n">A</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">2.0</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">1</span><span class="p">];</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatSetValues.html">MatSetValues</a></span><span class="p">(</span><span class="n">B</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="p">,</span><span class="w"> </span><span class="n">idx</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="p">,</span><span class="w"> </span><span class="n">idx</span><span class="p">,</span><span class="w"> </span><span class="n">A</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/INSERT_VALUES.html">INSERT_VALUES</a></span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Restore vector</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecRestoreArrayRead.html">VecRestoreArrayRead</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xx</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Assemble matrix</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatAssemblyBegin.html">MatAssemblyBegin</a></span><span class="p">(</span><span class="n">B</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/MatAssemblyType.html">MAT_FINAL_ASSEMBLY</a></span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatAssemblyEnd.html">MatAssemblyEnd</a></span><span class="p">(</span><span class="n">B</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/MatAssemblyType.html">MAT_FINAL_ASSEMBLY</a></span><span class="p">));</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">jac</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="n">B</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatAssemblyBegin.html">MatAssemblyBegin</a></span><span class="p">(</span><span class="n">jac</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/MatAssemblyType.html">MAT_FINAL_ASSEMBLY</a></span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatAssemblyEnd.html">MatAssemblyEnd</a></span><span class="p">(</span><span class="n">jac</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/MatAssemblyType.html">MAT_FINAL_ASSEMBLY</a></span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionReturn.html">PetscFunctionReturn</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PETSC_SUCCESS</a></span><span class="p">);</span>
<span class="p">}</span>

<span class="cm">/* ------------------------------------------------------------------- */</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">FormFunction2</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">f</span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">dummy</span><span class="p">)</span>
<span class="p">{</span>
<span class="w">  </span><span class="k">const</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w"> </span><span class="o">*</span><span class="n">xx</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w">       </span><span class="o">*</span><span class="n">ff</span><span class="p">;</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionBeginUser.html">PetscFunctionBeginUser</a></span><span class="p">;</span>
<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Get pointers to vector data.</span>
<span class="cm">       - For default PETSc vectors, <a href="../manualpages/Vec/VecGetArray.html">VecGetArray</a>() returns a pointer to</span>
<span class="cm">         the data array.  Otherwise, the routine is implementation dependent.</span>
<span class="cm">       - You MUST call <a href="../manualpages/Vec/VecRestoreArray.html">VecRestoreArray</a>() when you no longer need access to</span>
<span class="cm">         the array.</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecGetArrayRead.html">VecGetArrayRead</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xx</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecGetArray.html">VecGetArray</a></span><span class="p">(</span><span class="n">f</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ff</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Compute function</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n">ff</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">PetscSinScalar</span><span class="p">(</span><span class="mf">3.0</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">0</span><span class="p">];</span>
<span class="w">  </span><span class="n">ff</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">1</span><span class="p">];</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Restore vectors</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecRestoreArrayRead.html">VecRestoreArrayRead</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xx</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecRestoreArray.html">VecRestoreArray</a></span><span class="p">(</span><span class="n">f</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ff</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionReturn.html">PetscFunctionReturn</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PETSC_SUCCESS</a></span><span class="p">);</span>
<span class="p">}</span>
<span class="cm">/* ------------------------------------------------------------------- */</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">FormJacobian2</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">jac</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">B</span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">dummy</span><span class="p">)</span>
<span class="p">{</span>
<span class="w">  </span><span class="k">const</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w"> </span><span class="o">*</span><span class="n">xx</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w">        </span><span class="n">A</span><span class="p">[</span><span class="mi">4</span><span class="p">];</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w">           </span><span class="n">idx</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">1</span><span class="p">};</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionBeginUser.html">PetscFunctionBeginUser</a></span><span class="p">;</span>
<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Get pointer to vector data</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecGetArrayRead.html">VecGetArrayRead</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xx</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Compute Jacobian entries and insert into matrix.</span>
<span class="cm">      - Since this is such a small problem, we set all entries for</span>
<span class="cm">        the matrix at once.</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n">A</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3.0</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">PetscCosScalar</span><span class="p">(</span><span class="mf">3.0</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1.0</span><span class="p">;</span>
<span class="w">  </span><span class="n">A</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0.0</span><span class="p">;</span>
<span class="w">  </span><span class="n">A</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0.0</span><span class="p">;</span>
<span class="w">  </span><span class="n">A</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1.0</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatSetValues.html">MatSetValues</a></span><span class="p">(</span><span class="n">B</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="p">,</span><span class="w"> </span><span class="n">idx</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="p">,</span><span class="w"> </span><span class="n">idx</span><span class="p">,</span><span class="w"> </span><span class="n">A</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/INSERT_VALUES.html">INSERT_VALUES</a></span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Restore vector</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecRestoreArrayRead.html">VecRestoreArrayRead</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xx</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Assemble matrix</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatAssemblyBegin.html">MatAssemblyBegin</a></span><span class="p">(</span><span class="n">B</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/MatAssemblyType.html">MAT_FINAL_ASSEMBLY</a></span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatAssemblyEnd.html">MatAssemblyEnd</a></span><span class="p">(</span><span class="n">B</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/MatAssemblyType.html">MAT_FINAL_ASSEMBLY</a></span><span class="p">));</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">jac</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="n">B</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatAssemblyBegin.html">MatAssemblyBegin</a></span><span class="p">(</span><span class="n">jac</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/MatAssemblyType.html">MAT_FINAL_ASSEMBLY</a></span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatAssemblyEnd.html">MatAssemblyEnd</a></span><span class="p">(</span><span class="n">jac</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/MatAssemblyType.html">MAT_FINAL_ASSEMBLY</a></span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionReturn.html">PetscFunctionReturn</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PETSC_SUCCESS</a></span><span class="p">);</span>
<span class="p">}</span>

</pre></div>
</div>
</div>
<p>To create a <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> solver, one must first call <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESCreate.html">SNESCreate</a>()</span></code> as
follows:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESCreate.html">SNESCreate</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/MPI_Comm.html">MPI_Comm</a></span><span class="w"> </span><span class="n">comm</span><span class="p">,</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="o">*</span><span class="n">snes</span><span class="p">);</span>
</pre></div>
</div>
<p>The user must then set routines for evaluating the residual function <a class="reference internal" href="#equation-fx0">(3)</a>
and, <em>possibly</em>, its associated Jacobian matrix, as
discussed in the following sections.</p>
<p>To choose a nonlinear solution method, the user can either call</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESSetType.html">SNESSetType</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/SNES/SNESType.html">SNESType</a></span><span class="w"> </span><span class="n">method</span><span class="p">);</span>
</pre></div>
</div>
<p>or use the option <code class="docutils notranslate"><span class="pre">-snes_type</span> <span class="pre">&lt;method&gt;</span></code>, where details regarding the
available methods are presented in <a class="reference internal" href="#sec-nlsolvers"><span class="std std-ref">The Nonlinear Solvers</span></a>. The
application code can take complete control of the linear and nonlinear
techniques used in the Newton-like method by calling</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESSetFromOptions.html">SNESSetFromOptions</a></span><span class="p">(</span><span class="n">snes</span><span class="p">);</span>
</pre></div>
</div>
<p>This routine provides an interface to the PETSc options database, so
that at runtime the user can select a particular nonlinear solver, set
various parameters and customized routines (e.g., specialized line
search variants), prescribe the convergence tolerance, and set
monitoring routines. With this routine the user can also control all
linear solver options in the <code class="docutils notranslate"><span class="pre"><a href="../manualpages/KSP/KSP.html">KSP</a></span></code>, and <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PC.html">PC</a></span></code> modules, as discussed
in <a class="reference internal" href="ksp.html#ch-ksp"><span class="std std-ref">KSP: Linear System Solvers</span></a>.</p>
<p>After having set these routines and options, the user solves the problem
by calling</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESSolve.html">SNESSolve</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">b</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">x</span><span class="p">);</span>
</pre></div>
</div>
<p>where <code class="docutils notranslate"><span class="pre">x</span></code> should be initialized to the initial guess before calling and contains the solution on return.
In particular, to employ an initial guess of
zero, the user should explicitly set this vector to zero by calling
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/Vec/VecZeroEntries.html">VecZeroEntries</a>(x)</span></code>. Finally, after solving the nonlinear system (or several
systems), the user should destroy the <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> context with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESDestroy.html">SNESDestroy</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="o">*</span><span class="n">snes</span><span class="p">);</span>
</pre></div>
</div>
<section id="nonlinear-function-evaluation">
<span id="sec-snesfunction"></span><h3>Nonlinear Function Evaluation<a class="headerlink" href="#nonlinear-function-evaluation" title="Link to this heading">#</a></h3>
<p>When solving a system of nonlinear equations, the user must provide a
a residual function <a class="reference internal" href="#equation-fx0">(3)</a>, which is set using</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESSetFunction.html">SNESSetFunction</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">f</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">FormFunction</span><span class="p">)(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">f</span><span class="p">,</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">);</span>
</pre></div>
</div>
<p>The argument <code class="docutils notranslate"><span class="pre">f</span></code> is an optional vector for storing the solution; pass <code class="docutils notranslate"><span class="pre">NULL</span></code> to have the <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> allocate it for you.
The argument <code class="docutils notranslate"><span class="pre">ctx</span></code> is an optional user-defined context, which can
store any private, application-specific data required by the function
evaluation routine; <code class="docutils notranslate"><span class="pre">NULL</span></code> should be used if such information is not
needed. In C and C++, a user-defined context is merely a structure in
which various objects can be stashed; in Fortran a user context can be
an integer array that contains both parameters and pointers to PETSc
objects.
<a href="../src/snes/tutorials/ex5.c.html">SNES Tutorial ex5</a>
and
<a href="../src/snes/tutorials/ex5f90.F90.html">SNES Tutorial ex5f90</a>
give examples of user-defined application contexts in C and Fortran,
respectively.</p>
</section>
<section id="jacobian-evaluation">
<span id="sec-snesjacobian"></span><h3>Jacobian Evaluation<a class="headerlink" href="#jacobian-evaluation" title="Link to this heading">#</a></h3>
<p>The user may also specify a routine to form some approximation of the
Jacobian matrix, <code class="docutils notranslate"><span class="pre">A</span></code>, at the current iterate, <code class="docutils notranslate"><span class="pre">x</span></code>, as is typically
done with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESSetJacobian.html">SNESSetJacobian</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">Amat</span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">Pmat</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">FormJacobian</span><span class="p">)(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">A</span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">B</span><span class="p">,</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">);</span>
</pre></div>
</div>
<p>The arguments of the routine <code class="docutils notranslate"><span class="pre">FormJacobian()</span></code> are the current iterate,
<code class="docutils notranslate"><span class="pre">x</span></code>; the (approximate) Jacobian matrix, <code class="docutils notranslate"><span class="pre">Amat</span></code>; the matrix from
which the preconditioner is constructed, <code class="docutils notranslate"><span class="pre">Pmat</span></code> (which is usually the
same as <code class="docutils notranslate"><span class="pre">Amat</span></code>); and an optional user-defined Jacobian context,
<code class="docutils notranslate"><span class="pre">ctx</span></code>, for application-specific data. The <code class="docutils notranslate"><span class="pre">FormJacobian()</span></code>
callback is only invoked if the solver requires it, always
<em>after</em> <code class="docutils notranslate"><span class="pre">FormFunction()</span></code> has been called at the current iterate.</p>
<p>Note that the <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> solvers
are all data-structure neutral, so the full range of PETSc matrix
formats (including “matrix-free” methods) can be used.
<a class="reference internal" href="mat.html#ch-matrices"><span class="std std-ref">Matrices</span></a> discusses information regarding
available matrix formats and options, while <a class="reference internal" href="#sec-nlmatrixfree"><span class="std std-ref">Matrix-Free Methods</span></a> focuses on matrix-free methods in
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code>. We briefly touch on a few details of matrix usage that are
particularly important for efficient use of the nonlinear solvers.</p>
<p>A common usage paradigm is to assemble the problem Jacobian in the
preconditioner storage <code class="docutils notranslate"><span class="pre">B</span></code>, rather than <code class="docutils notranslate"><span class="pre">A</span></code>. In the case where they
are identical, as in many simulations, this makes no difference.
However, it allows us to check the analytic Jacobian we construct in
<code class="docutils notranslate"><span class="pre">FormJacobian()</span></code> by passing the <code class="docutils notranslate"><span class="pre">-snes_mf_operator</span></code> flag. This
causes PETSc to approximate the Jacobian using finite differencing of
the function evaluation (discussed in <a class="reference internal" href="#sec-fdmatrix"><span class="std std-ref">Finite Difference Jacobian Approximations</span></a>),
and the analytic Jacobian becomes merely the preconditioner. Even if the
analytic Jacobian is incorrect, it is likely that the finite difference
approximation will converge, and thus this is an excellent method to
verify the analytic Jacobian. Moreover, if the analytic Jacobian is
incomplete (some terms are missing or approximate),
<code class="docutils notranslate"><span class="pre">-snes_mf_operator</span></code> may be used to obtain the exact solution, where
the Jacobian approximation has been transferred to the preconditioner.</p>
<p>One such approximate Jacobian comes from “Picard linearization”, use <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESSetPicard.html">SNESSetPicard</a>()</span></code>, which
writes the nonlinear system as</p>
<div class="math">
\[
\mathbf{F}(\mathbf{x}) := \mathbf{A}(\mathbf{x}) \mathbf{x} - \mathbf{b} = 0
\]</div>
<p>where <span class="math">\(\mathbf{A}(\mathbf{x})\)</span> usually contains the lower-derivative parts of the
equation. For example, the nonlinear diffusion problem</p>
<div class="math">
\[
- \nabla\cdot(\kappa(u) \nabla u) = 0
\]</div>
<p>would be linearized as</p>
<div class="math">
\[
A(u) v \simeq -\nabla\cdot(\kappa(u) \nabla v).
\]</div>
<p>Usually this linearization is simpler to implement than Newton and the
linear problems are somewhat easier to solve. In addition to using
<code class="docutils notranslate"><span class="pre">-snes_mf_operator</span></code> with this approximation to the Jacobian, the
Picard iterative procedure can be performed by defining <span class="math">\(\mathbf{J}(\mathbf{x})\)</span>
to be <span class="math">\(\mathbf{A}(\mathbf{x})\)</span>. Sometimes this iteration exhibits better global
convergence than Newton linearization.</p>
<p>During successive calls to <code class="docutils notranslate"><span class="pre">FormJacobian()</span></code>, the user can either
insert new matrix contexts or reuse old ones, depending on the
application requirements. For many sparse matrix formats, reusing the
old space (and merely changing the matrix elements) is more efficient;
however, if the matrix nonzero structure completely changes, creating an
entirely new matrix context may be preferable. Upon subsequent calls to
the <code class="docutils notranslate"><span class="pre">FormJacobian()</span></code> routine, the user may wish to reinitialize the
matrix entries to zero by calling <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatZeroEntries.html">MatZeroEntries</a>()</span></code>. See
<a class="reference internal" href="mat.html#sec-othermat"><span class="std std-ref">Other Matrix Operations</span></a> for details on the reuse of the matrix
context.</p>
<p>The directory <code class="docutils notranslate"><span class="pre">$PETSC_DIR/src/snes/tutorials</span></code> provides a variety of
examples.</p>
<p>Sometimes a nonlinear solver may produce a step that is not within the domain
of a given function, for example one with a negative pressure. When this occurs
one can call <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESSetFunctionDomainError.html">SNESSetFunctionDomainError</a>()</span></code> or <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESSetJacobianDomainError.html">SNESSetJacobianDomainError</a>()</span></code>
to indicate to <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> the step is not valid. One must also use <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESGetConvergedReason.html">SNESGetConvergedReason</a>()</span></code>
and check the reason to confirm if the solver succeeded. See <a class="reference internal" href="#sec-vi"><span class="std std-ref">Variational Inequalities</span></a> for how to
provide <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> with bounds on the variables to solve (differential) variational inequalities
and how to control properties of the line step computed.</p>
</section>
</section>
<section id="the-nonlinear-solvers">
<span id="sec-nlsolvers"></span><h2>The Nonlinear Solvers<a class="headerlink" href="#the-nonlinear-solvers" title="Link to this heading">#</a></h2>
<p>As summarized in Table <a class="reference internal" href="#tab-snesdefaults"><span class="std std-ref">PETSc Nonlinear Solvers</span></a>, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> includes
several Newton-like nonlinear solvers based on line search techniques
and trust region methods. Also provided are several nonlinear Krylov
methods, as well as nonlinear methods involving decompositions of the
problem.</p>
<p>Each solver may have associated with it a set of options, which can be
set with routines and options database commands provided for this
purpose. A complete list can be found by consulting the manual pages or
by running a program with the <code class="docutils notranslate"><span class="pre">-help</span></code> option; we discuss just a few in
the sections below.</p>
<table class="table" id="tab-snesdefaults">
<caption><span class="caption-number">Table 9 </span><span class="caption-text">PETSc Nonlinear Solvers</span><a class="headerlink" href="#tab-snesdefaults" title="Link to this table">#</a></caption>
<thead>
<tr class="row-odd"><th class="head"><p>Method</p></th>
<th class="head"><p>SNESType</p></th>
<th class="head"><p>Options Name</p></th>
<th class="head"><p>Default Line Search</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>Line Search Newton</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNEWTONLS.html">SNESNEWTONLS</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">newtonls</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHBT.html">SNESLINESEARCHBT</a></span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Trust region Newton</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNEWTONTR.html">SNESNEWTONTR</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">newtontr</span></code></p></td>
<td><p>—</p></td>
</tr>
<tr class="row-even"><td><p>Newton with Arc Length Continuation</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNEWTONAL.html">SNESNEWTONAL</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">newtonal</span></code></p></td>
<td><p>—</p></td>
</tr>
<tr class="row-odd"><td><p>Nonlinear Richardson</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNRICHARDSON.html">SNESNRICHARDSON</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">nrichardson</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHL2.html">SNESLINESEARCHL2</a></span></code></p></td>
</tr>
<tr class="row-even"><td><p>Nonlinear CG</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNCG.html">SNESNCG</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">ncg</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHCP.html">SNESLINESEARCHCP</a></span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Nonlinear GMRES</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNGMRES.html">SNESNGMRES</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">ngmres</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHL2.html">SNESLINESEARCHL2</a></span></code></p></td>
</tr>
<tr class="row-even"><td><p>Quasi-Newton</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESQN.html">SNESQN</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">qn</span></code></p></td>
<td><p>see <a class="reference internal" href="#tab-qndefaults"><span class="std std-ref">PETSc quasi-Newton solvers</span></a></p></td>
</tr>
<tr class="row-odd"><td><p>Full Approximation Scheme</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNESFAS/SNESFAS.html">SNESFAS</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">fas</span></code></p></td>
<td><p>—</p></td>
</tr>
<tr class="row-even"><td><p>Nonlinear ASM</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNASM.html">SNESNASM</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">nasm</span></code></p></td>
<td><p>–</p></td>
</tr>
<tr class="row-odd"><td><p>ASPIN</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESASPIN.html">SNESASPIN</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">aspin</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHBT.html">SNESLINESEARCHBT</a></span></code></p></td>
</tr>
<tr class="row-even"><td><p>Nonlinear Gauss-Seidel</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNGS.html">SNESNGS</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">ngs</span></code></p></td>
<td><p>–</p></td>
</tr>
<tr class="row-odd"><td><p>Anderson Mixing</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESANDERSON.html">SNESANDERSON</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">anderson</span></code></p></td>
<td><p>–</p></td>
</tr>
<tr class="row-even"><td><p>Newton with constraints (1)</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESVINEWTONRSLS.html">SNESVINEWTONRSLS</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">vinewtonrsls</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHBT.html">SNESLINESEARCHBT</a></span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Newton with constraints (2)</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESVINEWTONSSLS.html">SNESVINEWTONSSLS</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">vinewtonssls</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHBT.html">SNESLINESEARCHBT</a></span></code></p></td>
</tr>
<tr class="row-even"><td><p>Multi-stage Smoothers</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESMS.html">SNESMS</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">ms</span></code></p></td>
<td><p>–</p></td>
</tr>
<tr class="row-odd"><td><p>Composite</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESCOMPOSITE.html">SNESCOMPOSITE</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">composite</span></code></p></td>
<td><p>–</p></td>
</tr>
<tr class="row-even"><td><p>Linear solve only</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESKSPONLY.html">SNESKSPONLY</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">ksponly</span></code></p></td>
<td><p>–</p></td>
</tr>
<tr class="row-odd"><td><p>Python Shell</p></td>
<td><p><code class="docutils notranslate"><span class="pre">SNESPYTHON</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">python</span></code></p></td>
<td><p>–</p></td>
</tr>
<tr class="row-even"><td><p>Shell (user-defined)</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESSHELL.html">SNESSHELL</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">shell</span></code></p></td>
<td><p>–</p></td>
</tr>
</tbody>
</table>
<section id="line-search-newton">
<h3>Line Search Newton<a class="headerlink" href="#line-search-newton" title="Link to this heading">#</a></h3>
<p>The method <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNEWTONLS.html">SNESNEWTONLS</a></span></code> (<code class="docutils notranslate"><span class="pre">-snes_type</span> <span class="pre">newtonls</span></code>) provides a
line search Newton method for solving systems of nonlinear equations. By
default, this technique employs cubic backtracking
<span id="id1">[<a class="reference internal" href="../manualpages/SNES/SNESLINESEARCHBT.html#id2289" title="J. E. Dennis Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983.">DennisJrS83</a>]</span>. Alternative line search techniques are
listed in Table <a class="reference internal" href="#tab-linesearches"><span class="std std-ref">PETSc Line Search Methods</span></a>.</p>
<table class="table" id="tab-linesearches">
<caption><span class="caption-number">Table 10 </span><span class="caption-text">PETSc Line Search Methods</span><a class="headerlink" href="#tab-linesearches" title="Link to this table">#</a></caption>
<thead>
<tr class="row-odd"><th class="head"><p><strong>Line Search</strong></p></th>
<th class="head"><p><strong>SNESLineSearchType</strong></p></th>
<th class="head"><p><strong>Options Name</strong></p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>Backtracking</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHBT.html">SNESLINESEARCHBT</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">bt</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>(damped) step</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHBASIC.html">SNESLINESEARCHBASIC</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">basic</span></code></p></td>
</tr>
<tr class="row-even"><td><p>identical to above</p></td>
<td><p><code class="docutils notranslate"><span class="pre">SNESLINESEARCHNONE</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">none</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>L2-norm Minimization</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHL2.html">SNESLINESEARCHL2</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">l2</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Critical point</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHCP.html">SNESLINESEARCHCP</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">cp</span></code></p></td>
</tr>
<tr class="row-odd"><td><p>Bisection</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHBISECTION.html">SNESLINESEARCHBISECTION</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">bisection</span></code></p></td>
</tr>
<tr class="row-even"><td><p>Shell</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHSHELL.html">SNESLINESEARCHSHELL</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">shell</span></code></p></td>
</tr>
</tbody>
</table>
<p>Every <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> has a line search context of type <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLineSearch.html">SNESLineSearch</a></span></code> that
may be retrieved using</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESGetLineSearch.html">SNESGetLineSearch</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/SNES/SNESLineSearch.html">SNESLineSearch</a></span><span class="w"> </span><span class="o">*</span><span class="n">ls</span><span class="p">);.</span>
</pre></div>
</div>
<p>There are several default options for the line searches. The order of
polynomial approximation may be set with <code class="docutils notranslate"><span class="pre">-snes_linesearch_order</span></code> or</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESLineSearchSetOrder.html">SNESLineSearchSetOrder</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESLineSearch.html">SNESLineSearch</a></span><span class="w"> </span><span class="n">ls</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">order</span><span class="p">);</span>
</pre></div>
</div>
<p>for instance, 2 for quadratic or 3 for cubic. Sometimes, it may not be
necessary to monitor the progress of the nonlinear iteration. In this
case, <code class="docutils notranslate"><span class="pre">-snes_linesearch_norms</span></code> or</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESLineSearchSetComputeNorms.html">SNESLineSearchSetComputeNorms</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESLineSearch.html">SNESLineSearch</a></span><span class="w"> </span><span class="n">ls</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w"> </span><span class="n">norms</span><span class="p">);</span>
</pre></div>
</div>
<p>may be used to turn off function, step, and solution norm computation at
the end of the linesearch.</p>
<p>The default line search for the line search Newton method,
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHBT.html">SNESLINESEARCHBT</a></span></code> involves several parameters, which are set to
defaults that are reasonable for many applications. The user can
override the defaults by using the following options:</p>
<ul class="simple">
<li><p><code class="docutils notranslate"><span class="pre">-snes_linesearch_alpha</span> <span class="pre">&lt;alpha&gt;</span></code></p></li>
<li><p><code class="docutils notranslate"><span class="pre">-snes_linesearch_maxstep</span> <span class="pre">&lt;max&gt;</span></code></p></li>
<li><p><code class="docutils notranslate"><span class="pre">-snes_linesearch_minlambda</span> <span class="pre">&lt;tol&gt;</span></code></p></li>
</ul>
<p>Besides the backtracking linesearch, there are <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHL2.html">SNESLINESEARCHL2</a></span></code>,
which uses a polynomial secant minimization of <span class="math">\(||F(x)||_2\)</span>, and
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHCP.html">SNESLINESEARCHCP</a></span></code>, which minimizes <span class="math">\(F(x) \cdot Y\)</span> where
<span class="math">\(Y\)</span> is the search direction. These are both potentially iterative
line searches, which may be used to find a better-fitted steplength in
the case where a single secant search is not sufficient. The number of
iterations may be set with <code class="docutils notranslate"><span class="pre">-snes_linesearch_max_it</span></code>. In addition, the
convergence criteria of the iterative line searches may be set using
function tolerances <code class="docutils notranslate"><span class="pre">-snes_linesearch_rtol</span></code> and
<code class="docutils notranslate"><span class="pre">-snes_linesearch_atol</span></code>, and steplength tolerance
<code class="docutils notranslate"><span class="pre">snes_linesearch_ltol</span></code>.</p>
<p>For highly non-linear problems, the bisection line search <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHBISECTION.html">SNESLINESEARCHBISECTION</a></span></code>
may prove useful due to its robustness. Similar to the critical point line search
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHCP.html">SNESLINESEARCHCP</a></span></code>, it seeks to find the root of <span class="math">\(F(x) \cdot Y\)</span>.
While the latter does so through a secant method, the bisection line search
does so by iteratively bisecting the step length interval.
It works as follows (with <span class="math">\(f(\lambda)=F(x-\lambda Y) \cdot Y / ||Y||\)</span> for brevity):</p>
<ol class="arabic">
<li><p>initialize: <span class="math">\(j=1\)</span>, <span class="math">\(\lambda_0 = \lambda_{\text{left}} = 0.0\)</span>, <span class="math">\(\lambda_j = \lambda_{\text{right}} = \alpha\)</span>, compute <span class="math">\(f(\lambda_0)\)</span> and <span class="math">\(f(\lambda_j)\)</span></p></li>
<li><p>check whether there is a change of sign in the interval: <span class="math">\(f(\lambda_{\text{left}}) f(\lambda_j) \leq 0\)</span>; if not accept the full step length <span class="math">\(\lambda_1\)</span></p></li>
<li><p>if there is a change of sign, enter iterative bisection procedure</p>
<ol class="arabic simple">
<li><p>check convergence/ exit criteria:</p>
<ul class="simple">
<li><p>absolute tolerance <span class="math">\(f(\lambda_j) &lt; \mathtt{atol}\)</span></p></li>
<li><p>relative tolerance <span class="math">\(f(\lambda_j) &lt; \mathtt{rtol} \cdot f(\lambda_0)\)</span></p></li>
<li><p>change of step length <span class="math">\(\lambda_j - \lambda_{j-1} &lt; \mathtt{ltol}\)</span></p></li>
<li><p>number of iterations <span class="math">\(j &lt; \mathtt{max\_it}\)</span></p></li>
</ul>
</li>
<li><p>if <span class="math">\(j &gt; 1\)</span>, determine direction of bisection</p></li>
</ol>
<div class="math">
\[
   \begin{aligned}\lambda_{\text{left}} &= \begin{cases}\lambda_{\text{left}} &f(\lambda_{\text{left}}) f(\lambda_j) \leq 0\\\lambda_{j} &\text{else}\\ \end{cases}\\ \lambda_{\text{right}} &= \begin{cases} \lambda_j &f(\lambda_{\text{left}}) f(\lambda_j) \leq 0\\\lambda_{\text{right}} &\text{else}\\ \end{cases}\\\end{aligned}
   \]</div>
<ol class="arabic simple" start="3">
<li><p>bisect the interval: <span class="math">\(\lambda_{j+1} = (\lambda_{\text{left}} + \lambda_{\text{right}})/2\)</span>, compute <span class="math">\(f(\lambda_{j+1})\)</span></p></li>
<li><p>update variables for the next iteration: <span class="math">\(\lambda_j \gets \lambda_{j+1}\)</span>, <span class="math">\(f(\lambda_j) \gets f(\lambda_{j+1})\)</span>, <span class="math">\(j \gets j+1\)</span></p></li>
</ol>
</li>
</ol>
<p>Custom line search types may either be defined using
<code class="docutils notranslate"><span class="pre">SNESLineSearchShell</span></code>, or by creating a custom user line search type
in the model of the preexisting ones and register it using</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESLineSearchRegister.html">SNESLineSearchRegister</a></span><span class="p">(</span><span class="k">const</span><span class="w"> </span><span class="kt">char</span><span class="w"> </span><span class="n">sname</span><span class="p">[],</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">function</span><span class="p">)(</span><span class="n"><a href="../manualpages/SNES/SNESLineSearch.html">SNESLineSearch</a></span><span class="p">));.</span>
</pre></div>
</div>
</section>
<section id="trust-region-methods">
<h3>Trust Region Methods<a class="headerlink" href="#trust-region-methods" title="Link to this heading">#</a></h3>
<p>The trust region method in <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> for solving systems of nonlinear
equations, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNEWTONTR.html">SNESNEWTONTR</a></span></code> (<code class="docutils notranslate"><span class="pre">-snes_type</span> <span class="pre">newtontr</span></code>), is similar to the one developed in the
MINPACK project <span id="id2">[<a class="reference internal" href="#id2283" title="Jorge J. Moré, Danny C. Sorenson, Burton S. Garbow, and Kenneth E. Hillstrom. The MINPACK project. In Wayne R. Cowell, editor, Sources and Development of Mathematical Software, 88–111. 1984.">MoreSGH84</a>]</span>. Several parameters can be
set to control the variation of the trust region size during the
solution process. In particular, the user can control the initial trust
region radius, computed by</p>
<div class="math">
\[
\Delta = \Delta_0 \| F_0 \|_2,
\]</div>
<p>by setting <span class="math">\(\Delta_0\)</span> via the option <code class="docutils notranslate"><span class="pre">-snes_tr_delta0</span> <span class="pre">&lt;delta0&gt;</span></code>.</p>
</section>
<section id="newton-with-arc-length-continuation">
<h3>Newton with Arc Length Continuation<a class="headerlink" href="#newton-with-arc-length-continuation" title="Link to this heading">#</a></h3>
<p>The Newton method with arc length continuation reformulates the linearized system
<span class="math">\(K\delta \mathbf x = -\mathbf F(\mathbf x)\)</span> by introducing the load parameter
<span class="math">\(\lambda\)</span> and splitting the residual into two components, commonly
corresponding to internal and external forces:</p>
<div class="math">
\[
\mathbf F(x, \lambda) = \mathbf F^{\mathrm{int}}(\mathbf x) - \mathbf F^{\mathrm{ext}}(\mathbf x, \lambda)
\]</div>
<p>Often, <span class="math">\(\mathbf F^{\mathrm{ext}}(\mathbf x, \lambda)\)</span> is linear in <span class="math">\(\lambda\)</span>,
which can be thought of as applying the external force in proportional load
increments. By default, this is how the right-hand side vector is handled in the
implemented method. Generally, however, <span class="math">\(\mathbf F^{\mathrm{ext}}(\mathbf x, \lambda)\)</span>
may depend non-linearly on <span class="math">\(\lambda\)</span> or <span class="math">\(\mathbf x\)</span>, or both.
To accommodate this possibility, we provide the <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNewtonALGetLoadParameter.html">SNESNewtonALGetLoadParameter</a>()</span></code>
function, which allows for the current value of <span class="math">\(\lambda\)</span> to be queried in the
functions provided to <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESSetFunction.html">SNESSetFunction</a>()</span></code> and <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESSetJacobian.html">SNESSetJacobian</a>()</span></code>.</p>
<p>Additionally, we split the solution update into two components:</p>
<div class="math">
\[
\delta \mathbf x = \delta s\delta\mathbf x^F + \delta\lambda\delta\mathbf x^Q,
\]</div>
<p>where <span class="math">\(\delta s = 1\)</span> unless partial corrections are used (discussed more
below). Each of <span class="math">\(\delta \mathbf x^F\)</span> and <span class="math">\(\delta \mathbf x^Q\)</span> are found via
solving a linear system with the Jacobian <span class="math">\(K\)</span>:</p>
<ul class="simple">
<li><p><span class="math">\(\delta \mathbf x^F\)</span> is the full Newton step for a given value of <span class="math">\(\lambda\)</span>: <span class="math">\(K \delta \mathbf x^F = -\mathbf F(\mathbf x, \lambda)\)</span></p></li>
<li><p><span class="math">\(\delta \mathbf x^Q\)</span> is the variation in <span class="math">\(\mathbf x\)</span> with respect to <span class="math">\(\lambda\)</span>, computed by <span class="math">\(K \delta\mathbf x^Q = \mathbf Q(\mathbf x, \lambda)\)</span>, where <span class="math">\(\mathbf Q(\mathbf x, \lambda) = -\partial \mathbf F (\mathbf x, \lambda) / \partial \lambda\)</span> is the tangent load vector.</p></li>
</ul>
<p>Often, the tangent load vector <span class="math">\(\mathbf Q\)</span> is constant within a load increment,
which corresponds to the case of proportional loading discussed above. By default,
<span class="math">\(\mathbf Q\)</span> is the full right-hand-side vector, if one was provided.
The user can also provide a function which computes <span class="math">\(\mathbf Q\)</span> to
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNewtonALSetFunction.html">SNESNewtonALSetFunction</a>()</span></code>. This function should have the same signature as for
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESSetFunction.html">SNESSetFunction</a></span></code>, and the user should use <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNewtonALGetLoadParameter.html">SNESNewtonALGetLoadParameter</a>()</span></code> to get
<span class="math">\(\lambda\)</span> if it is needed.</p>
<p><strong>The Constraint Surface.</strong> Considering the <span class="math">\(n+1\)</span> dimensional space of
<span class="math">\(\mathbf x\)</span> and <span class="math">\(\lambda\)</span>, we define the linearized equilibrium line to be
the set of points for which the linearized equilibrium equations are satisfied.
Given the previous iterative solution
<span class="math">\(\mathbf t^{(j-1)} = [\mathbf x^{(j-1)}, \lambda^{(j-1)}]\)</span>,
this line is defined by the point <span class="math">\(\mathbf t^{(j-1)} + [\delta\mathbf x^F, 0]\)</span> and
the vector <span class="math">\(\mathbf t^Q [\delta\mathbf x^Q, 1]\)</span>.
The arc length method seeks the intersection of this linearized equilibrium line
with a quadratic constraint surface, defined by</p>
<p>where <span class="math">\(L\)</span> is a user-provided step size corresponding to the radius of the
constraint surface, <span class="math">\(\Delta\mathbf x\)</span> and <span class="math">\(\Delta\lambda\)</span> are the
accumulated updates over the current load step, and <span class="math">\(\psi^2\)</span> is a
user-provided consistency parameter determining the shape of the constraint surface.
Generally, <span class="math">\(\psi^2 &gt; 0\)</span> leads to a hyper-sphere constraint surface, while
<span class="math">\(\psi^2 = 0\)</span> leads to a hyper-cylinder constraint surface.</p>
<p>Since the solution will always fall on the constraint surface, the method will often
require multiple incremental steps to fully solve the non-linear problem.
This is necessary to accurately trace the equilibrium path.
Importantly, this is fundamentally different from time stepping.
While a similar process could be implemented as a <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TS.html">TS</a></span></code>, this method is
particularly designed to be used as a SNES, either standalone or within a <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TS.html">TS</a></span></code>.</p>
<p>To this end, by default, the load parameter is used such that the full external
forces are applied at <span class="math">\(\lambda = 1\)</span>, although we allow for the user to specify
a different value via <code class="docutils notranslate"><span class="pre">-snes_newtonal_lambda_max</span></code>.
To ensure that the solution corresponds exactly to the external force prescribed by
the user, i.e. that the load parameter is exactly <span class="math">\(\lambda_{max}\)</span> at the end
of the SNES solve, we clamp the value before computing the solution update.
As such, the final increment will likely be a hybrid of arc length continuation and
normal Newton iterations.</p>
<p><strong>Choosing the Continuation Step.</strong> For the first iteration from an equilibrium
point, there is a single correct way to choose <span class="math">\(\delta\lambda\)</span>, which follows
from the constraint equations. Specifically the constraint equations yield the
quadratic equation <span class="math">\(a\delta\lambda^2 + b\delta\lambda + c = 0\)</span>, where</p>
<div class="math">
\[
\begin{aligned}
a &= \|\delta\mathbf x^Q\|^2 + \psi^2,\\
b &= 2\delta\mathbf x^Q\cdot (\Delta\mathbf x + \delta s\delta\mathbf x^F) + 2\psi^2 \Delta\lambda,\\
c &= \|\Delta\mathbf x + \delta s\delta\mathbf x^F\|^2 + \psi^2 \Delta\lambda^2 - L^2.
\end{aligned}
\]</div>
<p>Since in the first iteration, <span class="math">\(\Delta\mathbf x = \delta\mathbf x^F = \mathbf 0\)</span> and
<span class="math">\(\Delta\lambda = 0\)</span>, <span class="math">\(b = 0\)</span> and the equation simplifies to a pair of
real roots:</p>
<div class="math">
\[
\delta\lambda = \pm\frac{L}{\sqrt{\|\delta\mathbf x^Q\|^2 + \psi^2}},
\]</div>
<p>where the sign is positive for the first increment and is determined by the previous
increment otherwise as</p>
<div class="math">
\[
\text{sign}(\delta\lambda) = \text{sign}\big(\delta\mathbf x^Q \cdot (\Delta\mathbf x)_{i-1} + \psi^2(\Delta\lambda)_{i-1}\big),
\]</div>
<p>where <span class="math">\((\Delta\mathbf x)_{i-1}\)</span> and <span class="math">\((\Delta\lambda)_{i-1}\)</span> are the
accumulated updates over the previous load step.</p>
<p>In subsequent iterations, there are different approaches to selecting
<span class="math">\(\delta\lambda\)</span>, all of which have trade-offs.
The main difference is whether the iterative solution falls on the constraint
surface at every iteration, or only when fully converged.
This MR implements one of each of these approaches, set via
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNewtonALSetCorrectionType.html">SNESNewtonALSetCorrectionType</a>()</span></code> or
<code class="docutils notranslate"><span class="pre">-snes_newtonal_correction_type</span> <span class="pre">&lt;normal|exact&gt;</span></code> on the command line.</p>
<p><strong>Corrections in the Normal Hyperplane.</strong> The <code class="docutils notranslate"><span class="pre">SNES_NEWTONAL_CORRECTION_NORMAL</span></code>
option is simpler and computationally less expensive, but may fail to converge, as
the constraint equation is not satisfied at every iteration.
The update <span class="math">\(\delta \lambda\)</span> is chosen such that the update is within the
normal hyper-surface to the quadratic constraint surface.
Mathematically, that is</p>
<div class="math">
\[
\delta \lambda = -\frac{\Delta \mathbf x \cdot \delta \mathbf x^F}{\Delta\mathbf x \cdot \delta\mathbf x^Q + \psi^2 \Delta\lambda}.
\]</div>
<p>This implementation is based on <span id="id3">[<a class="reference internal" href="../manualpages/SNES/SNESNEWTONAL.html#id3949" title="Sofie E. Leon, Glaucio H. Paulino, Anderson Pereira, Ivan F. M. Menezes, and Eduardo N. Lages. A unified library of nonlinear solution schemes. Applied Mechanics Reviews, 64(4):040803, July 2011. doi:10.1115/1.4006992.">LPP+11</a>]</span>.</p>
<p><strong>Exact Corrections.</strong> The <code class="docutils notranslate"><span class="pre">SNES_NEWTONAL_CORRECTION_EXACT</span></code> option is far more
complex, but ensures that the constraint is exactly satisfied at every Newton
iteration. As such, it is generally more robust.
By evaluating the intersection of constraint surface and equilibrium line at each
iteration, <span class="math">\(\delta\lambda\)</span> is chosen as one of the roots of the above
quadratic equation <span class="math">\(a\delta\lambda^2 + b\delta\lambda + c = 0\)</span>.
This method encounters issues, however, if the linearized equilibrium line and
constraint surface do not intersect due to particularly large linearized error.
In this case, the roots are complex.
To continue progressing toward a solution, this method uses a partial correction by
choosing <span class="math">\(\delta s\)</span> such that the quadratic equation has a single real root.
Geometrically, this is selecting the point on the constraint surface closest to the
linearized equilibrium line. See the code or <span id="id4">[<a class="reference internal" href="../manualpages/SNES/SNESNEWTONAL.html#id3948" title="Manuel Ritto-Corrêa and Dinar Camotim. On the arc-length and other quadratic control methods: established, less known and new implementation procedures. Computers &amp; Structures, 86(11):1353-1368, June 2008. doi:10.1016/j.compstruc.2007.08.003.">RCorreaC08</a>]</span> for a
mathematical description of these partial corrections.</p>
</section>
<section id="nonlinear-krylov-methods">
<h3>Nonlinear Krylov Methods<a class="headerlink" href="#nonlinear-krylov-methods" title="Link to this heading">#</a></h3>
<p>A number of nonlinear Krylov methods are provided, including Nonlinear
Richardson (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNRICHARDSON.html">SNESNRICHARDSON</a></span></code>), nonlinear conjugate gradient (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNCG.html">SNESNCG</a></span></code>), nonlinear GMRES (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNGMRES.html">SNESNGMRES</a></span></code>), and Anderson Mixing (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESANDERSON.html">SNESANDERSON</a></span></code>). These
methods are described individually below. They are all instrumental to
PETSc’s nonlinear preconditioning.</p>
<p><strong>Nonlinear Richardson.</strong> The nonlinear Richardson iteration, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNRICHARDSON.html">SNESNRICHARDSON</a></span></code>, merely
takes the form of a line search-damped fixed-point iteration of the form</p>
<div class="math">
\[
\mathbf{x}_{k+1} = \mathbf{x}_k - \lambda \mathbf{F}(\mathbf{x}_k), \;\; k=0,1, \ldots,
\]</div>
<p>where the default linesearch is <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHL2.html">SNESLINESEARCHL2</a></span></code>. This simple solver
is mostly useful as a nonlinear smoother, or to provide line search
stabilization to an inner method.</p>
<p><strong>Nonlinear Conjugate Gradients.</strong> Nonlinear CG, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNCG.html">SNESNCG</a></span></code>, is equivalent to linear
CG, but with the steplength determined by line search
(<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHCP.html">SNESLINESEARCHCP</a></span></code> by default). Five variants (Fletcher-Reed,
Hestenes-Steifel, Polak-Ribiere-Polyak, Dai-Yuan, and Conjugate Descent)
are implemented in PETSc and may be chosen using</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESNCGSetType.html">SNESNCGSetType</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/SNES/SNESNCGType.html">SNESNCGType</a></span><span class="w"> </span><span class="n">btype</span><span class="p">);</span>
</pre></div>
</div>
<p><strong>Anderson Mixing and Nonlinear GMRES Methods.</strong> Nonlinear GMRES (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNGMRES.html">SNESNGMRES</a></span></code>), and
Anderson Mixing (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESANDERSON.html">SNESANDERSON</a></span></code>) methods combine the last <span class="math">\(m\)</span> iterates, plus a new
fixed-point iteration iterate, into an approximate residual-minimizing new iterate.</p>
<p>All of the above methods have support for using a nonlinear preconditioner to compute the preliminary update step, rather than the default
which is the nonlinear function’s residual, $ mathbf{F}(mathbf{x}_k)$. The different update is obtained by solving a nonlinear preconditioner nonlinear problem, which has its own
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> object that may be obtained with <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESGetNPC.html">SNESGetNPC</a>()</span></code>.
Quasi-Newton Methods
^^^^^^^^^^^^^^^^^^^^</p>
<p>Quasi-Newton methods store iterative rank-one updates to the Jacobian
instead of computing the Jacobian directly. Three limited-memory quasi-Newton
methods are provided, L-BFGS, which are described in
Table <a class="reference internal" href="#tab-qndefaults"><span class="std std-ref">PETSc quasi-Newton solvers</span></a>. These all are encapsulated under
<code class="docutils notranslate"><span class="pre">-snes_type</span> <span class="pre">qn</span></code> and may be changed with <code class="docutils notranslate"><span class="pre">snes_qn_type</span></code>. The default
is L-BFGS, which provides symmetric updates to an approximate Jacobian.
This iteration is similar to the line search Newton methods.</p>
<p>The quasi-Newton methods support the use of a nonlinear preconditioner that can be obtained with <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESGetNPC.html">SNESGetNPC</a>()</span></code> and then configured; or that can be configured with
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code>, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/KSP/KSP.html">KSP</a></span></code>, and <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PC.html">PC</a></span></code> options using the options database prefix <code class="docutils notranslate"><span class="pre">-npc_</span></code>.</p>
<table class="table" id="tab-qndefaults">
<caption><span class="caption-number">Table 11 </span><span class="caption-text">PETSc quasi-Newton solvers</span><a class="headerlink" href="#tab-qndefaults" title="Link to this table">#</a></caption>
<thead>
<tr class="row-odd"><th class="head"><p>QN Method</p></th>
<th class="head"><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESQNType.html">SNESQNType</a></span></code></p></th>
<th class="head"><p>Options Name</p></th>
<th class="head"><p>Default Line Search</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>L-BFGS</p></td>
<td><p><code class="docutils notranslate"><span class="pre">SNES_QN_LBFGS</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">lbfgs</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHCP.html">SNESLINESEARCHCP</a></span></code></p></td>
</tr>
<tr class="row-odd"><td><p>“Good” Broyden</p></td>
<td><p><code class="docutils notranslate"><span class="pre">SNES_QN_BROYDEN</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">broyden</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHBASIC.html">SNESLINESEARCHBASIC</a></span></code> (or equivalently <code class="docutils notranslate"><span class="pre">SNESLINESEARCHNONE</span></code></p></td>
</tr>
<tr class="row-even"><td><p>“Bad” Broyden</p></td>
<td><p><code class="docutils notranslate"><span class="pre">SNES_QN_BADBROYDEN</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">badbroyden</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLINESEARCHL2.html">SNESLINESEARCHL2</a></span></code></p></td>
</tr>
</tbody>
</table>
<p>One may also control the form of the initial Jacobian approximation with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESQNSetScaleType.html">SNESQNSetScaleType</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/SNES/SNESQNScaleType.html">SNESQNScaleType</a></span><span class="w"> </span><span class="n">stype</span><span class="p">);</span>
</pre></div>
</div>
<p>and the restart type with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESQNSetRestartType.html">SNESQNSetRestartType</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/SNES/SNESQNRestartType.html">SNESQNRestartType</a></span><span class="w"> </span><span class="n">rtype</span><span class="p">);</span>
</pre></div>
</div>
</section>
<section id="the-full-approximation-scheme">
<h3>The Full Approximation Scheme<a class="headerlink" href="#the-full-approximation-scheme" title="Link to this heading">#</a></h3>
<p>The Nonlinear Full Approximation Scheme (FAS) <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNESFAS/SNESFAS.html">SNESFAS</a></span></code>, is a nonlinear multigrid method. At
each level, there is a recursive cycle control <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> instance, and
either one or two nonlinear solvers that act as smoothers (up and down). Problems
set up using the <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> <code class="docutils notranslate"><span class="pre"><a href="../manualpages/DMDA/DMDA.html">DMDA</a></span></code> interface are automatically
coarsened. FAS, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNESFAS/SNESFAS.html">SNESFAS</a></span></code>, differs slightly from linear multigrid <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PCMG.html">PCMG</a></span></code>, in that the hierarchy is
constructed recursively. However, much of the interface is a one-to-one
map. We describe the “get” operations here, and it can be assumed that
each has a corresponding “set” operation. For instance, the number of
levels in the hierarchy may be retrieved using</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNESFAS/SNESFASGetLevels.html">SNESFASGetLevels</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="o">*</span><span class="n">levels</span><span class="p">);</span>
</pre></div>
</div>
<p>There are four <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNESFAS/SNESFAS.html">SNESFAS</a></span></code> cycle types, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESFASType.html">SNES_FAS_MULTIPLICATIVE</a></span></code>,
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESFASType.html">SNES_FAS_ADDITIVE</a></span></code>, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESFASType.html">SNES_FAS_FULL</a></span></code>, and <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESFASType.html">SNES_FAS_KASKADE</a></span></code>. The
type may be set with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNESFAS/SNESFASSetType.html">SNESFASSetType</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/SNES/SNESFASType.html">SNESFASType</a></span><span class="w"> </span><span class="n">fastype</span><span class="p">);.</span>
</pre></div>
</div>
<p>and the cycle type, 1 for V, 2 for W, may be set with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNESFAS/SNESFASSetCycles.html">SNESFASSetCycles</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">cycles</span><span class="p">);.</span>
</pre></div>
</div>
<p>Much like the interface to <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PCMG.html">PCMG</a></span></code> described in <a class="reference internal" href="ksp.html#sec-mg"><span class="std std-ref">Multigrid Preconditioners</span></a>, there are interfaces to recover the
various levels’ cycles and smoothers. The level smoothers may be
accessed with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNESFAS/SNESFASGetSmoother.html">SNESFASGetSmoother</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">level</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="o">*</span><span class="n">smooth</span><span class="p">);</span>
<span class="n"><a href="../manualpages/SNESFAS/SNESFASGetSmootherUp.html">SNESFASGetSmootherUp</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">level</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="o">*</span><span class="n">smooth</span><span class="p">);</span>
<span class="n"><a href="../manualpages/SNESFAS/SNESFASGetSmootherDown.html">SNESFASGetSmootherDown</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">level</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="o">*</span><span class="n">smooth</span><span class="p">);</span>
</pre></div>
</div>
<p>and the level cycles with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNESFAS/SNESFASGetCycleSNES.html">SNESFASGetCycleSNES</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">level</span><span class="p">,</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="o">*</span><span class="n">lsnes</span><span class="p">);.</span>
</pre></div>
</div>
<p>Also akin to <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PCMG.html">PCMG</a></span></code>, the restriction and prolongation at a level may
be acquired with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNESFAS/SNESFASGetInterpolation.html">SNESFASGetInterpolation</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">level</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="o">*</span><span class="n">mat</span><span class="p">);</span>
<span class="n"><a href="../manualpages/SNESFAS/SNESFASGetRestriction.html">SNESFASGetRestriction</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">level</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="o">*</span><span class="n">mat</span><span class="p">);</span>
</pre></div>
</div>
<p>In addition, FAS requires special restriction for solution-like
variables, called injection. This may be set with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNESFAS/SNESFASGetInjection.html">SNESFASGetInjection</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">level</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="o">*</span><span class="n">mat</span><span class="p">);.</span>
</pre></div>
</div>
<p>The coarse solve context may be acquired with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNESFAS/SNESFASGetCoarseSolve.html">SNESFASGetCoarseSolve</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="o">*</span><span class="n">smooth</span><span class="p">);</span>
</pre></div>
</div>
</section>
<section id="nonlinear-additive-schwarz">
<h3>Nonlinear Additive Schwarz<a class="headerlink" href="#nonlinear-additive-schwarz" title="Link to this heading">#</a></h3>
<p>Nonlinear Additive Schwarz methods (NASM) take a number of local
nonlinear subproblems, solves them independently in parallel, and
combines those solutions into a new approximate solution.</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESNASMSetSubdomains.html">SNESNASMSetSubdomains</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">subsnes</span><span class="p">[],</span><span class="n"><a href="../manualpages/PetscSF/VecScatter.html">VecScatter</a></span><span class="w"> </span><span class="n">iscatter</span><span class="p">[],</span><span class="n"><a href="../manualpages/PetscSF/VecScatter.html">VecScatter</a></span><span class="w"> </span><span class="n">oscatter</span><span class="p">[],</span><span class="n"><a href="../manualpages/PetscSF/VecScatter.html">VecScatter</a></span><span class="w"> </span><span class="n">gscatter</span><span class="p">[]);</span>
</pre></div>
</div>
<p>allows for the user to create these local subdomains. Problems set up
using the <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> <code class="docutils notranslate"><span class="pre"><a href="../manualpages/DMDA/DMDA.html">DMDA</a></span></code> interface are automatically decomposed. To
begin, the type of subdomain updates to the whole solution are limited
to two types borrowed from <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PCASM.html">PCASM</a></span></code>: <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PCASMType.html">PC_ASM_BASIC</a></span></code>, in which the
overlapping updates added. <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PCASMType.html">PC_ASM_RESTRICT</a></span></code> updates in a
nonoverlapping fashion. This may be set with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESNASMSetType.html">SNESNASMSetType</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/PC/PCASMType.html">PCASMType</a></span><span class="w"> </span><span class="n">type</span><span class="p">);.</span>
</pre></div>
</div>
<p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESASPIN.html">SNESASPIN</a></span></code> is a helper <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> type that sets up a nonlinearly
preconditioned Newton’s method using NASM as the preconditioner.</p>
</section>
</section>
<section id="general-options">
<h2>General Options<a class="headerlink" href="#general-options" title="Link to this heading">#</a></h2>
<p>This section discusses options and routines that apply to all <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code>
solvers and problem classes. In particular, we focus on convergence
tests, monitoring routines, and tools for checking derivative
computations.</p>
<section id="convergence-tests">
<span id="sec-snesconvergence"></span><h3>Convergence Tests<a class="headerlink" href="#convergence-tests" title="Link to this heading">#</a></h3>
<p>Convergence of the nonlinear solvers can be detected in a variety of
ways; the user can even specify a customized test, as discussed below.
Most of the nonlinear solvers use <code class="docutils notranslate"><span class="pre">SNESConvergenceTestDefault()</span></code>,
however, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESNEWTONTR.html">SNESNEWTONTR</a></span></code> uses a method-specific additional convergence
test as well. The convergence tests involves several parameters, which
are set by default to values that should be reasonable for a wide range
of problems. The user can customize the parameters to the problem at
hand by using some of the following routines and options.</p>
<p>One method of convergence testing is to declare convergence when the
norm of the change in the solution between successive iterations is less
than some tolerance, <code class="docutils notranslate"><span class="pre">stol</span></code>. Convergence can also be determined based
on the norm of the function. Such a test can use either the absolute
size of the norm, <code class="docutils notranslate"><span class="pre">atol</span></code>, or its relative decrease, <code class="docutils notranslate"><span class="pre">rtol</span></code>, from an
initial guess. The following routine sets these parameters, which are
used in many of the default <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> convergence tests:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESSetTolerances.html">SNESSetTolerances</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">atol</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">rtol</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">stol</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">its</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">fcts</span><span class="p">);</span>
</pre></div>
</div>
<p>This routine also sets the maximum numbers of allowable nonlinear
iterations, <code class="docutils notranslate"><span class="pre">its</span></code>, and function evaluations, <code class="docutils notranslate"><span class="pre">fcts</span></code>. The
corresponding options database commands for setting these parameters are:</p>
<ul class="simple">
<li><p><code class="docutils notranslate"><span class="pre">-snes_atol</span> <span class="pre">&lt;atol&gt;</span></code></p></li>
<li><p><code class="docutils notranslate"><span class="pre">-snes_rtol</span> <span class="pre">&lt;rtol&gt;</span></code></p></li>
<li><p><code class="docutils notranslate"><span class="pre">-snes_stol</span> <span class="pre">&lt;stol&gt;</span></code></p></li>
<li><p><code class="docutils notranslate"><span class="pre">-snes_max_it</span> <span class="pre">&lt;its&gt;</span></code></p></li>
<li><p><code class="docutils notranslate"><span class="pre">-snes_max_funcs</span> <span class="pre">&lt;fcts&gt;</span></code> (use <code class="docutils notranslate"><span class="pre">unlimited</span></code> for no maximum)</p></li>
</ul>
<p>A related routine is <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESGetTolerances.html">SNESGetTolerances</a>()</span></code>. <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Sys/PETSC_CURRENT.html">PETSC_CURRENT</a></span></code> may be used
for any parameter to indicate the current value should be retained; use <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Sys/PETSC_DETERMINE.html">PETSC_DETERMINE</a></span></code> to restore to the default value from when the object was created.</p>
<p>Users can set their own customized convergence tests in <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> by
using the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESSetConvergenceTest.html">SNESSetConvergenceTest</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">test</span><span class="p">)(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">it</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">xnorm</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">gnorm</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">f</span><span class="p">,</span><span class="n"><a href="../manualpages/SNES/SNESConvergedReason.html">SNESConvergedReason</a></span><span class="w"> </span><span class="n">reason</span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">cctx</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">cctx</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">destroy</span><span class="p">)(</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">cctx</span><span class="p">));</span>
</pre></div>
</div>
<p>The final argument of the convergence test routine, <code class="docutils notranslate"><span class="pre">cctx</span></code>, denotes an
optional user-defined context for private data. When solving systems of
nonlinear equations, the arguments <code class="docutils notranslate"><span class="pre">xnorm</span></code>, <code class="docutils notranslate"><span class="pre">gnorm</span></code>, and <code class="docutils notranslate"><span class="pre">f</span></code> are
the current iterate norm, current step norm, and function norm,
respectively. <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESConvergedReason.html">SNESConvergedReason</a></span></code> should be set positive for
convergence and negative for divergence. See <code class="docutils notranslate"><span class="pre">include/petscsnes.h</span></code> for
a list of values for <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESConvergedReason.html">SNESConvergedReason</a></span></code>.</p>
</section>
<section id="convergence-monitoring">
<span id="sec-snesmonitor"></span><h3>Convergence Monitoring<a class="headerlink" href="#convergence-monitoring" title="Link to this heading">#</a></h3>
<p>By default the <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> solvers run silently without displaying
information about the iterations. The user can initiate monitoring with
the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESMonitorSet.html">SNESMonitorSet</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">mon</span><span class="p">)(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">its</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">norm</span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="o">*</span><span class="w"> </span><span class="n">mctx</span><span class="p">),</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">mctx</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscCtxDestroyFn.html">PetscCtxDestroyFn</a></span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="o">*</span><span class="n">monitordestroy</span><span class="p">);</span>
</pre></div>
</div>
<p>The routine, <code class="docutils notranslate"><span class="pre">mon</span></code>, indicates a user-defined monitoring routine, where
<code class="docutils notranslate"><span class="pre">its</span></code> and <code class="docutils notranslate"><span class="pre">mctx</span></code> respectively denote the iteration number and an
optional user-defined context for private data for the monitor routine.
The argument <code class="docutils notranslate"><span class="pre">norm</span></code> is the function norm.</p>
<p>The routine set by <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESMonitorSet.html">SNESMonitorSet</a>()</span></code> is called once after every
successful step computation within the nonlinear solver. Hence, the user
can employ this routine for any application-specific computations that
should be done after the solution update. The option <code class="docutils notranslate"><span class="pre">-snes_monitor</span></code>
activates the default <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> monitor routine,
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESMonitorDefault.html">SNESMonitorDefault</a>()</span></code>, while <code class="docutils notranslate"><span class="pre">-snes_monitor_lg_residualnorm</span></code> draws
a simple line graph of the residual norm’s convergence.</p>
<p>One can cancel hardwired monitoring routines for <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> at runtime
with <code class="docutils notranslate"><span class="pre">-snes_monitor_cancel</span></code>.</p>
<p>As the Newton method converges so that the residual norm is small, say
<span class="math">\(10^{-10}\)</span>, many of the final digits printed with the
<code class="docutils notranslate"><span class="pre">-snes_monitor</span></code> option are meaningless. Worse, they are different on
different machines; due to different round-off rules used by, say, the
IBM RS6000 and the Sun SPARC. This makes testing between different
machines difficult. The option <code class="docutils notranslate"><span class="pre">-snes_monitor_short</span></code> causes PETSc to
print fewer of the digits of the residual norm as it gets smaller; thus
on most of the machines it will always print the same numbers making
cross-process testing easier.</p>
<p>The routines</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESGetSolution.html">SNESGetSolution</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="o">*</span><span class="n">x</span><span class="p">);</span>
<span class="n"><a href="../manualpages/SNES/SNESGetFunction.html">SNESGetFunction</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="o">*</span><span class="n">r</span><span class="p">,</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">,</span><span class="kt">int</span><span class="p">(</span><span class="o">**</span><span class="n">func</span><span class="p">)(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">));</span>
</pre></div>
</div>
<p>return the solution vector and function vector from a <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> context.
These routines are useful, for instance, if the convergence test
requires some property of the solution or function other than those
passed with routine arguments.</p>
</section>
<section id="checking-accuracy-of-derivatives">
<span id="sec-snesderivs"></span><h3>Checking Accuracy of Derivatives<a class="headerlink" href="#checking-accuracy-of-derivatives" title="Link to this heading">#</a></h3>
<p>Since hand-coding routines for Jacobian matrix evaluation can be error
prone, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> provides easy-to-use support for checking these matrices
against finite difference versions. In the simplest form of comparison,
users can employ the option <code class="docutils notranslate"><span class="pre">-snes_test_jacobian</span></code> to compare the
matrices at several points. Although not exhaustive, this test will
generally catch obvious problems. One can compare the elements of the
two matrices by using the option <code class="docutils notranslate"><span class="pre">-snes_test_jacobian_view</span></code> , which
causes the two matrices to be printed to the screen.</p>
<p>Another means for verifying the correctness of a code for Jacobian
computation is running the problem with either the finite difference or
matrix-free variant, <code class="docutils notranslate"><span class="pre">-snes_fd</span></code> or <code class="docutils notranslate"><span class="pre">-snes_mf</span></code>; see <a class="reference internal" href="#sec-fdmatrix"><span class="std std-ref">Finite Difference Jacobian Approximations</span></a> or <a class="reference internal" href="#sec-nlmatrixfree"><span class="std std-ref">Matrix-Free Methods</span></a>.
If a
problem converges well with these matrix approximations but not with a
user-provided routine, the problem probably lies with the hand-coded
matrix. See the note in <a class="reference internal" href="#sec-snesjacobian"><span class="std std-ref">Jacobian Evaluation</span></a> about
assembling your Jabobian in the “preconditioner” slot <code class="docutils notranslate"><span class="pre">Pmat</span></code>.</p>
<p>The correctness of user provided <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MATSHELL.html">MATSHELL</a></span></code> Jacobians in general can be
checked with <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatShellTestMultTranspose.html">MatShellTestMultTranspose</a>()</span></code> and <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatShellTestMult.html">MatShellTestMult</a>()</span></code>.</p>
<p>The correctness of user provided <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MATSHELL.html">MATSHELL</a></span></code> Jacobians via <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetRHSJacobian.html">TSSetRHSJacobian</a>()</span></code>
can be checked with <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRHSJacobianTestTranspose.html">TSRHSJacobianTestTranspose</a>()</span></code> and <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRHSJacobianTest.html">TSRHSJacobianTest</a>()</span></code>
that check the correction of the matrix-transpose vector product and the
matrix-product. From the command line, these can be checked with</p>
<ul class="simple">
<li><p><code class="docutils notranslate"><span class="pre">-ts_rhs_jacobian_test_mult_transpose</span></code></p></li>
<li><p><code class="docutils notranslate"><span class="pre">-mat_shell_test_mult_transpose_view</span></code></p></li>
<li><p><code class="docutils notranslate"><span class="pre">-ts_rhs_jacobian_test_mult</span></code></p></li>
<li><p><code class="docutils notranslate"><span class="pre">-mat_shell_test_mult_view</span></code></p></li>
</ul>
</section>
</section>
<section id="inexact-newton-like-methods">
<h2>Inexact Newton-like Methods<a class="headerlink" href="#inexact-newton-like-methods" title="Link to this heading">#</a></h2>
<p>Since exact solution of the linear Newton systems within <a class="reference internal" href="#equation-newton">(4)</a>
at each iteration can be costly, modifications
are often introduced that significantly reduce these expenses and yet
retain the rapid convergence of Newton’s method. Inexact or truncated
Newton techniques approximately solve the linear systems using an
iterative scheme. In comparison with using direct methods for solving
the Newton systems, iterative methods have the virtue of requiring
little space for matrix storage and potentially saving significant
computational work. Within the class of inexact Newton methods, of
particular interest are Newton-Krylov methods, where the subsidiary
iterative technique for solving the Newton system is chosen from the
class of Krylov subspace projection methods. Note that at runtime the
user can set any of the linear solver options discussed in <a class="reference internal" href="ksp.html#ch-ksp"><span class="std std-ref">KSP: Linear System Solvers</span></a>,
such as <code class="docutils notranslate"><span class="pre">-ksp_type</span> <span class="pre">&lt;ksp_method&gt;</span></code> and
<code class="docutils notranslate"><span class="pre">-pc_type</span> <span class="pre">&lt;pc_method&gt;</span></code>, to set the Krylov subspace and preconditioner
methods.</p>
<p>Two levels of iterations occur for the inexact techniques, where during
each global or outer Newton iteration a sequence of subsidiary inner
iterations of a linear solver is performed. Appropriate control of the
accuracy to which the subsidiary iterative method solves the Newton
system at each global iteration is critical, since these inner
iterations determine the asymptotic convergence rate for inexact Newton
techniques. While the Newton systems must be solved well enough to
retain fast local convergence of the Newton’s iterates, use of excessive
inner iterations, particularly when <span class="math">\(\| \mathbf{x}_k - \mathbf{x}_* \|\)</span> is large,
is neither necessary nor economical. Thus, the number of required inner
iterations typically increases as the Newton process progresses, so that
the truncated iterates approach the true Newton iterates.</p>
<p>A sequence of nonnegative numbers <span class="math">\(\{\eta_k\}\)</span> can be used to
indicate the variable convergence criterion. In this case, when solving
a system of nonlinear equations, the update step of the Newton process
remains unchanged, and direct solution of the linear system is replaced
by iteration on the system until the residuals</p>
<div class="math">
\[
\mathbf{r}_k^{(i)} =  \mathbf{F}'(\mathbf{x}_k) \Delta \mathbf{x}_k + \mathbf{F}(\mathbf{x}_k)
\]</div>
<p>satisfy</p>
<div class="math">
\[
\frac{ \| \mathbf{r}_k^{(i)} \| }{ \| \mathbf{F}(\mathbf{x}_k) \| } \leq \eta_k \leq \eta < 1.
\]</div>
<p>Here <span class="math">\(\mathbf{x}_0\)</span> is an initial approximation of the solution, and
<span class="math">\(\| \cdot \|\)</span> denotes an arbitrary norm in <span class="math">\(\Re^n\)</span> .</p>
<p>By default a constant relative convergence tolerance is used for solving
the subsidiary linear systems within the Newton-like methods of
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code>. When solving a system of nonlinear equations, one can instead
employ the techniques of Eisenstat and Walker <span id="id5">[<a class="reference internal" href="../manualpages/Tao/TaoKSPSetUseEW.html#id1300" title="S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact Newton method. SIAM J. Scientific Computing, 17:16–32, 1996.">EW96</a>]</span>
to compute <span class="math">\(\eta_k\)</span> at each step of the nonlinear solver by using
the option <code class="docutils notranslate"><span class="pre">-snes_ksp_ew</span></code> . In addition, by adding one’s own
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/KSP/KSP.html">KSP</a></span></code> convergence test (see <a class="reference internal" href="ksp.html#sec-convergencetests"><span class="std std-ref">Convergence Tests</span></a>), one can easily create one’s own,
problem-dependent, inner convergence tests.</p>
</section>
<section id="matrix-free-methods">
<span id="sec-nlmatrixfree"></span><h2>Matrix-Free Methods<a class="headerlink" href="#matrix-free-methods" title="Link to this heading">#</a></h2>
<p>The <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> class fully supports matrix-free methods. The matrices
specified in the Jacobian evaluation routine need not be conventional
matrices; instead, they can point to the data required to implement a
particular matrix-free method. The matrix-free variant is allowed <em>only</em>
when the linear systems are solved by an iterative method in combination
with no preconditioning (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PCNONE.html">PCNONE</a></span></code> or <code class="docutils notranslate"><span class="pre">-pc_type</span></code> <code class="docutils notranslate"><span class="pre">none</span></code>), a
user-provided preconditioner matrix, or a user-provided preconditioner
shell (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PCSHELL.html">PCSHELL</a></span></code>, discussed in <a class="reference internal" href="ksp.html#sec-pc"><span class="std std-ref">Preconditioners</span></a>); that
is, obviously matrix-free methods cannot be used with a direct solver,
approximate factorization, or other preconditioner which requires access
to explicit matrix entries.</p>
<p>The user can create a matrix-free context for use within <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> with
the routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/MatCreateSNESMF.html">MatCreateSNESMF</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="o">*</span><span class="n">mat</span><span class="p">);</span>
</pre></div>
</div>
<p>This routine creates the data structures needed for the matrix-vector
products that arise within Krylov space iterative
methods <span id="id6">[<a class="reference internal" href="#id1268" title="Peter N. Brown and Youcef Saad. Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput., 11:450-481, 1990.">BS90</a>]</span>.
The default <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code>
matrix-free approximations can also be invoked with the command
<code class="docutils notranslate"><span class="pre">-snes_mf</span></code>. Or, one can retain the user-provided Jacobian
preconditioner, but replace the user-provided Jacobian matrix with the
default matrix-free variant with the option <code class="docutils notranslate"><span class="pre">-snes_mf_operator</span></code>.</p>
<p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/MatCreateSNESMF.html">MatCreateSNESMF</a>()</span></code> uses</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/Mat/MatCreateMFFD.html">MatCreateMFFD</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="o">*</span><span class="n">mat</span><span class="p">);</span>
</pre></div>
</div>
<p>which can also be used directly for users who need a matrix-free matrix but are not using <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code>.</p>
<p>The user can set one parameter to control the Jacobian-vector product
approximation with the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/Mat/MatMFFDSetFunctionError.html">MatMFFDSetFunctionError</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">mat</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">rerror</span><span class="p">);</span>
</pre></div>
</div>
<p>The parameter <code class="docutils notranslate"><span class="pre">rerror</span></code> should be set to the square root of the
relative error in the function evaluations, <span class="math">\(e_{rel}\)</span>; the default
is the square root of machine epsilon (about <span class="math">\(10^{-8}\)</span> in double
precision), which assumes that the functions are evaluated to full
floating-point precision accuracy. This parameter can also be set from
the options database with <code class="docutils notranslate"><span class="pre">-mat_mffd_err</span> <span class="pre">&lt;err&gt;</span></code></p>
<p>In addition, PETSc provides ways to register new routines to compute
the differencing parameter (<span class="math">\(h\)</span>); see the manual page for
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatMFFDSetType.html">MatMFFDSetType</a>()</span></code> and <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatMFFDRegister.html">MatMFFDRegister</a>()</span></code>. We currently provide two
default routines accessible via <code class="docutils notranslate"><span class="pre">-mat_mffd_type</span> <span class="pre">&lt;ds</span> <span class="pre">or</span> <span class="pre">wp&gt;</span></code>. For
the default approach there is one “tuning” parameter, set with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/Mat/MatMFFDDSSetUmin.html">MatMFFDDSSetUmin</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">mat</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">umin</span><span class="p">);</span>
</pre></div>
</div>
<p>This parameter, <code class="docutils notranslate"><span class="pre">umin</span></code> (or <span class="math">\(u_{min}\)</span>), is a bit involved; its
default is <span class="math">\(10^{-6}\)</span> . Its command line form is <code class="docutils notranslate"><span class="pre">-mat_mffd_umin</span> <span class="pre">&lt;umin&gt;</span></code>.</p>
<p>The Jacobian-vector product is approximated
via the formula</p>
<div class="math">
\[
F'(u) a \approx \frac{F(u + h*a) - F(u)}{h}
\]</div>
<p>where <span class="math">\(h\)</span> is computed via</p>
<div class="math">
\[
h = e_{\text{rel}} \cdot \begin{cases}
u^{T}a/\lVert a \rVert^2_2                                 & \text{if $|u^T a| > u_{\min} \lVert a \rVert_{1}$} \\
u_{\min} \operatorname{sign}(u^{T}a) \lVert a \rVert_{1}/\lVert a\rVert^2_2  & \text{otherwise}.
\end{cases}
\]</div>
<p>This approach is taken from Brown and Saad
<span id="id7">[<a class="reference internal" href="#id1268" title="Peter N. Brown and Youcef Saad. Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput., 11:450-481, 1990.">BS90</a>]</span>. The second approach, taken from Walker and Pernice,
<span id="id8">[<a class="reference internal" href="../manualpages/Mat/MatMFFDWPSetComputeNormU.html#id1220" title="M. Pernice and H. F. Walker. NITSOL: a Newton iterative solver for nonlinear systems. SIAM J. Sci. Stat. Comput., 19:302–318, 1998.">PW98</a>]</span>, computes <span class="math">\(h\)</span> via</p>
<div class="math">
\[
\begin{aligned}
        h = \frac{\sqrt{1 + ||u||}e_{rel}}{||a||}\end{aligned}
\]</div>
<p>This has no tunable parameters, but note that inside the nonlinear solve
for the entire <em>linear</em> iterative process <span class="math">\(u\)</span> does not change
hence <span class="math">\(\sqrt{1 + ||u||}\)</span> need be computed only once. This
information may be set with the options</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/Mat/MatMFFDWPSetComputeNormU.html">MatMFFDWPSetComputeNormU</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">mat</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w"> </span><span class="p">);</span>
</pre></div>
</div>
<p>or <code class="docutils notranslate"><span class="pre">-mat_mffd_compute_normu</span> <span class="pre">&lt;true</span> <span class="pre">or</span> <span class="pre">false&gt;</span></code>. This information is used
to eliminate the redundant computation of these parameters, therefore
reducing the number of collective operations and improving the
efficiency of the application code. This takes place automatically for the PETSc GMRES solver with left preconditioning.</p>
<p>It is also possible to monitor the differencing parameters h that are
computed via the routines</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/Mat/MatMFFDSetHHistory.html">MatMFFDSetHHistory</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w"> </span><span class="o">*</span><span class="p">,</span><span class="kt">int</span><span class="p">);</span>
<span class="n"><a href="../manualpages/Mat/MatMFFDResetHHistory.html">MatMFFDResetHHistory</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w"> </span><span class="o">*</span><span class="p">,</span><span class="kt">int</span><span class="p">);</span>
<span class="n"><a href="../manualpages/Mat/MatMFFDGetH.html">MatMFFDGetH</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w"> </span><span class="o">*</span><span class="p">);</span>
</pre></div>
</div>
<p>We include an explicit example of using matrix-free methods in <a class="reference internal" href="#snes-ex3"><span class="std std-ref">ex3.c</span></a>.
Note that by using the option <code class="docutils notranslate"><span class="pre">-snes_mf</span></code> one can
easily convert any <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> code to use a matrix-free Newton-Krylov
method without a preconditioner. As shown in this example,
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESSetFromOptions.html">SNESSetFromOptions</a>()</span></code> must be called <em>after</em> <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESSetJacobian.html">SNESSetJacobian</a>()</span></code> to
enable runtime switching between the user-specified Jacobian and the
default <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> matrix-free form.</p>
<div class="admonition-listing-src-snes-tutorials-ex3-c admonition" id="snes-ex3">
<p class="admonition-title">Listing: <code class="docutils notranslate"><span class="pre">src/snes/tutorials/ex3.c</span></code></p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="k">static</span><span class="w"> </span><span class="kt">char</span><span class="w"> </span><span class="n">help</span><span class="p">[]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s">&quot;Newton methods to solve u&#39;&#39; + u^{2} = f in parallel.</span><span class="se">\n</span><span class="s">\</span>
<span class="s">This example employs a user-defined monitoring routine and optionally a user-defined</span><span class="se">\n</span><span class="s">\</span>
<span class="s">routine to check candidate iterates produced by line search routines.</span><span class="se">\n</span><span class="s">\</span>
<span class="s">The command line options include:</span><span class="se">\n</span><span class="s">\</span>
<span class="s">  -pre_check_iterates : activate checking of iterates</span><span class="se">\n</span><span class="s">\</span>
<span class="s">  -post_check_iterates : activate checking of iterates</span><span class="se">\n</span><span class="s">\</span>
<span class="s">  -check_tol &lt;tol&gt;: set tolerance for iterate checking</span><span class="se">\n</span><span class="s">\</span>
<span class="s">  -user_precond : activate a (trivial) user-defined preconditioner</span><span class="se">\n\n</span><span class="s">&quot;</span><span class="p">;</span>

<span class="cm">/*</span>
<span class="cm">   Include &quot;petscdm.h&quot; so that we can use data management objects (DMs)</span>
<span class="cm">   Include &quot;petscdmda.h&quot; so that we can use distributed arrays (DMDAs).</span>
<span class="cm">   Include &quot;petscsnes.h&quot; so that we can use <a href="../manualpages/SNES/SNES.html">SNES</a> solvers.  Note that this</span>
<span class="cm">   file automatically includes:</span>
<span class="cm">     petscsys.h    - base PETSc routines</span>
<span class="cm">     petscvec.h    - vectors</span>
<span class="cm">     petscmat.h    - matrices</span>
<span class="cm">     petscis.h     - index sets</span>
<span class="cm">     petscksp.h    - Krylov subspace methods</span>
<span class="cm">     petscviewer.h - viewers</span>
<span class="cm">     petscpc.h     - preconditioners</span>
<span class="cm">     petscksp.h    - linear solvers</span>
<span class="cm">*/</span>

<span class="cp">#include</span><span class="w"> </span><span class="cpf">&lt;petscdm.h&gt;</span>
<span class="cp">#include</span><span class="w"> </span><span class="cpf">&lt;petscdmda.h&gt;</span>
<span class="cp">#include</span><span class="w"> </span><span class="cpf">&lt;petscsnes.h&gt;</span>

<span class="cm">/*</span>
<span class="cm">   User-defined routines.</span>
<span class="cm">*/</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">FormJacobian</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="p">);</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">FormFunction</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="p">);</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">FormInitialGuess</span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">);</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">Monitor</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="p">);</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">PreCheck</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESLineSearch.html">SNESLineSearch</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w"> </span><span class="o">*</span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="p">);</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">PostCheck</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESLineSearch.html">SNESLineSearch</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w"> </span><span class="o">*</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w"> </span><span class="o">*</span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="p">);</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">PostSetSubKSP</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESLineSearch.html">SNESLineSearch</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w"> </span><span class="o">*</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w"> </span><span class="o">*</span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="p">);</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">MatrixFreePreconditioner</span><span class="p">(</span><span class="n"><a href="../manualpages/PC/PC.html">PC</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">);</span>

<span class="cm">/*</span>
<span class="cm">   User-defined application context</span>
<span class="cm">*/</span>
<span class="k">typedef</span><span class="w"> </span><span class="k">struct</span><span class="w"> </span><span class="p">{</span>
<span class="w">  </span><span class="n"><a href="../manualpages/DM/DM.html">DM</a></span><span class="w">          </span><span class="n">da</span><span class="p">;</span><span class="w">    </span><span class="cm">/* distributed array */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w">         </span><span class="n">F</span><span class="p">;</span><span class="w">     </span><span class="cm">/* right-hand side of PDE */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscMPIInt.html">PetscMPIInt</a></span><span class="w"> </span><span class="n">rank</span><span class="p">;</span><span class="w">  </span><span class="cm">/* rank of processor */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscMPIInt.html">PetscMPIInt</a></span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w">  </span><span class="cm">/* size of communicator */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w">   </span><span class="n">h</span><span class="p">;</span><span class="w">     </span><span class="cm">/* mesh spacing */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w">   </span><span class="n">sjerr</span><span class="p">;</span><span class="w"> </span><span class="cm">/* if or not to test jacobian domain error */</span>
<span class="p">}</span><span class="w"> </span><span class="n">ApplicationCtx</span><span class="p">;</span>

<span class="cm">/*</span>
<span class="cm">   User-defined context for monitoring</span>
<span class="cm">*/</span>
<span class="k">typedef</span><span class="w"> </span><span class="k">struct</span><span class="w"> </span><span class="p">{</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Viewer/PetscViewer.html">PetscViewer</a></span><span class="w"> </span><span class="n">viewer</span><span class="p">;</span>
<span class="p">}</span><span class="w"> </span><span class="n">MonitorCtx</span><span class="p">;</span>

<span class="cm">/*</span>
<span class="cm">   User-defined context for checking candidate iterates that are</span>
<span class="cm">   determined by line search methods</span>
<span class="cm">*/</span>
<span class="k">typedef</span><span class="w"> </span><span class="k">struct</span><span class="w"> </span><span class="p">{</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w">             </span><span class="n">last_step</span><span class="p">;</span><span class="w"> </span><span class="cm">/* previous iterate */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w">       </span><span class="n">tolerance</span><span class="p">;</span><span class="w"> </span><span class="cm">/* tolerance for changes between successive iterates */</span>
<span class="w">  </span><span class="n">ApplicationCtx</span><span class="w"> </span><span class="o">*</span><span class="n">user</span><span class="p">;</span>
<span class="p">}</span><span class="w"> </span><span class="n">StepCheckCtx</span><span class="p">;</span>

<span class="k">typedef</span><span class="w"> </span><span class="k">struct</span><span class="w"> </span><span class="p">{</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">its0</span><span class="p">;</span><span class="w"> </span><span class="cm">/* num of previous outer <a href="../manualpages/KSP/KSP.html">KSP</a> iterations */</span>
<span class="p">}</span><span class="w"> </span><span class="n">SetSubKSPCtx</span><span class="p">;</span>

<span class="kt">int</span><span class="w"> </span><span class="nf">main</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">argc</span><span class="p">,</span><span class="w"> </span><span class="kt">char</span><span class="w"> </span><span class="o">**</span><span class="n">argv</span><span class="p">)</span>
<span class="p">{</span>
<span class="w">  </span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w">           </span><span class="n">snes</span><span class="p">;</span><span class="w">       </span><span class="cm">/* <a href="../manualpages/SNES/SNES.html">SNES</a> context */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/SNES/SNESLineSearch.html">SNESLineSearch</a></span><span class="w"> </span><span class="n">linesearch</span><span class="p">;</span><span class="w"> </span><span class="cm">/* <a href="../manualpages/SNES/SNESLineSearch.html">SNESLineSearch</a> context */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w">            </span><span class="n">J</span><span class="p">;</span><span class="w">          </span><span class="cm">/* Jacobian matrix */</span>
<span class="w">  </span><span class="n">ApplicationCtx</span><span class="w"> </span><span class="n">ctx</span><span class="p">;</span><span class="w">        </span><span class="cm">/* user-defined context */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w">            </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n">r</span><span class="p">,</span><span class="w"> </span><span class="n">U</span><span class="p">,</span><span class="w"> </span><span class="n">F</span><span class="p">;</span><span class="w"> </span><span class="cm">/* vectors */</span>
<span class="w">  </span><span class="n">MonitorCtx</span><span class="w">     </span><span class="n">monP</span><span class="p">;</span><span class="w">       </span><span class="cm">/* monitoring context */</span>
<span class="w">  </span><span class="n">StepCheckCtx</span><span class="w">   </span><span class="n">checkP</span><span class="p">;</span><span class="w">     </span><span class="cm">/* step-checking context */</span>
<span class="w">  </span><span class="n">SetSubKSPCtx</span><span class="w">   </span><span class="n">checkP1</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w">      </span><span class="n">pre_check</span><span class="p">,</span><span class="w"> </span><span class="n">post_check</span><span class="p">,</span><span class="w"> </span><span class="n">post_setsubksp</span><span class="p">;</span><span class="w"> </span><span class="cm">/* flag indicating whether we&#39;re checking candidate iterates */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w">    </span><span class="n">xp</span><span class="p">,</span><span class="w"> </span><span class="o">*</span><span class="n">FF</span><span class="p">,</span><span class="w"> </span><span class="o">*</span><span class="n">UU</span><span class="p">,</span><span class="w"> </span><span class="n">none</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">-1.0</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w">       </span><span class="n">its</span><span class="p">,</span><span class="w"> </span><span class="n">N</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">5</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">maxit</span><span class="p">,</span><span class="w"> </span><span class="n">maxf</span><span class="p">,</span><span class="w"> </span><span class="n">xs</span><span class="p">,</span><span class="w"> </span><span class="n">xm</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w">      </span><span class="n">abstol</span><span class="p">,</span><span class="w"> </span><span class="n">rtol</span><span class="p">,</span><span class="w"> </span><span class="n">stol</span><span class="p">,</span><span class="w"> </span><span class="n">norm</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w">      </span><span class="n">flg</span><span class="p">,</span><span class="w"> </span><span class="n">viewinitial</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_FALSE.html">PETSC_FALSE</a></span><span class="p">;</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionBeginUser.html">PetscFunctionBeginUser</a></span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscInitialize.html">PetscInitialize</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">argc</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">argv</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="n">help</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCallMPI.html">PetscCallMPI</a></span><span class="p">(</span><span class="n"><a href="http://www.mpich.org/static/docs/latest/www3/MPI_Comm_rank.html#MPI_Comm_rank">MPI_Comm_rank</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ctx</span><span class="p">.</span><span class="n">rank</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCallMPI.html">PetscCallMPI</a></span><span class="p">(</span><span class="n"><a href="http://www.mpich.org/static/docs/latest/www3/MPI_Comm_size.html#MPI_Comm_size">MPI_Comm_size</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ctx</span><span class="p">.</span><span class="n">size</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscOptionsGetInt.html">PetscOptionsGetInt</a></span><span class="p">(</span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;-n&quot;</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">N</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>
<span class="w">  </span><span class="n">ctx</span><span class="p">.</span><span class="n">h</span><span class="w">     </span><span class="o">=</span><span class="w"> </span><span class="mf">1.0</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="p">(</span><span class="n">N</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<span class="w">  </span><span class="n">ctx</span><span class="p">.</span><span class="n">sjerr</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_FALSE.html">PETSC_FALSE</a></span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscOptionsGetBool.html">PetscOptionsGetBool</a></span><span class="p">(</span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;-test_jacobian_domain_error&quot;</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ctx</span><span class="p">.</span><span class="n">sjerr</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscOptionsGetBool.html">PetscOptionsGetBool</a></span><span class="p">(</span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;-view_initial&quot;</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">viewinitial</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</span>
<span class="cm">     Create nonlinear solver context</span>
<span class="cm">     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESCreate.html">SNESCreate</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">snes</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</span>
<span class="cm">     Create vector data structures; set function evaluation routine</span>
<span class="cm">     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Create distributed array (<a href="../manualpages/DMDA/DMDA.html">DMDA</a>) to manage parallel grid and vectors</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDACreate1d.html">DMDACreate1d</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/DM/DMBoundaryType.html">DM_BOUNDARY_NONE</a></span><span class="p">,</span><span class="w"> </span><span class="n">N</span><span class="p">,</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ctx</span><span class="p">.</span><span class="n">da</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DM/DMSetFromOptions.html">DMSetFromOptions</a></span><span class="p">(</span><span class="n">ctx</span><span class="p">.</span><span class="n">da</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DM/DMSetUp.html">DMSetUp</a></span><span class="p">(</span><span class="n">ctx</span><span class="p">.</span><span class="n">da</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Extract global and local vectors from <a href="../manualpages/DMDA/DMDA.html">DMDA</a>; then duplicate for remaining</span>
<span class="cm">     vectors that are the same types</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DM/DMCreateGlobalVector.html">DMCreateGlobalVector</a></span><span class="p">(</span><span class="n">ctx</span><span class="p">.</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">x</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecDuplicate.html">VecDuplicate</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">r</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecDuplicate.html">VecDuplicate</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">F</span><span class="p">));</span>
<span class="w">  </span><span class="n">ctx</span><span class="p">.</span><span class="n">F</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">F</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecDuplicate.html">VecDuplicate</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">U</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Set function evaluation routine and vector.  Whenever the nonlinear</span>
<span class="cm">     solver needs to compute the nonlinear function, it will call this</span>
<span class="cm">     routine.</span>
<span class="cm">      - Note that the final routine argument is the user-defined</span>
<span class="cm">        context that provides application-specific data for the</span>
<span class="cm">        function evaluation routine.</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESSetFunction.html">SNESSetFunction</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n">r</span><span class="p">,</span><span class="w"> </span><span class="n">FormFunction</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ctx</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</span>
<span class="cm">     Create matrix data structure; set Jacobian evaluation routine</span>
<span class="cm">     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatCreate.html">MatCreate</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">J</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatSetSizes.html">MatSetSizes</a></span><span class="p">(</span><span class="n">J</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_DECIDE.html">PETSC_DECIDE</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_DECIDE.html">PETSC_DECIDE</a></span><span class="p">,</span><span class="w"> </span><span class="n">N</span><span class="p">,</span><span class="w"> </span><span class="n">N</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatSetFromOptions.html">MatSetFromOptions</a></span><span class="p">(</span><span class="n">J</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatSeqAIJSetPreallocation.html">MatSeqAIJSetPreallocation</a></span><span class="p">(</span><span class="n">J</span><span class="p">,</span><span class="w"> </span><span class="mi">3</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatMPIAIJSetPreallocation.html">MatMPIAIJSetPreallocation</a></span><span class="p">(</span><span class="n">J</span><span class="p">,</span><span class="w"> </span><span class="mi">3</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="mi">3</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Set Jacobian matrix data structure and default Jacobian evaluation</span>
<span class="cm">     routine.  Whenever the nonlinear solver needs to compute the</span>
<span class="cm">     Jacobian matrix, it will call this routine.</span>
<span class="cm">      - Note that the final routine argument is the user-defined</span>
<span class="cm">        context that provides application-specific data for the</span>
<span class="cm">        Jacobian evaluation routine.</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESSetJacobian.html">SNESSetJacobian</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n">J</span><span class="p">,</span><span class="w"> </span><span class="n">J</span><span class="p">,</span><span class="w"> </span><span class="n">FormJacobian</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ctx</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Optionally allow user-provided preconditioner</span>
<span class="cm">   */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscOptionsHasName.html">PetscOptionsHasName</a></span><span class="p">(</span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;-user_precond&quot;</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">flg</span><span class="p">));</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">flg</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n"><a href="../manualpages/KSP/KSP.html">KSP</a></span><span class="w"> </span><span class="n">ksp</span><span class="p">;</span>
<span class="w">    </span><span class="n"><a href="../manualpages/PC/PC.html">PC</a></span><span class="w">  </span><span class="n">pc</span><span class="p">;</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESGetKSP.html">SNESGetKSP</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ksp</span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/KSP/KSPGetPC.html">KSPGetPC</a></span><span class="p">(</span><span class="n">ksp</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">pc</span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/PC/PCSetType.html">PCSetType</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/PC/PCSHELL.html">PCSHELL</a></span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/PC/PCShellSetApply.html">PCShellSetApply</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="w"> </span><span class="n">MatrixFreePreconditioner</span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span>

<span class="w">  </span><span class="cm">/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</span>
<span class="cm">     Customize nonlinear solver; set runtime options</span>
<span class="cm">   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Set an optional user-defined monitoring routine</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Viewer/PetscViewerDrawOpen.html">PetscViewerDrawOpen</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">400</span><span class="p">,</span><span class="w"> </span><span class="mi">400</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">monP</span><span class="p">.</span><span class="n">viewer</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESMonitorSet.html">SNESMonitorSet</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n">Monitor</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">monP</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Set names for some vectors to facilitate monitoring (optional)</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscObjectSetName.html">PetscObjectSetName</a></span><span class="p">((</span><span class="n"><a href="../manualpages/Sys/PetscObject.html">PetscObject</a></span><span class="p">)</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;Approximate Solution&quot;</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscObjectSetName.html">PetscObjectSetName</a></span><span class="p">((</span><span class="n"><a href="../manualpages/Sys/PetscObject.html">PetscObject</a></span><span class="p">)</span><span class="n">U</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;Exact Solution&quot;</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Set <a href="../manualpages/SNES/SNES.html">SNES</a>/<a href="../manualpages/KSP/KSP.html">KSP</a>/<a href="../manualpages/KSP/KSP.html">KSP</a>/<a href="../manualpages/PC/PC.html">PC</a> runtime options, e.g.,</span>
<span class="cm">         -snes_view -snes_monitor -ksp_type &lt;ksp&gt; -pc_type &lt;pc&gt;</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESSetFromOptions.html">SNESSetFromOptions</a></span><span class="p">(</span><span class="n">snes</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Set an optional user-defined routine to check the validity of candidate</span>
<span class="cm">     iterates that are determined by line search methods</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESGetLineSearch.html">SNESGetLineSearch</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">linesearch</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscOptionsHasName.html">PetscOptionsHasName</a></span><span class="p">(</span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;-post_check_iterates&quot;</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">post_check</span><span class="p">));</span>

<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">post_check</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscPrintf.html">PetscPrintf</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="s">&quot;Activating post step checking routine</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESLineSearchSetPostCheck.html">SNESLineSearchSetPostCheck</a></span><span class="p">(</span><span class="n">linesearch</span><span class="p">,</span><span class="w"> </span><span class="n">PostCheck</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">checkP</span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecDuplicate.html">VecDuplicate</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">checkP</span><span class="p">.</span><span class="n">last_step</span><span class="p">));</span>

<span class="w">    </span><span class="n">checkP</span><span class="p">.</span><span class="n">tolerance</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1.0</span><span class="p">;</span>
<span class="w">    </span><span class="n">checkP</span><span class="p">.</span><span class="n">user</span><span class="w">      </span><span class="o">=</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ctx</span><span class="p">;</span>

<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscOptionsGetReal.html">PetscOptionsGetReal</a></span><span class="p">(</span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;-check_tol&quot;</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">checkP</span><span class="p">.</span><span class="n">tolerance</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscOptionsHasName.html">PetscOptionsHasName</a></span><span class="p">(</span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;-post_setsubksp&quot;</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">post_setsubksp</span><span class="p">));</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">post_setsubksp</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscPrintf.html">PetscPrintf</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="s">&quot;Activating post setsubksp</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESLineSearchSetPostCheck.html">SNESLineSearchSetPostCheck</a></span><span class="p">(</span><span class="n">linesearch</span><span class="p">,</span><span class="w"> </span><span class="n">PostSetSubKSP</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">checkP1</span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscOptionsHasName.html">PetscOptionsHasName</a></span><span class="p">(</span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="s">&quot;-pre_check_iterates&quot;</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">pre_check</span><span class="p">));</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">pre_check</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscPrintf.html">PetscPrintf</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="s">&quot;Activating pre step checking routine</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESLineSearchSetPreCheck.html">SNESLineSearchSetPreCheck</a></span><span class="p">(</span><span class="n">linesearch</span><span class="p">,</span><span class="w"> </span><span class="n">PreCheck</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">checkP</span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Print parameters used for convergence testing (optional) ... just</span>
<span class="cm">     to demonstrate this routine; this information is also printed with</span>
<span class="cm">     the option -snes_view</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESGetTolerances.html">SNESGetTolerances</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">abstol</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">rtol</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">stol</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">maxit</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">maxf</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscPrintf.html">PetscPrintf</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="s">&quot;atol=%g, rtol=%g, stol=%g, maxit=%&quot;</span><span class="w"> </span><span class="n">PetscInt_FMT</span><span class="w"> </span><span class="s">&quot;, maxf=%&quot;</span><span class="w"> </span><span class="n">PetscInt_FMT</span><span class="w"> </span><span class="s">&quot;</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="n">abstol</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="n">rtol</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="n">stol</span><span class="p">,</span><span class="w"> </span><span class="n">maxit</span><span class="p">,</span><span class="w"> </span><span class="n">maxf</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</span>
<span class="cm">     Initialize application:</span>
<span class="cm">     Store right-hand side of PDE and exact solution</span>
<span class="cm">   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Get local grid boundaries (for 1-dimensional <a href="../manualpages/DMDA/DMDA.html">DMDA</a>):</span>
<span class="cm">       xs, xm - starting grid index, width of local grid (no ghost points)</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAGetCorners.html">DMDAGetCorners</a></span><span class="p">(</span><span class="n">ctx</span><span class="p">.</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xs</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xm</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Get pointers to vector data</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecGetArray.html">DMDAVecGetArray</a></span><span class="p">(</span><span class="n">ctx</span><span class="p">.</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">F</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">FF</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecGetArray.html">DMDAVecGetArray</a></span><span class="p">(</span><span class="n">ctx</span><span class="p">.</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">U</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">UU</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Compute local vector entries</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n">xp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">ctx</span><span class="p">.</span><span class="n">h</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">xs</span><span class="p">;</span>
<span class="w">  </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">xs</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">xs</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">xm</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n">FF</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">6.0</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">xp</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">PetscPowScalar</span><span class="p">(</span><span class="n">xp</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1.</span><span class="n">e</span><span class="mi">-12</span><span class="p">,</span><span class="w"> </span><span class="mf">6.0</span><span class="p">);</span><span class="w"> </span><span class="cm">/* +1.e-12 is to prevent 0^6 */</span>
<span class="w">    </span><span class="n">UU</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">xp</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">xp</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">xp</span><span class="p">;</span>
<span class="w">    </span><span class="n">xp</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">ctx</span><span class="p">.</span><span class="n">h</span><span class="p">;</span>
<span class="w">  </span><span class="p">}</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Restore vectors</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecRestoreArray.html">DMDAVecRestoreArray</a></span><span class="p">(</span><span class="n">ctx</span><span class="p">.</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">F</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">FF</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecRestoreArray.html">DMDAVecRestoreArray</a></span><span class="p">(</span><span class="n">ctx</span><span class="p">.</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">U</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">UU</span><span class="p">));</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">viewinitial</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecView.html">VecView</a></span><span class="p">(</span><span class="n">U</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecView.html">VecView</a></span><span class="p">(</span><span class="n">F</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span>

<span class="w">  </span><span class="cm">/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</span>
<span class="cm">     Evaluate initial guess; then solve nonlinear system</span>
<span class="cm">   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Note: The user should initialize the vector, x, with the initial guess</span>
<span class="cm">     for the nonlinear solver prior to calling <a href="../manualpages/SNES/SNESSolve.html">SNESSolve</a>().  In particular,</span>
<span class="cm">     to employ an initial guess of zero, the user should explicitly set</span>
<span class="cm">     this vector to zero by calling <a href="../manualpages/Vec/VecSet.html">VecSet</a>().</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n">FormInitialGuess</span><span class="p">(</span><span class="n">x</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESSolve.html">SNESSolve</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="n">x</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESGetIterationNumber.html">SNESGetIterationNumber</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">its</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscPrintf.html">PetscPrintf</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="s">&quot;Number of <a href="../manualpages/SNES/SNES.html">SNES</a> iterations = %&quot;</span><span class="w"> </span><span class="n">PetscInt_FMT</span><span class="w"> </span><span class="s">&quot;</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="n">its</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</span>
<span class="cm">     Check solution and clean up</span>
<span class="cm">   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Check the error</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecAXPY.html">VecAXPY</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n">none</span><span class="p">,</span><span class="w"> </span><span class="n">U</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecNorm.html">VecNorm</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/NORM_2.html">NORM_2</a></span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">norm</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscPrintf.html">PetscPrintf</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="s">&quot;Norm of error %g Iterations %&quot;</span><span class="w"> </span><span class="n">PetscInt_FMT</span><span class="w"> </span><span class="s">&quot;</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="n">norm</span><span class="p">,</span><span class="w"> </span><span class="n">its</span><span class="p">));</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">ctx</span><span class="p">.</span><span class="n">sjerr</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n"><a href="../manualpages/SNES/SNESType.html">SNESType</a></span><span class="w"> </span><span class="n">snestype</span><span class="p">;</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESGetType.html">SNESGetType</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">snestype</span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscPrintf.html">PetscPrintf</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="s">&quot;<a href="../manualpages/SNES/SNES.html">SNES</a> Type %s</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="n">snestype</span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Free work space.  All PETSc objects should be destroyed when they</span>
<span class="cm">     are no longer needed.</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Viewer/PetscViewerDestroy.html">PetscViewerDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">monP</span><span class="p">.</span><span class="n">viewer</span><span class="p">));</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">post_check</span><span class="p">)</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecDestroy.html">VecDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">checkP</span><span class="p">.</span><span class="n">last_step</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecDestroy.html">VecDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">x</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecDestroy.html">VecDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">r</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecDestroy.html">VecDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">U</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecDestroy.html">VecDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">F</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatDestroy.html">MatDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">J</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESDestroy.html">SNESDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">snes</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DM/DMDestroy.html">DMDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">ctx</span><span class="p">.</span><span class="n">da</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscFinalize.html">PetscFinalize</a></span><span class="p">());</span>
<span class="w">  </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<span class="p">}</span>

<span class="cm">/* ------------------------------------------------------------------- */</span>
<span class="cm">/*</span>
<span class="cm">   FormInitialGuess - Computes initial guess.</span>

<span class="cm">   Input/Output Parameter:</span>
<span class="cm">.  x - the solution vector</span>
<span class="cm">*/</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">FormInitialGuess</span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">x</span><span class="p">)</span>
<span class="p">{</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w"> </span><span class="n">pfive</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">.50</span><span class="p">;</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionBeginUser.html">PetscFunctionBeginUser</a></span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecSet.html">VecSet</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n">pfive</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionReturn.html">PetscFunctionReturn</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PETSC_SUCCESS</a></span><span class="p">);</span>
<span class="p">}</span>

<span class="cm">/* ------------------------------------------------------------------- */</span>
<span class="cm">/*</span>
<span class="cm">   FormFunction - Evaluates nonlinear function, F(x).</span>

<span class="cm">   Input Parameters:</span>
<span class="cm">.  snes - the <a href="../manualpages/SNES/SNES.html">SNES</a> context</span>
<span class="cm">.  x - input vector</span>
<span class="cm">.  ctx - optional user-defined context, as set by <a href="../manualpages/SNES/SNESSetFunction.html">SNESSetFunction</a>()</span>

<span class="cm">   Output Parameter:</span>
<span class="cm">.  f - function vector</span>

<span class="cm">   Note:</span>
<span class="cm">   The user-defined context can contain any application-specific</span>
<span class="cm">   data needed for the function evaluation.</span>
<span class="cm">*/</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">FormFunction</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">f</span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">)</span>
<span class="p">{</span>
<span class="w">  </span><span class="n">ApplicationCtx</span><span class="w">    </span><span class="o">*</span><span class="n">user</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="n">ApplicationCtx</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="n">ctx</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/DM/DM.html">DM</a></span><span class="w">                 </span><span class="n">da</span><span class="w">   </span><span class="o">=</span><span class="w"> </span><span class="n">user</span><span class="o">-&gt;</span><span class="n">da</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w">       </span><span class="o">*</span><span class="n">ff</span><span class="p">,</span><span class="w"> </span><span class="n">d</span><span class="p">;</span>
<span class="w">  </span><span class="k">const</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w"> </span><span class="o">*</span><span class="n">xx</span><span class="p">,</span><span class="w"> </span><span class="o">*</span><span class="n">FF</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w">           </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">M</span><span class="p">,</span><span class="w"> </span><span class="n">xs</span><span class="p">,</span><span class="w"> </span><span class="n">xm</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w">                </span><span class="n">xlocal</span><span class="p">;</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionBeginUser.html">PetscFunctionBeginUser</a></span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DM/DMGetLocalVector.html">DMGetLocalVector</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xlocal</span><span class="p">));</span>
<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Scatter ghost points to local vector, using the 2-step process</span>
<span class="cm">        <a href="../manualpages/DM/DMGlobalToLocalBegin.html">DMGlobalToLocalBegin</a>(), <a href="../manualpages/DM/DMGlobalToLocalEnd.html">DMGlobalToLocalEnd</a>().</span>
<span class="cm">     By placing code between these two statements, computations can</span>
<span class="cm">     be done while messages are in transition.</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DM/DMGlobalToLocalBegin.html">DMGlobalToLocalBegin</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/INSERT_VALUES.html">INSERT_VALUES</a></span><span class="p">,</span><span class="w"> </span><span class="n">xlocal</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DM/DMGlobalToLocalEnd.html">DMGlobalToLocalEnd</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/INSERT_VALUES.html">INSERT_VALUES</a></span><span class="p">,</span><span class="w"> </span><span class="n">xlocal</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Get pointers to vector data.</span>
<span class="cm">       - The vector xlocal includes ghost point; the vectors x and f do</span>
<span class="cm">         NOT include ghost points.</span>
<span class="cm">       - Using <a href="../manualpages/DMDA/DMDAVecGetArray.html">DMDAVecGetArray</a>() allows accessing the values using global ordering</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecGetArrayRead.html">DMDAVecGetArrayRead</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">xlocal</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="o">&amp;</span><span class="n">xx</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecGetArray.html">DMDAVecGetArray</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">f</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ff</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecGetArrayRead.html">DMDAVecGetArrayRead</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">user</span><span class="o">-&gt;</span><span class="n">F</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="o">&amp;</span><span class="n">FF</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Get local grid boundaries (for 1-dimensional <a href="../manualpages/DMDA/DMDA.html">DMDA</a>):</span>
<span class="cm">       xs, xm  - starting grid index, width of local grid (no ghost points)</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAGetCorners.html">DMDAGetCorners</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xs</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xm</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAGetInfo.html">DMDAGetInfo</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">M</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Set function values for boundary points; define local interior grid point range:</span>
<span class="cm">        xsi - starting interior grid index</span>
<span class="cm">        xei - ending interior grid index</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">xs</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="cm">/* left boundary */</span>
<span class="w">    </span><span class="n">ff</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="mi">0</span><span class="p">];</span>
<span class="w">    </span><span class="n">xs</span><span class="o">++</span><span class="p">;</span>
<span class="w">    </span><span class="n">xm</span><span class="o">--</span><span class="p">;</span>
<span class="w">  </span><span class="p">}</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">xs</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">xm</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">M</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="cm">/* right boundary */</span>
<span class="w">    </span><span class="n">ff</span><span class="p">[</span><span class="n">xs</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">xm</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="n">xs</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">xm</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1.0</span><span class="p">;</span>
<span class="w">    </span><span class="n">xm</span><span class="o">--</span><span class="p">;</span>
<span class="w">  </span><span class="p">}</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Compute function over locally owned part of the grid (interior points only)</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n">d</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1.0</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="p">(</span><span class="n">user</span><span class="o">-&gt;</span><span class="n">h</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">user</span><span class="o">-&gt;</span><span class="n">h</span><span class="p">);</span>
<span class="w">  </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">xs</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">xs</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">xm</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="n">ff</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">d</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="p">(</span><span class="n">xx</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2.0</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">FF</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Restore vectors</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecRestoreArrayRead.html">DMDAVecRestoreArrayRead</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">xlocal</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="o">&amp;</span><span class="n">xx</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecRestoreArray.html">DMDAVecRestoreArray</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">f</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ff</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecRestoreArrayRead.html">DMDAVecRestoreArrayRead</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">user</span><span class="o">-&gt;</span><span class="n">F</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="o">&amp;</span><span class="n">FF</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DM/DMRestoreLocalVector.html">DMRestoreLocalVector</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xlocal</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionReturn.html">PetscFunctionReturn</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PETSC_SUCCESS</a></span><span class="p">);</span>
<span class="p">}</span>

<span class="cm">/* ------------------------------------------------------------------- */</span>
<span class="cm">/*</span>
<span class="cm">   FormJacobian - Evaluates Jacobian matrix.</span>

<span class="cm">   Input Parameters:</span>
<span class="cm">.  snes - the <a href="../manualpages/SNES/SNES.html">SNES</a> context</span>
<span class="cm">.  x - input vector</span>
<span class="cm">.  dummy - optional user-defined context (not used here)</span>

<span class="cm">   Output Parameters:</span>
<span class="cm">.  jac - Jacobian matrix</span>
<span class="cm">.  B - optionally different preconditioning matrix</span>

<span class="cm">*/</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">FormJacobian</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">jac</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">B</span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">)</span>
<span class="p">{</span>
<span class="w">  </span><span class="n">ApplicationCtx</span><span class="w"> </span><span class="o">*</span><span class="n">user</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="n">ApplicationCtx</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="n">ctx</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w">    </span><span class="o">*</span><span class="n">xx</span><span class="p">,</span><span class="w"> </span><span class="n">d</span><span class="p">,</span><span class="w"> </span><span class="n">A</span><span class="p">[</span><span class="mi">3</span><span class="p">];</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w">        </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span><span class="w"> </span><span class="n">M</span><span class="p">,</span><span class="w"> </span><span class="n">xs</span><span class="p">,</span><span class="w"> </span><span class="n">xm</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/DM/DM.html">DM</a></span><span class="w">              </span><span class="n">da</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">user</span><span class="o">-&gt;</span><span class="n">da</span><span class="p">;</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionBeginUser.html">PetscFunctionBeginUser</a></span><span class="p">;</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">user</span><span class="o">-&gt;</span><span class="n">sjerr</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESSetJacobianDomainError.html">SNESSetJacobianDomainError</a></span><span class="p">(</span><span class="n">snes</span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscFunctionReturn.html">PetscFunctionReturn</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PETSC_SUCCESS</a></span><span class="p">);</span>
<span class="w">  </span><span class="p">}</span>
<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Get pointer to vector data</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecGetArrayRead.html">DMDAVecGetArrayRead</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xx</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAGetCorners.html">DMDAGetCorners</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xs</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xm</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">    Get range of locally owned matrix</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAGetInfo.html">DMDAGetInfo</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">M</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Determine starting and ending local indices for interior grid points.</span>
<span class="cm">     Set Jacobian entries for boundary points.</span>
<span class="cm">  */</span>

<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">xs</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="cm">/* left boundary */</span>
<span class="w">    </span><span class="n">i</span><span class="w">    </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<span class="w">    </span><span class="n">A</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1.0</span><span class="p">;</span>

<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatSetValues.html">MatSetValues</a></span><span class="p">(</span><span class="n">jac</span><span class="p">,</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">A</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/INSERT_VALUES.html">INSERT_VALUES</a></span><span class="p">));</span>
<span class="w">    </span><span class="n">xs</span><span class="o">++</span><span class="p">;</span>
<span class="w">    </span><span class="n">xm</span><span class="o">--</span><span class="p">;</span>
<span class="w">  </span><span class="p">}</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">xs</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">xm</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">M</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="cm">/* right boundary */</span>
<span class="w">    </span><span class="n">i</span><span class="w">    </span><span class="o">=</span><span class="w"> </span><span class="n">M</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<span class="w">    </span><span class="n">A</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1.0</span><span class="p">;</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatSetValues.html">MatSetValues</a></span><span class="p">(</span><span class="n">jac</span><span class="p">,</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">A</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/INSERT_VALUES.html">INSERT_VALUES</a></span><span class="p">));</span>
<span class="w">    </span><span class="n">xm</span><span class="o">--</span><span class="p">;</span>
<span class="w">  </span><span class="p">}</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Interior grid points</span>
<span class="cm">      - Note that in this case we set all elements for a particular</span>
<span class="cm">        row at once.</span>
<span class="cm">  */</span>
<span class="w">  </span><span class="n">d</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1.0</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="p">(</span><span class="n">user</span><span class="o">-&gt;</span><span class="n">h</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">user</span><span class="o">-&gt;</span><span class="n">h</span><span class="p">);</span>
<span class="w">  </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">xs</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">xs</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">xm</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n">j</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<span class="w">    </span><span class="n">j</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<span class="w">    </span><span class="n">j</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<span class="w">    </span><span class="n">A</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">A</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">d</span><span class="p">;</span>
<span class="w">    </span><span class="n">A</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w">        </span><span class="o">=</span><span class="w"> </span><span class="mf">-2.0</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">d</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">2.0</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">xx</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatSetValues.html">MatSetValues</a></span><span class="p">(</span><span class="n">jac</span><span class="p">,</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="mi">3</span><span class="p">,</span><span class="w"> </span><span class="n">j</span><span class="p">,</span><span class="w"> </span><span class="n">A</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/INSERT_VALUES.html">INSERT_VALUES</a></span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span>

<span class="w">  </span><span class="cm">/*</span>
<span class="cm">     Assemble matrix, using the 2-step process:</span>
<span class="cm">       <a href="../manualpages/Mat/MatAssemblyBegin.html">MatAssemblyBegin</a>(), <a href="../manualpages/Mat/MatAssemblyEnd.html">MatAssemblyEnd</a>().</span>
<span class="cm">     By placing code between these two statements, computations can be</span>
<span class="cm">     done while messages are in transition.</span>

<span class="cm">     Also, restore vector.</span>
<span class="cm">  */</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatAssemblyBegin.html">MatAssemblyBegin</a></span><span class="p">(</span><span class="n">jac</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/MatAssemblyType.html">MAT_FINAL_ASSEMBLY</a></span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecRestoreArrayRead.html">DMDAVecRestoreArrayRead</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xx</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatAssemblyEnd.html">MatAssemblyEnd</a></span><span class="p">(</span><span class="n">jac</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/MatAssemblyType.html">MAT_FINAL_ASSEMBLY</a></span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionReturn.html">PetscFunctionReturn</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PETSC_SUCCESS</a></span><span class="p">);</span>
<span class="p">}</span>

<span class="cm">/* ------------------------------------------------------------------- */</span>
<span class="cm">/*</span>
<span class="cm">   Monitor - Optional user-defined monitoring routine that views the</span>
<span class="cm">   current iterate with an x-window plot. Set by <a href="../manualpages/SNES/SNESMonitorSet.html">SNESMonitorSet</a>().</span>

<span class="cm">   Input Parameters:</span>
<span class="cm">   snes - the <a href="../manualpages/SNES/SNES.html">SNES</a> context</span>
<span class="cm">   its - iteration number</span>
<span class="cm">   norm - 2-norm function value (may be estimated)</span>
<span class="cm">   ctx - optional user-defined context for private data for the</span>
<span class="cm">         monitor routine, as set by <a href="../manualpages/SNES/SNESMonitorSet.html">SNESMonitorSet</a>()</span>

<span class="cm">   Note:</span>
<span class="cm">   See the manpage for <a href="../manualpages/Viewer/PetscViewerDrawOpen.html">PetscViewerDrawOpen</a>() for useful runtime options,</span>
<span class="cm">   such as -nox to deactivate all x-window output.</span>
<span class="cm"> */</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">Monitor</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">its</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">fnorm</span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">)</span>
<span class="p">{</span>
<span class="w">  </span><span class="n">MonitorCtx</span><span class="w"> </span><span class="o">*</span><span class="n">monP</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="n">MonitorCtx</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="n">ctx</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w">         </span><span class="n">x</span><span class="p">;</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionBeginUser.html">PetscFunctionBeginUser</a></span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscPrintf.html">PetscPrintf</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="s">&quot;iter = %&quot;</span><span class="w"> </span><span class="n">PetscInt_FMT</span><span class="w"> </span><span class="s">&quot;,<a href="../manualpages/SNES/SNES.html">SNES</a> Function norm %g</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="n">its</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="n">fnorm</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESGetSolution.html">SNESGetSolution</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">x</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecView.html">VecView</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n">monP</span><span class="o">-&gt;</span><span class="n">viewer</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionReturn.html">PetscFunctionReturn</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PETSC_SUCCESS</a></span><span class="p">);</span>
<span class="p">}</span>

<span class="cm">/* ------------------------------------------------------------------- */</span>
<span class="cm">/*</span>
<span class="cm">   PreCheck - Optional user-defined routine that checks the validity of</span>
<span class="cm">   candidate steps of a line search method.  Set by <a href="../manualpages/SNES/SNESLineSearchSetPreCheck.html">SNESLineSearchSetPreCheck</a>().</span>

<span class="cm">   Input Parameters:</span>
<span class="cm">   snes - the <a href="../manualpages/SNES/SNES.html">SNES</a> context</span>
<span class="cm">   xcurrent - current solution</span>
<span class="cm">   y - search direction and length</span>

<span class="cm">   Output Parameters:</span>
<span class="cm">   y         - proposed step (search direction and length) (possibly changed)</span>
<span class="cm">   changed_y - tells if the step has changed or not</span>
<span class="cm"> */</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">PreCheck</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESLineSearch.html">SNESLineSearch</a></span><span class="w"> </span><span class="n">linesearch</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">xcurrent</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">y</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w"> </span><span class="o">*</span><span class="n">changed_y</span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">)</span>
<span class="p">{</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionBeginUser.html">PetscFunctionBeginUser</a></span><span class="p">;</span>
<span class="w">  </span><span class="o">*</span><span class="n">changed_y</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_FALSE.html">PETSC_FALSE</a></span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionReturn.html">PetscFunctionReturn</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PETSC_SUCCESS</a></span><span class="p">);</span>
<span class="p">}</span>

<span class="cm">/* ------------------------------------------------------------------- */</span>
<span class="cm">/*</span>
<span class="cm">   PostCheck - Optional user-defined routine that checks the validity of</span>
<span class="cm">   candidate steps of a line search method.  Set by <a href="../manualpages/SNES/SNESLineSearchSetPostCheck.html">SNESLineSearchSetPostCheck</a>().</span>

<span class="cm">   Input Parameters:</span>
<span class="cm">   snes - the <a href="../manualpages/SNES/SNES.html">SNES</a> context</span>
<span class="cm">   ctx  - optional user-defined context for private data for the</span>
<span class="cm">          monitor routine, as set by <a href="../manualpages/SNES/SNESLineSearchSetPostCheck.html">SNESLineSearchSetPostCheck</a>()</span>
<span class="cm">   xcurrent - current solution</span>
<span class="cm">   y - search direction and length</span>
<span class="cm">   x    - the new candidate iterate</span>

<span class="cm">   Output Parameters:</span>
<span class="cm">   y    - proposed step (search direction and length) (possibly changed)</span>
<span class="cm">   x    - current iterate (possibly modified)</span>

<span class="cm"> */</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">PostCheck</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESLineSearch.html">SNESLineSearch</a></span><span class="w"> </span><span class="n">linesearch</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">xcurrent</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">y</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w"> </span><span class="o">*</span><span class="n">changed_y</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w"> </span><span class="o">*</span><span class="n">changed_x</span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">)</span>
<span class="p">{</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w">        </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">iter</span><span class="p">,</span><span class="w"> </span><span class="n">xs</span><span class="p">,</span><span class="w"> </span><span class="n">xm</span><span class="p">;</span>
<span class="w">  </span><span class="n">StepCheckCtx</span><span class="w">   </span><span class="o">*</span><span class="n">check</span><span class="p">;</span>
<span class="w">  </span><span class="n">ApplicationCtx</span><span class="w"> </span><span class="o">*</span><span class="n">user</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="w">    </span><span class="o">*</span><span class="n">xa</span><span class="p">,</span><span class="w"> </span><span class="o">*</span><span class="n">xa_last</span><span class="p">,</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w">       </span><span class="n">rdiff</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/DM/DM.html">DM</a></span><span class="w">              </span><span class="n">da</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w">            </span><span class="n">snes</span><span class="p">;</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionBeginUser.html">PetscFunctionBeginUser</a></span><span class="p">;</span>
<span class="w">  </span><span class="o">*</span><span class="n">changed_x</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_FALSE.html">PETSC_FALSE</a></span><span class="p">;</span>
<span class="w">  </span><span class="o">*</span><span class="n">changed_y</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_FALSE.html">PETSC_FALSE</a></span><span class="p">;</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESLineSearchGetSNES.html">SNESLineSearchGetSNES</a></span><span class="p">(</span><span class="n">linesearch</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">snes</span><span class="p">));</span>
<span class="w">  </span><span class="n">check</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="n">StepCheckCtx</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="n">ctx</span><span class="p">;</span>
<span class="w">  </span><span class="n">user</span><span class="w">  </span><span class="o">=</span><span class="w"> </span><span class="n">check</span><span class="o">-&gt;</span><span class="n">user</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESGetIterationNumber.html">SNESGetIterationNumber</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">iter</span><span class="p">));</span>

<span class="w">  </span><span class="cm">/* iteration 1 indicates we are working on the second iteration */</span>
<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">iter</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n">da</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">user</span><span class="o">-&gt;</span><span class="n">da</span><span class="p">;</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscPrintf.html">PetscPrintf</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="s">&quot;Checking candidate step at iteration %&quot;</span><span class="w"> </span><span class="n">PetscInt_FMT</span><span class="w"> </span><span class="s">&quot; with tolerance %g</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="n">iter</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="n">check</span><span class="o">-&gt;</span><span class="n">tolerance</span><span class="p">));</span>

<span class="w">    </span><span class="cm">/* Access local array data */</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecGetArray.html">DMDAVecGetArray</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">check</span><span class="o">-&gt;</span><span class="n">last_step</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xa_last</span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecGetArray.html">DMDAVecGetArray</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xa</span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAGetCorners.html">DMDAGetCorners</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xs</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xm</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">));</span>

<span class="w">    </span><span class="cm">/*</span>
<span class="cm">       If we fail the user-defined check for validity of the candidate iterate,</span>
<span class="cm">       then modify the iterate as we like.  (Note that the particular modification</span>
<span class="cm">       below is intended simply to demonstrate how to manipulate this data, not</span>
<span class="cm">       as a meaningful or appropriate choice.)</span>
<span class="cm">    */</span>
<span class="w">    </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">xs</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">xs</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">xm</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">      </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="n">PetscAbsScalar</span><span class="p">(</span><span class="n">xa</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span><span class="w"> </span><span class="n">rdiff</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">check</span><span class="o">-&gt;</span><span class="n">tolerance</span><span class="p">;</span>
<span class="w">      </span><span class="k">else</span><span class="w"> </span><span class="n">rdiff</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">PetscAbsScalar</span><span class="p">((</span><span class="n">xa</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">xa_last</span><span class="p">[</span><span class="n">i</span><span class="p">])</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="n">xa</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<span class="w">      </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">rdiff</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">check</span><span class="o">-&gt;</span><span class="n">tolerance</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">        </span><span class="n">tmp</span><span class="w">        </span><span class="o">=</span><span class="w"> </span><span class="n">xa</span><span class="p">[</span><span class="n">i</span><span class="p">];</span>
<span class="w">        </span><span class="n">xa</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w">      </span><span class="o">=</span><span class="w"> </span><span class="mf">.5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="p">(</span><span class="n">xa</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">xa_last</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<span class="w">        </span><span class="o">*</span><span class="n">changed_x</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_TRUE.html">PETSC_TRUE</a></span><span class="p">;</span>
<span class="w">        </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscPrintf.html">PetscPrintf</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="s">&quot;  Altering entry %&quot;</span><span class="w"> </span><span class="n">PetscInt_FMT</span><span class="w"> </span><span class="s">&quot;: x=%g, x_last=%g, diff=%g, x_new=%g</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="n">PetscAbsScalar</span><span class="p">(</span><span class="n">tmp</span><span class="p">),</span><span class="w"> </span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="n">PetscAbsScalar</span><span class="p">(</span><span class="n">xa_last</span><span class="p">[</span><span class="n">i</span><span class="p">]),</span><span class="w"> </span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="n">rdiff</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="n">PetscAbsScalar</span><span class="p">(</span><span class="n">xa</span><span class="p">[</span><span class="n">i</span><span class="p">])));</span>
<span class="w">      </span><span class="p">}</span>
<span class="w">    </span><span class="p">}</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecRestoreArray.html">DMDAVecRestoreArray</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">check</span><span class="o">-&gt;</span><span class="n">last_step</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xa_last</span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/DMDA/DMDAVecRestoreArray.html">DMDAVecRestoreArray</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">xa</span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecCopy.html">VecCopy</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n">check</span><span class="o">-&gt;</span><span class="n">last_step</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionReturn.html">PetscFunctionReturn</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PETSC_SUCCESS</a></span><span class="p">);</span>
<span class="p">}</span>

<span class="cm">/* ------------------------------------------------------------------- */</span>
<span class="cm">/*</span>
<span class="cm">   PostSetSubKSP - Optional user-defined routine that reset SubKSP options when hierarchical bjacobi <a href="../manualpages/PC/PC.html">PC</a> is used</span>
<span class="cm">   e.g,</span>
<span class="cm">     mpiexec -n 8 ./ex3 -nox -n 10000 -ksp_type fgmres -pc_type bjacobi -pc_bjacobi_blocks 4 -sub_ksp_type gmres -sub_ksp_max_it 3 -post_setsubksp -sub_ksp_rtol 1.e-16</span>
<span class="cm">   Set by <a href="../manualpages/SNES/SNESLineSearchSetPostCheck.html">SNESLineSearchSetPostCheck</a>().</span>

<span class="cm">   Input Parameters:</span>
<span class="cm">   linesearch - the LineSearch context</span>
<span class="cm">   xcurrent - current solution</span>
<span class="cm">   y - search direction and length</span>
<span class="cm">   x    - the new candidate iterate</span>

<span class="cm">   Output Parameters:</span>
<span class="cm">   y    - proposed step (search direction and length) (possibly changed)</span>
<span class="cm">   x    - current iterate (possibly modified)</span>

<span class="cm"> */</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">PostSetSubKSP</span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESLineSearch.html">SNESLineSearch</a></span><span class="w"> </span><span class="n">linesearch</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">xcurrent</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">y</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w"> </span><span class="o">*</span><span class="n">changed_y</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w"> </span><span class="o">*</span><span class="n">changed_x</span><span class="p">,</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">)</span>
<span class="p">{</span>
<span class="w">  </span><span class="n">SetSubKSPCtx</span><span class="w"> </span><span class="o">*</span><span class="n">check</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w">      </span><span class="n">iter</span><span class="p">,</span><span class="w"> </span><span class="n">its</span><span class="p">,</span><span class="w"> </span><span class="n">sub_its</span><span class="p">,</span><span class="w"> </span><span class="n">maxit</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/KSP/KSP.html">KSP</a></span><span class="w">           </span><span class="n">ksp</span><span class="p">,</span><span class="w"> </span><span class="n">sub_ksp</span><span class="p">,</span><span class="w"> </span><span class="o">*</span><span class="n">sub_ksps</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/PC/PC.html">PC</a></span><span class="w">            </span><span class="n">pc</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w">     </span><span class="n">ksp_ratio</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w">          </span><span class="n">snes</span><span class="p">;</span>

<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionBeginUser.html">PetscFunctionBeginUser</a></span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESLineSearchGetSNES.html">SNESLineSearchGetSNES</a></span><span class="p">(</span><span class="n">linesearch</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">snes</span><span class="p">));</span>
<span class="w">  </span><span class="n">check</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="n">SetSubKSPCtx</span><span class="w"> </span><span class="o">*</span><span class="p">)</span><span class="n">ctx</span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESGetIterationNumber.html">SNESGetIterationNumber</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">iter</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNESGetKSP.html">SNESGetKSP</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">ksp</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/KSP/KSPGetPC.html">KSPGetPC</a></span><span class="p">(</span><span class="n">ksp</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">pc</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/PC/PCBJacobiGetSubKSP.html">PCBJacobiGetSubKSP</a></span><span class="p">(</span><span class="n">pc</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="nb">NULL</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">sub_ksps</span><span class="p">));</span>
<span class="w">  </span><span class="n">sub_ksp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">sub_ksps</span><span class="p">[</span><span class="mi">0</span><span class="p">];</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/KSP/KSPGetIterationNumber.html">KSPGetIterationNumber</a></span><span class="p">(</span><span class="n">ksp</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">its</span><span class="p">));</span><span class="w">         </span><span class="cm">/* outer <a href="../manualpages/KSP/KSP.html">KSP</a> iteration number */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/KSP/KSPGetIterationNumber.html">KSPGetIterationNumber</a></span><span class="p">(</span><span class="n">sub_ksp</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">sub_its</span><span class="p">));</span><span class="w"> </span><span class="cm">/* inner <a href="../manualpages/KSP/KSP.html">KSP</a> iteration number */</span>

<span class="w">  </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">iter</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscPrintf.html">PetscPrintf</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="s">&quot;    ...PostCheck snes iteration %&quot;</span><span class="w"> </span><span class="n">PetscInt_FMT</span><span class="w"> </span><span class="s">&quot;, ksp_it %&quot;</span><span class="w"> </span><span class="n">PetscInt_FMT</span><span class="w"> </span><span class="s">&quot; %&quot;</span><span class="w"> </span><span class="n">PetscInt_FMT</span><span class="w"> </span><span class="s">&quot;, subksp_it %&quot;</span><span class="w"> </span><span class="n">PetscInt_FMT</span><span class="w"> </span><span class="s">&quot;</span><span class="se">\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="n">iter</span><span class="p">,</span><span class="w"> </span><span class="n">check</span><span class="o">-&gt;</span><span class="n">its0</span><span class="p">,</span><span class="w"> </span><span class="n">its</span><span class="p">,</span><span class="w"> </span><span class="n">sub_its</span><span class="p">));</span>
<span class="w">    </span><span class="n">ksp_ratio</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">)</span><span class="n">its</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="n">check</span><span class="o">-&gt;</span><span class="n">its0</span><span class="p">;</span>
<span class="w">    </span><span class="n">maxit</span><span class="w">     </span><span class="o">=</span><span class="w"> </span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="p">)(</span><span class="n">ksp_ratio</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">sub_its</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">0.5</span><span class="p">);</span>
<span class="w">    </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">maxit</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="n">maxit</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/KSP/KSPSetTolerances.html">KSPSetTolerances</a></span><span class="p">(</span><span class="n">sub_ksp</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_CURRENT.html">PETSC_CURRENT</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_CURRENT.html">PETSC_CURRENT</a></span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PETSC_CURRENT.html">PETSC_CURRENT</a></span><span class="p">,</span><span class="w"> </span><span class="n">maxit</span><span class="p">));</span>
<span class="w">    </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscPrintf.html">PetscPrintf</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PETSC_COMM_WORLD.html">PETSC_COMM_WORLD</a></span><span class="p">,</span><span class="w"> </span><span class="s">&quot;    ...ksp_ratio %g, new maxit %&quot;</span><span class="w"> </span><span class="n">PetscInt_FMT</span><span class="w"> </span><span class="s">&quot;</span><span class="se">\n\n</span><span class="s">&quot;</span><span class="p">,</span><span class="w"> </span><span class="p">(</span><span class="kt">double</span><span class="p">)</span><span class="n">ksp_ratio</span><span class="p">,</span><span class="w"> </span><span class="n">maxit</span><span class="p">));</span>
<span class="w">  </span><span class="p">}</span>
<span class="w">  </span><span class="n">check</span><span class="o">-&gt;</span><span class="n">its0</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">its</span><span class="p">;</span><span class="w"> </span><span class="cm">/* save current outer <a href="../manualpages/KSP/KSP.html">KSP</a> iteration number */</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionReturn.html">PetscFunctionReturn</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PETSC_SUCCESS</a></span><span class="p">);</span>
<span class="p">}</span>

<span class="cm">/* ------------------------------------------------------------------- */</span>
<span class="cm">/*</span>
<span class="cm">   MatrixFreePreconditioner - This routine demonstrates the use of a</span>
<span class="cm">   user-provided preconditioner.  This code implements just the null</span>
<span class="cm">   preconditioner, which of course is not recommended for general use.</span>

<span class="cm">   Input Parameters:</span>
<span class="cm">+  pc - preconditioner</span>
<span class="cm">-  x - input vector</span>

<span class="cm">   Output Parameter:</span>
<span class="cm">.  y - preconditioned vector</span>
<span class="cm">*/</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="nf">MatrixFreePreconditioner</span><span class="p">(</span><span class="n"><a href="../manualpages/PC/PC.html">PC</a></span><span class="w"> </span><span class="n">pc</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">y</span><span class="p">)</span>
<span class="p">{</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionBeginUser.html">PetscFunctionBeginUser</a></span><span class="p">;</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscCall.html">PetscCall</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Vec/VecCopy.html">VecCopy</a></span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n">y</span><span class="p">));</span>
<span class="w">  </span><span class="n"><a href="../manualpages/Sys/PetscFunctionReturn.html">PetscFunctionReturn</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PETSC_SUCCESS</a></span><span class="p">);</span>
<span class="p">}</span>

</pre></div>
</div>
</div>
<p>Table <a class="reference internal" href="#tab-jacobians"><span class="std std-ref">Jacobian Options</span></a> summarizes the various matrix situations
that <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> supports. In particular, different linear system matrices
and preconditioning matrices are allowed, as well as both matrix-free
and application-provided preconditioners. If <a class="reference internal" href="#snes-ex3"><span class="std std-ref">ex3.c</span></a> is run with
the options <code class="docutils notranslate"><span class="pre">-snes_mf</span></code> and <code class="docutils notranslate"><span class="pre">-user_precond</span></code> then it uses a
matrix-free application of the matrix-vector multiple and a user
provided matrix-free Jacobian.</p>
<table class="table" id="tab-jacobians">
<caption><span class="caption-number">Table 12 </span><span class="caption-text">Jacobian Options</span><a class="headerlink" href="#tab-jacobians" title="Link to this table">#</a></caption>
<tbody>
<tr class="row-odd"><td><p>Matrix Use</p></td>
<td><p>Conventional Matrix Formats</p></td>
<td><p>Matrix-free versions</p></td>
</tr>
<tr class="row-even"><td><p>Jacobian Matrix</p></td>
<td><p>Create matrix with <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatCreate.html">MatCreate</a>()</span></code><span class="math">\(^*\)</span>.  Assemble matrix with user-defined routine <span class="math">\(^\dagger\)</span></p></td>
<td><p>Create matrix with <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatCreateShell.html">MatCreateShell</a>()</span></code>.  Use <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatShellSetOperation.html">MatShellSetOperation</a>()</span></code> to set various matrix actions, or use <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatCreateMFFD.html">MatCreateMFFD</a>()</span></code> or <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/MatCreateSNESMF.html">MatCreateSNESMF</a>()</span></code>.</p></td>
</tr>
<tr class="row-odd"><td><p>Preconditioning Matrix</p></td>
<td><p>Create matrix with <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatCreate.html">MatCreate</a>()</span></code><span class="math">\(^*\)</span>.  Assemble matrix with user-defined routine <span class="math">\(^\dagger\)</span></p></td>
<td><p>Use <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESGetKSP.html">SNESGetKSP</a>()</span></code> and <code class="docutils notranslate"><span class="pre"><a href="../manualpages/KSP/KSPGetPC.html">KSPGetPC</a>()</span></code> to access the <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PC.html">PC</a></span></code>, then use <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PCSetType.html">PCSetType</a>(pc,</span> <span class="pre"><a href="../manualpages/PC/PCSHELL.html">PCSHELL</a>)</span></code> followed by <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PCShellSetApply.html">PCShellSetApply</a>()</span></code>.</p></td>
</tr>
</tbody>
</table>
<p><span class="math">\(^*\)</span> Use either the generic <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatCreate.html">MatCreate</a>()</span></code> or a format-specific variant such as <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatCreateAIJ.html">MatCreateAIJ</a>()</span></code>.</p>
<p><span class="math">\(^\dagger\)</span> Set user-defined matrix formation routine with <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESSetJacobian.html">SNESSetJacobian</a>()</span></code> or with a <code class="docutils notranslate"><span class="pre"><a href="../manualpages/DM/DM.html">DM</a></span></code> variant such as <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/DMDASNESSetJacobianLocal.html">DMDASNESSetJacobianLocal</a>()</span></code></p>
<p>SNES also provides some less well-integrated code to apply matrix-free finite differencing using an automatically computed measurement of the
noise of the functions. This can be selected with <code class="docutils notranslate"><span class="pre">-snes_mf_version</span> <span class="pre">2</span></code>; it does not use <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatCreateMFFD.html">MatCreateMFFD</a>()</span></code> but has similar options that start with
<code class="docutils notranslate"><span class="pre">-snes_mf_</span></code> instead of <code class="docutils notranslate"><span class="pre">-mat_mffd_</span></code>. Note that this alternative prefix <strong>only</strong> works for version 2 differencing.</p>
</section>
<section id="finite-difference-jacobian-approximations">
<span id="sec-fdmatrix"></span><h2>Finite Difference Jacobian Approximations<a class="headerlink" href="#finite-difference-jacobian-approximations" title="Link to this heading">#</a></h2>
<p>PETSc provides some tools to help approximate the Jacobian matrices
efficiently via finite differences. These tools are intended for use in
certain situations where one is unable to compute Jacobian matrices
analytically, and matrix-free methods do not work well without a
preconditioner, due to very poor conditioning. The approximation
requires several steps:</p>
<ul class="simple">
<li><p>First, one colors the columns of the (not yet built) Jacobian matrix,
so that columns of the same color do not share any common rows.</p></li>
<li><p>Next, one creates a <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatFDColoring.html">MatFDColoring</a></span></code> data structure that will be
used later in actually computing the Jacobian.</p></li>
<li><p>Finally, one tells the nonlinear solvers of <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> to use the
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESComputeJacobianDefaultColor.html">SNESComputeJacobianDefaultColor</a>()</span></code> routine to compute the
Jacobians.</p></li>
</ul>
<p>A code fragment that demonstrates this process is given below.</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/IS/ISColoring.html">ISColoring</a></span><span class="w">    </span><span class="n">iscoloring</span><span class="p">;</span>
<span class="n"><a href="../manualpages/Mat/MatFDColoring.html">MatFDColoring</a></span><span class="w"> </span><span class="n">fdcoloring</span><span class="p">;</span>
<span class="n"><a href="../manualpages/Mat/MatColoring.html">MatColoring</a></span><span class="w">   </span><span class="n">coloring</span><span class="p">;</span>

<span class="cm">/*</span>
<span class="cm">  This initializes the nonzero structure of the Jacobian. This is artificial</span>
<span class="cm">  because clearly if we had a routine to compute the Jacobian we wouldn&#39;t</span>
<span class="cm">  need to use finite differences.</span>
<span class="cm">*/</span>
<span class="n">FormJacobian</span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">J</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">J</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">user</span><span class="p">);</span>

<span class="cm">/*</span>
<span class="cm">   Color the matrix, i.e. determine groups of columns that share no common</span>
<span class="cm">  rows. These columns in the Jacobian can all be computed simultaneously.</span>
<span class="cm">*/</span>
<span class="n"><a href="../manualpages/MatGraphOperations/MatColoringCreate.html">MatColoringCreate</a></span><span class="p">(</span><span class="n">J</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">coloring</span><span class="p">);</span>
<span class="n"><a href="../manualpages/MatGraphOperations/MatColoringSetType.html">MatColoringSetType</a></span><span class="p">(</span><span class="n">coloring</span><span class="p">,</span><span class="n"><a href="../manualpages/MatGraphOperations/MATCOLORINGSL.html">MATCOLORINGSL</a></span><span class="p">);</span>
<span class="n"><a href="../manualpages/MatGraphOperations/MatColoringSetFromOptions.html">MatColoringSetFromOptions</a></span><span class="p">(</span><span class="n">coloring</span><span class="p">);</span>
<span class="n"><a href="../manualpages/MatGraphOperations/MatColoringApply.html">MatColoringApply</a></span><span class="p">(</span><span class="n">coloring</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">iscoloring</span><span class="p">);</span>
<span class="n"><a href="../manualpages/MatGraphOperations/MatColoringDestroy.html">MatColoringDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">coloring</span><span class="p">);</span>
<span class="cm">/*</span>
<span class="cm">   Create the data structure that <a href="../manualpages/SNES/SNESComputeJacobianDefaultColor.html">SNESComputeJacobianDefaultColor</a>() uses</span>
<span class="cm">   to compute the actual Jacobians via finite differences.</span>
<span class="cm">*/</span>
<span class="n"><a href="../manualpages/MatFD/MatFDColoringCreate.html">MatFDColoringCreate</a></span><span class="p">(</span><span class="n">J</span><span class="p">,</span><span class="n">iscoloring</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">fdcoloring</span><span class="p">);</span>
<span class="n"><a href="../manualpages/IS/ISColoringDestroy.html">ISColoringDestroy</a></span><span class="p">(</span><span class="o">&amp;</span><span class="n">iscoloring</span><span class="p">);</span>
<span class="n"><a href="../manualpages/MatFD/MatFDColoringSetFunction.html">MatFDColoringSetFunction</a></span><span class="p">(</span><span class="n">fdcoloring</span><span class="p">,(</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="p">)(</span><span class="kt">void</span><span class="p">))</span><span class="n">FormFunction</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">user</span><span class="p">);</span>
<span class="n"><a href="../manualpages/MatFD/MatFDColoringSetFromOptions.html">MatFDColoringSetFromOptions</a></span><span class="p">(</span><span class="n">fdcoloring</span><span class="p">);</span>

<span class="cm">/*</span>
<span class="cm">  Tell <a href="../manualpages/SNES/SNES.html">SNES</a> to use the routine <a href="../manualpages/SNES/SNESComputeJacobianDefaultColor.html">SNESComputeJacobianDefaultColor</a>()</span>
<span class="cm">  to compute Jacobians.</span>
<span class="cm">*/</span>
<span class="n"><a href="../manualpages/SNES/SNESSetJacobian.html">SNESSetJacobian</a></span><span class="p">(</span><span class="n">snes</span><span class="p">,</span><span class="n">J</span><span class="p">,</span><span class="n">J</span><span class="p">,</span><span class="n"><a href="../manualpages/SNES/SNESComputeJacobianDefaultColor.html">SNESComputeJacobianDefaultColor</a></span><span class="p">,</span><span class="n">fdcoloring</span><span class="p">);</span>
</pre></div>
</div>
<p>Of course, we are cheating a bit. If we do not have an analytic formula
for computing the Jacobian, then how do we know what its nonzero
structure is so that it may be colored? Determining the structure is
problem dependent, but fortunately, for most structured grid problems
(the class of problems for which PETSc was originally designed) if one
knows the stencil used for the nonlinear function one can usually fairly
easily obtain an estimate of the location of nonzeros in the matrix.
This is harder in the unstructured case, but one typically knows where the nonzero entries are from the mesh topology and distribution of degrees of freedom.
If using <code class="docutils notranslate"><span class="pre">DMPlex</span></code> (<a class="reference internal" href="dmplex.html#ch-unstructured"><span class="std std-ref">DMPlex: Unstructured Grids</span></a>) for unstructured meshes, the nonzero locations will be identified in <code class="docutils notranslate"><span class="pre"><a href="../manualpages/DM/DMCreateMatrix.html">DMCreateMatrix</a>()</span></code> and the procedure above can be used.
Most external packages for unstructured meshes have similar functionality.</p>
<p>One need not necessarily use a <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatColoring.html">MatColoring</a></span></code> object to determine a
coloring. For example, if a grid can be colored directly (without using
the associated matrix), then that coloring can be provided to
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatFD/MatFDColoringCreate.html">MatFDColoringCreate</a>()</span></code>. Note that the user must always preset the
nonzero structure in the matrix regardless of which coloring routine is
used.</p>
<p>PETSc provides the following coloring algorithms, which can be selected using <code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatGraphOperations/MatColoringSetType.html">MatColoringSetType</a>()</span></code> or via the command line argument <code class="docutils notranslate"><span class="pre">-mat_coloring_type</span></code>.</p>
<table class="table">
<thead>
<tr class="row-odd"><th class="head"><p>Algorithm</p></th>
<th class="head"><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatColoringType.html">MatColoringType</a></span></code></p></th>
<th class="head"><p><code class="docutils notranslate"><span class="pre">-mat_coloring_type</span></code></p></th>
<th class="head"><p>Parallel</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>smallest-last <span id="id1">[<a class="reference internal" href="#id2283" title="Jorge J. Moré, Danny C. Sorenson, Burton S. Garbow, and Kenneth E. Hillstrom. The MINPACK project. In Wayne R. Cowell, editor, Sources and Development of Mathematical Software, 88–111. 1984.">MoreSGH84</a>]</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatGraphOperations/MATCOLORINGSL.html">MATCOLORINGSL</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">sl</span></code></p></td>
<td><p>No</p></td>
</tr>
<tr class="row-odd"><td><p>largest-first <span id="id2">[<a class="reference internal" href="#id2283" title="Jorge J. Moré, Danny C. Sorenson, Burton S. Garbow, and Kenneth E. Hillstrom. The MINPACK project. In Wayne R. Cowell, editor, Sources and Development of Mathematical Software, 88–111. 1984.">MoreSGH84</a>]</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatGraphOperations/MATCOLORINGLF.html">MATCOLORINGLF</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">lf</span></code></p></td>
<td><p>No</p></td>
</tr>
<tr class="row-even"><td><p>incidence-degree <span id="id3">[<a class="reference internal" href="#id2283" title="Jorge J. Moré, Danny C. Sorenson, Burton S. Garbow, and Kenneth E. Hillstrom. The MINPACK project. In Wayne R. Cowell, editor, Sources and Development of Mathematical Software, 88–111. 1984.">MoreSGH84</a>]</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatGraphOperations/MATCOLORINGID.html">MATCOLORINGID</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">id</span></code></p></td>
<td><p>No</p></td>
</tr>
<tr class="row-odd"><td><p>Jones-Plassmann <span id="id4">[<a class="reference internal" href="../manualpages/MatGraphOperations/MATCOLORINGJP.html#id1264" title="Mark T. Jones and Paul E. Plassmann. A parallel graph coloring heuristic. SIAM J. Sci. Comput., 14(3):654-669, 1993.">JP93</a>]</span></p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatGraphOperations/MATCOLORINGJP.html">MATCOLORINGJP</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">jp</span></code></p></td>
<td><p>Yes</p></td>
</tr>
<tr class="row-even"><td><p>Greedy</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatGraphOperations/MATCOLORINGGREEDY.html">MATCOLORINGGREEDY</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">greedy</span></code></p></td>
<td><p>Yes</p></td>
</tr>
<tr class="row-odd"><td><p>Natural (1 color per column)</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatGraphOperations/MATCOLORINGNATURAL.html">MATCOLORINGNATURAL</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">natural</span></code></p></td>
<td><p>Yes</p></td>
</tr>
<tr class="row-even"><td><p>Power (<span class="math">\(A^k\)</span> followed by 1-coloring)</p></td>
<td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatGraphOperations/MATCOLORINGPOWER.html">MATCOLORINGPOWER</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">power</span></code></p></td>
<td><p>Yes</p></td>
</tr>
</tbody>
</table>
<p>As for the matrix-free computation of Jacobians (<a class="reference internal" href="#sec-nlmatrixfree"><span class="std std-ref">Matrix-Free Methods</span></a>), two parameters affect the accuracy of the
finite difference Jacobian approximation. These are set with the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/MatFD/MatFDColoringSetParameters.html">MatFDColoringSetParameters</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Mat/MatFDColoring.html">MatFDColoring</a></span><span class="w"> </span><span class="n">fdcoloring</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">rerror</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">umin</span><span class="p">);</span>
</pre></div>
</div>
<p>The parameter <code class="docutils notranslate"><span class="pre">rerror</span></code> is the square root of the relative error in the
function evaluations, <span class="math">\(e_{rel}\)</span>; the default is the square root of
machine epsilon (about <span class="math">\(10^{-8}\)</span> in double precision), which
assumes that the functions are evaluated approximately to floating-point
precision accuracy. The second parameter, <code class="docutils notranslate"><span class="pre">umin</span></code>, is a bit more
involved; its default is <span class="math">\(10^{-6}\)</span>. Column <span class="math">\(i\)</span> of the
Jacobian matrix (denoted by <span class="math">\(F_{:i}\)</span>) is approximated by the
formula</p>
<div class="math">
\[
F'_{:i} \approx \frac{F(u + h*dx_{i}) - F(u)}{h}
\]</div>
<p>where <span class="math">\(h\)</span> is computed via:</p>
<div class="math">
\[
h = e_{\text{rel}} \cdot \begin{cases}
u_{i}             &    \text{if $|u_{i}| > u_{\min}$} \\
u_{\min} \cdot \operatorname{sign}(u_{i})  & \text{otherwise}.
\end{cases}
\]</div>
<p>for <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MATMFFD_DS.html">MATMFFD_DS</a></span></code> or:</p>
<div class="math">
\[
h = e_{\text{rel}} \sqrt{\|u\|}
\]</div>
<p>for <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MATMFFD_WP.html">MATMFFD_WP</a></span></code> (default). These parameters may be set from the options
database with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="o">-</span><span class="n">mat_fd_coloring_err</span><span class="w"> </span><span class="o">&lt;</span><span class="n">err</span><span class="o">&gt;</span>
<span class="o">-</span><span class="n">mat_fd_coloring_umin</span><span class="w"> </span><span class="o">&lt;</span><span class="n">umin</span><span class="o">&gt;</span>
<span class="o">-</span><span class="n">mat_fd_type</span><span class="w"> </span><span class="o">&lt;</span><span class="n">htype</span><span class="o">&gt;</span>
</pre></div>
</div>
<p>Note that <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MatColoring.html">MatColoring</a></span></code> type <code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatGraphOperations/MATCOLORINGSL.html">MATCOLORINGSL</a></span></code>, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatGraphOperations/MATCOLORINGLF.html">MATCOLORINGLF</a></span></code>, and
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatGraphOperations/MATCOLORINGID.html">MATCOLORINGID</a></span></code> are sequential algorithms. <code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatGraphOperations/MATCOLORINGJP.html">MATCOLORINGJP</a></span></code> and
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatGraphOperations/MATCOLORINGGREEDY.html">MATCOLORINGGREEDY</a></span></code> are parallel algorithms, although in practice they
may create more colors than the sequential algorithms. If one computes
the coloring <code class="docutils notranslate"><span class="pre">iscoloring</span></code> reasonably with a parallel algorithm or by
knowledge of the discretization, the routine <code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatFD/MatFDColoringCreate.html">MatFDColoringCreate</a>()</span></code>
is scalable. An example of this for 2D distributed arrays is given below
that uses the utility routine <code class="docutils notranslate"><span class="pre"><a href="../manualpages/DM/DMCreateColoring.html">DMCreateColoring</a>()</span></code>.</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/DM/DMCreateColoring.html">DMCreateColoring</a></span><span class="p">(</span><span class="n">da</span><span class="p">,</span><span class="n">IS_COLORING_GHOSTED</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">iscoloring</span><span class="p">);</span>
<span class="n"><a href="../manualpages/MatFD/MatFDColoringCreate.html">MatFDColoringCreate</a></span><span class="p">(</span><span class="n">J</span><span class="p">,</span><span class="n">iscoloring</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">fdcoloring</span><span class="p">);</span>
<span class="n"><a href="../manualpages/MatFD/MatFDColoringSetFromOptions.html">MatFDColoringSetFromOptions</a></span><span class="p">(</span><span class="n">fdcoloring</span><span class="p">);</span>
<span class="n"><a href="../manualpages/IS/ISColoringDestroy.html">ISColoringDestroy</a></span><span class="p">(</span><span class="w"> </span><span class="o">&amp;</span><span class="n">iscoloring</span><span class="p">);</span>
</pre></div>
</div>
<p>Note that the routine <code class="docutils notranslate"><span class="pre"><a href="../manualpages/MatFD/MatFDColoringCreate.html">MatFDColoringCreate</a>()</span></code> currently is only
supported for the AIJ and BAIJ matrix formats.</p>
</section>
<section id="variational-inequalities">
<span id="sec-vi"></span><h2>Variational Inequalities<a class="headerlink" href="#variational-inequalities" title="Link to this heading">#</a></h2>
<p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> can also solve (differential) variational inequalities with box (bound) constraints.
These are nonlinear algebraic systems with additional inequality
constraints on some or all of the variables:
<span class="math">\(L_i \le u_i \le H_i\)</span>. For example, the pressure variable cannot be negative.
Some, or all, of the lower bounds may be
negative infinity (indicated to PETSc with <code class="docutils notranslate"><span class="pre">SNES_VI_NINF</span></code>) and some, or
all, of the upper bounds may be infinity (indicated by <code class="docutils notranslate"><span class="pre">SNES_VI_INF</span></code>).
The commands</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESVISetVariableBounds.html">SNESVISetVariableBounds</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">L</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">H</span><span class="p">);</span>
<span class="n"><a href="../manualpages/SNES/SNESVISetComputeVariableBounds.html">SNESVISetComputeVariableBounds</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">compute</span><span class="p">)(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">))</span>
</pre></div>
</div>
<p>are used to indicate that one is solving a variational inequality. Problems with box constraints can be solved with
the reduced space, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESVINEWTONRSLS.html">SNESVINEWTONRSLS</a></span></code>, and semi-smooth <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESVINEWTONSSLS.html">SNESVINEWTONSSLS</a></span></code> solvers.</p>
<p>The
option <code class="docutils notranslate"><span class="pre">-snes_vi_monitor</span></code> turns on extra monitoring of the active set
associated with the bounds and <code class="docutils notranslate"><span class="pre">-snes_vi_type</span></code> allows selecting from
several VI solvers, the default is preferred.</p>
<p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLineSearchSetPreCheck.html">SNESLineSearchSetPreCheck</a>()</span></code> and <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESLineSearchSetPostCheck.html">SNESLineSearchSetPostCheck</a>()</span></code> can also be used to control properties
of the steps selected by <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code>.</p>
</section>
<section id="nonlinear-preconditioning">
<span id="sec-snespc"></span><h2>Nonlinear Preconditioning<a class="headerlink" href="#nonlinear-preconditioning" title="Link to this heading">#</a></h2>
<p>The mathematical framework of nonlinear preconditioning is explained in detail in <span id="id9">[<a class="reference internal" href="../manualpages/SNESFAS/SNESFAS.html#id849" title="Peter R. Brune, Matthew G. Knepley, Barry F. Smith, and Xuemin Tu. Composing scalable nonlinear algebraic solvers. SIAM Review, 57(4):535–565, 2015. http://www.mcs.anl.gov/papers/P2010-0112.pdf. URL: http://www.mcs.anl.gov/papers/P2010-0112.pdf, doi:10.1137/130936725.">BKST15</a>]</span>.
Nonlinear preconditioning in PETSc involves the use of an inner <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code>
instance to define the step for an outer <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> instance. The inner
instance may be extracted using</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESGetNPC.html">SNESGetNPC</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="n">snes</span><span class="p">,</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="o">*</span><span class="n">npc</span><span class="p">);</span>
</pre></div>
</div>
<p>and passed run-time options using the <code class="docutils notranslate"><span class="pre">-npc_</span></code> prefix. Nonlinear
preconditioning comes in two flavors: left and right. The side may be
changed using <code class="docutils notranslate"><span class="pre">-snes_npc_side</span></code> or <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESSetNPCSide.html">SNESSetNPCSide</a>()</span></code>. Left nonlinear
preconditioning redefines the nonlinear function as the action of the
nonlinear preconditioner <span class="math">\(\mathbf{M}\)</span>;</p>
<div class="math">
\[
\mathbf{F}_{M}(x) = \mathbf{M}(\mathbf{x},\mathbf{b}) - \mathbf{x}.
\]</div>
<p>Right nonlinear preconditioning redefines the nonlinear function as the
function on the action of the nonlinear preconditioner;</p>
<div class="math">
\[
\mathbf{F}(\mathbf{M}(\mathbf{x},\mathbf{b})) = \mathbf{b},
\]</div>
<p>which can be interpreted as putting the preconditioner into “striking
distance” of the solution by outer acceleration.</p>
<p>In addition, basic patterns of solver composition are available with the
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESType.html">SNESType</a></span></code> <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESCOMPOSITE.html">SNESCOMPOSITE</a></span></code>. This allows for two or more <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code>
instances to be combined additively or multiplicatively. By command
line, a set of <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> types may be given by comma separated list
argument to <code class="docutils notranslate"><span class="pre">-snes_composite_sneses</span></code>. There are additive
(<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESCompositeType.html">SNES_COMPOSITE_ADDITIVE</a></span></code>), additive with optimal damping
(<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESCompositeType.html">SNES_COMPOSITE_ADDITIVEOPTIMAL</a></span></code>), and multiplicative
(<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNESCompositeType.html">SNES_COMPOSITE_MULTIPLICATIVE</a></span></code>) variants which may be set with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESCompositeSetType.html">SNESCompositeSetType</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="p">,</span><span class="n"><a href="../manualpages/SNES/SNESCompositeType.html">SNESCompositeType</a></span><span class="p">);</span>
</pre></div>
</div>
<p>New subsolvers may be added to the composite solver with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESCompositeAddSNES.html">SNESCompositeAddSNES</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="p">,</span><span class="n"><a href="../manualpages/SNES/SNESType.html">SNESType</a></span><span class="p">);</span>
</pre></div>
</div>
<p>and accessed with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/SNES/SNESCompositeGetSNES.html">SNESCompositeGetSNES</a></span><span class="p">(</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="p">,</span><span class="n"><a href="../manualpages/SNES/SNES.html">SNES</a></span><span class="w"> </span><span class="o">*</span><span class="p">);</span>
</pre></div>
</div>
<div class="docutils container" id="id1">
<div role="list" class="citation-list">
<div class="citation" id="id1268" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span>BS90<span class="fn-bracket">]</span></span>
<span class="backrefs">(<a role="doc-backlink" href="#id6">1</a>,<a role="doc-backlink" href="#id7">2</a>)</span>
<p>Peter N. Brown and Youcef Saad. Hybrid Krylov methods for nonlinear systems of equations. <em>SIAM J. Sci. Stat. Comput.</em>, 11:450–481, 1990.</p>
</div>
<div class="citation" id="id848" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id9">BKST15</a><span class="fn-bracket">]</span></span>
<p>Peter R. Brune, Matthew G. Knepley, Barry F. Smith, and Xuemin Tu. Composing scalable nonlinear algebraic solvers. <em>SIAM Review</em>, 57(4):535–565, 2015. <a class="reference external" href="http://www.mcs.anl.gov/papers/P2010-0112.pdf">http://www.mcs.anl.gov/papers/P2010-0112.pdf</a>. URL: <a class="reference external" href="http://www.mcs.anl.gov/papers/P2010-0112.pdf">http://www.mcs.anl.gov/papers/P2010-0112.pdf</a>, <a class="reference external" href="https://doi.org/10.1137/130936725">doi:10.1137/130936725</a>.</p>
</div>
<div class="citation" id="id1299" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id5">EW96</a><span class="fn-bracket">]</span></span>
<p>S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact Newton method. <em>SIAM J. Scientific Computing</em>, 17:16–32, 1996.</p>
</div>
<div class="citation" id="id1263" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id4">JP93</a><span class="fn-bracket">]</span></span>
<p>Mark T. Jones and Paul E. Plassmann. A parallel graph coloring heuristic. <em>SIAM J. Sci. Comput.</em>, 14(3):654–669, 1993.</p>
</div>
<div class="citation" id="id3947" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id3">LPP+11</a><span class="fn-bracket">]</span></span>
<p>Sofie E. Leon, Glaucio H. Paulino, Anderson Pereira, Ivan F. M. Menezes, and Eduardo N. Lages. A unified library of nonlinear solution schemes. <em>Applied Mechanics Reviews</em>, 64(4):040803, July 2011. <a class="reference external" href="https://doi.org/10.1115/1.4006992">doi:10.1115/1.4006992</a>.</p>
</div>
<div class="citation" id="id2283" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span>MoreSGH84<span class="fn-bracket">]</span></span>
<span class="backrefs">(<a role="doc-backlink" href="#id2">1</a>,<a role="doc-backlink" href="#id1">2</a>,<a role="doc-backlink" href="#id2">3</a>,<a role="doc-backlink" href="#id3">4</a>)</span>
<p>Jorge J. Moré, Danny C. Sorenson, Burton S. Garbow, and Kenneth E. Hillstrom. The MINPACK project. In Wayne R. Cowell, editor, <em>Sources and Development of Mathematical Software</em>, 88–111. 1984.</p>
</div>
<div class="citation" id="id1219" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id8">PW98</a><span class="fn-bracket">]</span></span>
<p>M. Pernice and H. F. Walker. NITSOL: a Newton iterative solver for nonlinear systems. <em>SIAM J. Sci. Stat. Comput.</em>, 19:302–318, 1998.</p>
</div>
<div class="citation" id="id3946" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id4">RCorreaC08</a><span class="fn-bracket">]</span></span>
<p>Manuel Ritto-Corrêa and Dinar Camotim. On the arc-length and other quadratic control methods: established, less known and new implementation procedures. <em>Computers &amp; Structures</em>, 86(11):1353–1368, June 2008. <a class="reference external" href="https://doi.org/10.1016/j.compstruc.2007.08.003">doi:10.1016/j.compstruc.2007.08.003</a>.</p>
</div>
<div class="citation" id="id2288" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id1">DennisJrS83</a><span class="fn-bracket">]</span></span>
<p>J. E. Dennis Jr. and Robert B. Schnabel. <em>Numerical Methods for Unconstrained Optimization and Nonlinear Equations</em>. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983.</p>
</div>
</div>
</div>
</section>
</section>


                </article>
              
              
              
              
              
                <footer class="prev-next-footer">
                  
<div class="prev-next-area">
    <a class="left-prev"
       href="ksp.html"
       title="previous page">
      <i class="fa-solid fa-angle-left"></i>
      <div class="prev-next-info">
        <p class="prev-next-subtitle">previous</p>
        <p class="prev-next-title">KSP: Linear System Solvers</p>
      </div>
    </a>
    <a class="right-next"
       href="ts.html"
       title="next page">
      <div class="prev-next-info">
        <p class="prev-next-subtitle">next</p>
        <p class="prev-next-title">TS: Scalable ODE and DAE Solvers</p>
      </div>
      <i class="fa-solid fa-angle-right"></i>
    </a>
</div>
                </footer>
              
            </div>
            
            
              
                <div class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">


  <div class="sidebar-secondary-item">
<div
    id="pst-page-navigation-heading-2"
    class="page-toc tocsection onthispage">
    <i class="fa-solid fa-list"></i> On this page
  </div>
  <nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
    <ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#basic-snes-usage">Basic SNES Usage</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#nonlinear-function-evaluation">Nonlinear Function Evaluation</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#jacobian-evaluation">Jacobian Evaluation</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#the-nonlinear-solvers">The Nonlinear Solvers</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#line-search-newton">Line Search Newton</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#trust-region-methods">Trust Region Methods</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#newton-with-arc-length-continuation">Newton with Arc Length Continuation</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#nonlinear-krylov-methods">Nonlinear Krylov Methods</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#the-full-approximation-scheme">The Full Approximation Scheme</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#nonlinear-additive-schwarz">Nonlinear Additive Schwarz</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#general-options">General Options</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#convergence-tests">Convergence Tests</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#convergence-monitoring">Convergence Monitoring</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#checking-accuracy-of-derivatives">Checking Accuracy of Derivatives</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#inexact-newton-like-methods">Inexact Newton-like Methods</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#matrix-free-methods">Matrix-Free Methods</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#finite-difference-jacobian-approximations">Finite Difference Jacobian Approximations</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#variational-inequalities">Variational Inequalities</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#nonlinear-preconditioning">Nonlinear Preconditioning</a></li>
</ul>
  </nav></div>

  <div class="sidebar-secondary-item">

  
  <div class="tocsection editthispage">
    <a href="https://gitlab.com/petsc/petsc/-/edit/release/doc/manual/snes.md">
      <i class="fa-solid fa-pencil"></i>
      
      
        
          Edit on GitLab
        
      
    </a>
  </div>
</div>

  <div class="sidebar-secondary-item">

  <div class="tocsection sourcelink">
    <a href="../_sources/manual/snes.md.txt">
      <i class="fa-solid fa-file-lines"></i> Show Source
    </a>
  </div>
</div>

</div></div>
              
            
          </div>
          <footer class="bd-footer-content">
            
          </footer>
        
      </main>
    </div>
  </div>
  
  <!-- Scripts loaded after <body> so the DOM is not blocked -->
  <script src="../_static/scripts/bootstrap.js?digest=bd9e20870c6007c4c509"></script>
<script src="../_static/scripts/pydata-sphinx-theme.js?digest=bd9e20870c6007c4c509"></script>

  <footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
  
    <div class="footer-items__start">
      
        <div class="footer-item">

  <p class="copyright">
    
      © Copyright 1991-2025, UChicago Argonne, LLC and the PETSc Development Team.
      <br/>
    
  </p>
</div>
      
        <div class="footer-item">

  <p class="sphinx-version">
    Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 7.3.7.
    <br/>
  </p>
</div>
      
    </div>
  
  
  
    <div class="footer-items__end">
      
        <div class="footer-item">
<p class="theme-version">
  Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.15.1.
</p></div>
      
        <div class="footer-item"><p class="last-updated">
  Last updated on 2025-04-30T13:10:40-0500 (v3.23.1).
  <br/>
</p></div>
      
    </div>
  
</div>

  </footer>
  </body>
</html>