File: streams.html

package info (click to toggle)
petsc 3.23.1%2Bdfsg1-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 515,576 kB
  • sloc: ansic: 751,607; cpp: 51,542; python: 38,598; f90: 17,352; javascript: 3,493; makefile: 3,157; sh: 1,502; xml: 619; objc: 445; java: 13; csh: 1
file content (1048 lines) | stat: -rw-r--r-- 77,105 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

<!DOCTYPE html>


<html lang="en" data-content_root="../" >

  <head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />

    <title>STREAMS: Example Study &#8212; PETSc 3.23.1 documentation</title>
  
  
  
  <script data-cfasync="false">
    document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
    document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
  </script>
  
  <!-- Loaded before other Sphinx assets -->
  <link href="../_static/styles/theme.css?digest=bd9e20870c6007c4c509" rel="stylesheet" />
<link href="../_static/styles/bootstrap.css?digest=bd9e20870c6007c4c509" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=bd9e20870c6007c4c509" rel="stylesheet" />

  
  <link href="../_static/vendor/fontawesome/6.5.1/css/all.min.css?digest=bd9e20870c6007c4c509" rel="stylesheet" />
  <link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.1/webfonts/fa-solid-900.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.1/webfonts/fa-brands-400.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.1/webfonts/fa-regular-400.woff2" />

    <link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=8f2a1f02" />
    <link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
    <link rel="stylesheet" type="text/css" href="../_static/sphinx-design.min.css?v=87e54e7c" />
    <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/npm/katex@0.16.10/dist/katex.min.css" />
    <link rel="stylesheet" type="text/css" href="../_static/katex-math.css?v=91adb8b6" />
    <link rel="stylesheet" type="text/css" href="../_static/css/custom.css?v=dbe1606d" />
  
  <!-- Pre-loaded scripts that we'll load fully later -->
  <link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=bd9e20870c6007c4c509" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=bd9e20870c6007c4c509" />
  <script src="../_static/vendor/fontawesome/6.5.1/js/all.min.js?digest=bd9e20870c6007c4c509"></script>

    <script src="../_static/documentation_options.js?v=34da53a5"></script>
    <script src="../_static/doctools.js?v=9a2dae69"></script>
    <script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
    <script src="../_static/clipboard.min.js?v=a7894cd8"></script>
    <script src="../_static/copybutton.js?v=a56c686a"></script>
    <script src="../_static/design-tabs.js?v=f930bc37"></script>
    <script src="../_static/katex.min.js?v=be8ff15f"></script>
    <script src="../_static/auto-render.min.js?v=ad136472"></script>
    <script src="../_static/katex_autorenderer.js?v=bebc588a"></script>
    <script>DOCUMENTATION_OPTIONS.pagename = 'manual/streams';</script>
    <link rel="icon" href="../_static/petsc_favicon.png"/>
    <link rel="index" title="Index" href="../genindex.html" />
    <link rel="search" title="Search" href="../search.html" />
    <link rel="next" title="The Use of BLAS and LAPACK in PETSc and external libraries" href="blas-lapack.html" />
    <link rel="prev" title="Hints for Performance Tuning" href="performance.html" />
  <meta name="viewport" content="width=device-width, initial-scale=1"/>
  <meta name="docsearch:language" content="en"/>
    <meta name="docbuild:last-update" content="2025-04-30T13:10:40-0500 (v3.23.1)"/>
  </head>
  
  
  <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">

  
  
  <a id="pst-skip-link" class="skip-link" href="#main-content">Skip to main content</a>
  
  <div id="pst-scroll-pixel-helper"></div>

  
  <button type="button" class="btn rounded-pill" id="pst-back-to-top">
    <i class="fa-solid fa-arrow-up"></i>
    Back to top
  </button>

  
  <input type="checkbox"
          class="sidebar-toggle"
          name="__primary"
          id="__primary"/>
  <label class="overlay overlay-primary" for="__primary"></label>
  
  <input type="checkbox"
          class="sidebar-toggle"
          name="__secondary"
          id="__secondary"/>
  <label class="overlay overlay-secondary" for="__secondary"></label>
  
  <div class="search-button__wrapper">
    <div class="search-button__overlay"></div>
    <div class="search-button__search-container">
<form class="bd-search d-flex align-items-center"
      action="../search.html"
      method="get">
  <i class="fa-solid fa-magnifying-glass"></i>
  <input type="search"
         class="form-control"
         name="q"
         id="search-input"
         placeholder="Search the docs ..."
         aria-label="Search the docs ..."
         autocomplete="off"
         autocorrect="off"
         autocapitalize="off"
         spellcheck="false"/>
  <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form></div>
  </div>

  <header>
  
    <div class="bd-header navbar navbar-expand-lg bd-navbar">
<div class="bd-header__inner bd-page-width">
  <label class="sidebar-toggle primary-toggle" for="__primary">
    <span class="fa-solid fa-bars"></span>
  </label>
  
  
  <div class="col-lg-3 navbar-header-items__start">
    
      <div class="navbar-item">

  

<a class="navbar-brand logo" href="../index.html">
  
  
  
  
  
    
    
      
    
    
    <img src="../_static/PETSc-TAO_RGB.svg" class="logo__image only-light" alt="PETSc 3.23.1 documentation - Home"/>
    <script>document.write(`<img src="../_static/PETSc-TAO_RGB_white.svg" class="logo__image only-dark" alt="PETSc 3.23.1 documentation - Home"/>`);</script>
  
  
</a></div>
    
  </div>
  
  <div class="col-lg-9 navbar-header-items">
    
    <div class="me-auto navbar-header-items__center">
      
        <div class="navbar-item">
<nav class="navbar-nav">
  <ul class="bd-navbar-elements navbar-nav">
    
                    <li class="nav-item current active">
                      <a class="nav-link nav-internal" href="../overview/index.html">
                        Overview
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../install/index.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../tutorials/index.html">
                        Tutorials
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="index.html">
                        User-Guide
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../manualpages/index.html">
                        C/Fortran API
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../petsc4py/index.html">
                        petsc4py API
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../faq/index.html">
                        FAQ
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../community/index.html">
                        Community
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../developers/index.html">
                        Developers
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../miscellaneous/index.html">
                        Misc.
                      </a>
                    </li>
                
  </ul>
</nav></div>
      
    </div>
    
    
    <div class="navbar-header-items__end">
      
        <div class="navbar-item navbar-persistent--container">
          

 <script>
 document.write(`
   <button class="btn navbar-btn search-button-field search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <i class="fa-solid fa-magnifying-glass"></i>
    <span class="search-button__default-text">Search</span>
    <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
   </button>
 `);
 </script>
        </div>
      
      
        <div class="navbar-item">

<script>
document.write(`
  <button class="btn btn-sm navbar-btn theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <span class="theme-switch nav-link" data-mode="light"><i class="fa-solid fa-sun fa-lg"></i></span>
    <span class="theme-switch nav-link" data-mode="dark"><i class="fa-solid fa-moon fa-lg"></i></span>
    <span class="theme-switch nav-link" data-mode="auto"><i class="fa-solid fa-circle-half-stroke fa-lg"></i></span>
  </button>
`);
</script></div>
      
        <div class="navbar-item"><ul class="navbar-icon-links navbar-nav"
    aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          
          <a href="https://gitlab.com/petsc/petsc" title="GitLab" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fab fa-gitlab fa-lg" aria-hidden="true"></i></span>
            <span class="sr-only">GitLab</span></a>
        </li>
</ul></div>
      
    </div>
    
  </div>
  
  
    <div class="navbar-persistent--mobile">

 <script>
 document.write(`
   <button class="btn navbar-btn search-button-field search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <i class="fa-solid fa-magnifying-glass"></i>
    <span class="search-button__default-text">Search</span>
    <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
   </button>
 `);
 </script>
    </div>
  

  
</div>

    </div>
  
  </header>

  <div class="bd-container">
    <div class="bd-container__inner bd-page-width">
      
      
      
      <div class="bd-sidebar-primary bd-sidebar">
        

  
  <div class="sidebar-header-items sidebar-primary__section">
    
    
      <div class="sidebar-header-items__center">
        
          <div class="navbar-item">
<nav class="navbar-nav">
  <ul class="bd-navbar-elements navbar-nav">
    
                    <li class="nav-item current active">
                      <a class="nav-link nav-internal" href="../overview/index.html">
                        Overview
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../install/index.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../tutorials/index.html">
                        Tutorials
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="index.html">
                        User-Guide
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../manualpages/index.html">
                        C/Fortran API
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../petsc4py/index.html">
                        petsc4py API
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../faq/index.html">
                        FAQ
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../community/index.html">
                        Community
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../developers/index.html">
                        Developers
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../miscellaneous/index.html">
                        Misc.
                      </a>
                    </li>
                
  </ul>
</nav></div>
        
      </div>
    
    
    
      <div class="sidebar-header-items__end">
        
          <div class="navbar-item">

<script>
document.write(`
  <button class="btn btn-sm navbar-btn theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <span class="theme-switch nav-link" data-mode="light"><i class="fa-solid fa-sun fa-lg"></i></span>
    <span class="theme-switch nav-link" data-mode="dark"><i class="fa-solid fa-moon fa-lg"></i></span>
    <span class="theme-switch nav-link" data-mode="auto"><i class="fa-solid fa-circle-half-stroke fa-lg"></i></span>
  </button>
`);
</script></div>
        
          <div class="navbar-item"><ul class="navbar-icon-links navbar-nav"
    aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          
          <a href="https://gitlab.com/petsc/petsc" title="GitLab" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fab fa-gitlab fa-lg" aria-hidden="true"></i></span>
            <span class="sr-only">GitLab</span></a>
        </li>
</ul></div>
        
      </div>
    
  </div>
  
    <div class="sidebar-primary-items__start sidebar-primary__section">
        <div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
     aria-label="Section Navigation">
  <p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
  <div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../overview/nutshell.html">PETSc in a nutshell</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/features.html">Supported Systems</a></li>

<li class="toctree-l1"><a class="reference internal" href="../overview/gpu_roadmap.html">GPU Support Roadmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/vector_table.html">Summary of Vector Types Available In PETSc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/matrix_table.html">Summary of Matrix Types Available In PETSc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/linear_solve_table.html">Summary of Sparse Linear Solvers Available In PETSc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/nonlinear_solve_table.html">Summary of Nonlinear Solvers Available In PETSc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/integrator_table.html">Summary of Time Integrators Available In PETSc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/tao_solve_table.html">Summary of Tao Solvers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/discrete_table.html">Summary of Discretization Management Systems</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/plex_transform_table.html">Summary of Unstructured Mesh Transformations</a></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="index.html">User-Guide</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-1"><i class="fa-solid fa-chevron-down"></i></label><ul class="current">
<li class="toctree-l2 has-children"><a class="reference internal" href="introduction.html">Introduction to PETSc</a><input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-2"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="about_this_manual.html">About This Manual</a></li>
<li class="toctree-l3"><a class="reference internal" href="getting_started.html">Getting Started</a></li>






</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="programming.html">The Solvers in PETSc/TAO</a><input class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-3"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="vec.html">Vectors and Parallel Data</a></li>
<li class="toctree-l3"><a class="reference internal" href="mat.html">Matrices</a></li>
<li class="toctree-l3"><a class="reference internal" href="ksp.html">KSP: Linear System Solvers</a></li>
<li class="toctree-l3"><a class="reference internal" href="snes.html">SNES: Nonlinear Solvers</a></li>
<li class="toctree-l3"><a class="reference internal" href="ts.html">TS: Scalable ODE and DAE Solvers</a></li>

<li class="toctree-l3"><a class="reference internal" href="tao.html">TAO: Optimization Solvers</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="dm.html">DM: Interfacing Between Solvers and Models/Discretizations</a><input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-4"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="dmbase.html">DM Basics</a></li>
<li class="toctree-l3"><a class="reference internal" href="section.html">PetscSection: Connecting Grids to Data</a></li>
<li class="toctree-l3"><a class="reference internal" href="dmplex.html">DMPlex: Unstructured Grids</a></li>
<li class="toctree-l3"><a class="reference internal" href="dmstag.html">DMSTAG: Staggered, Structured Grid</a></li>
<li class="toctree-l3"><a class="reference internal" href="dmnetwork.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="dt.html">PetscDT: Discretization Technology in PETSc</a></li>
<li class="toctree-l3"><a class="reference internal" href="fe.html">PetscFE: Finite Element Infrastructure in PETSc</a></li>
</ul>
</li>
<li class="toctree-l2 current active has-children"><a class="reference internal" href="additional.html">Additional Information</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-5"><i class="fa-solid fa-chevron-down"></i></label><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="fortran.html">PETSc for Fortran Users</a></li>
<li class="toctree-l3"><a class="reference internal" href="versionchecking.html">Checking the PETSc version</a></li>
<li class="toctree-l3"><a class="reference internal" href="matlab.html">Using MATLAB with PETSc</a></li>
<li class="toctree-l3"><a class="reference internal" href="profiling.html">Profiling</a></li>
<li class="toctree-l3"><a class="reference internal" href="performance.html">Hints for Performance Tuning</a></li>
<li class="toctree-l3 current active"><a class="current reference internal" href="#">STREAMS: Example Study</a></li>
<li class="toctree-l3"><a class="reference internal" href="blas-lapack.html">The Use of BLAS and LAPACK in PETSc and external libraries</a></li>
<li class="toctree-l3"><a class="reference internal" href="other.html">Other PETSc Features</a></li>

<li class="toctree-l3"><a class="reference internal" href="advanced.html">Advanced Features of Matrices and Solvers</a></li>
<li class="toctree-l3"><a class="reference internal" href="tests.html">Running PETSc Tests</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../manualpages/index.html">C/Fortran API</a><input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-6"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Vector.html">Vectors and Index Sets</a><input class="toctree-checkbox" id="toctree-checkbox-7" name="toctree-checkbox-7" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-7"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Vec/index.html">Vector Operations (Vec)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/IS/index.html">Index sets (IS)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Matrix.html">Matrices and Matrix Operations</a><input class="toctree-checkbox" id="toctree-checkbox-8" name="toctree-checkbox-8" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-8"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Mat/index.html">Matrix Operations (Mat)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/MatGraphOperations/index.html">Matrix colorings (MatColoring), orderings (MatOrdering), partitionings (MatPartitioning), and coarsening (MatCoarsen)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/MatFD/index.html">Finite difference computation of Jacobians (MatFD)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/DataLayout.html">Data Layout and Communication</a><input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-9"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/PetscSF/index.html">Star Forest Communication (PetscSF)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/PetscSection/index.html">Section Data Layout (PetscSection)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/AO/index.html">Application Orderings (AO)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/DataManagement.html">Data Management between Vec and Mat, and Distributed Mesh Data Structures</a><input class="toctree-checkbox" id="toctree-checkbox-10" name="toctree-checkbox-10" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-10"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DM/index.html">Data Management (DM)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMDA/index.html">Structured Grids (DMDA)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMStag/index.html">Staggered, Structured Grids (DMSTAG)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMPlex/index.html">Unstructured Grids and Cell Complexes (DMPLEX)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMNetwork/index.html">Graphs and Networks (DMNETWORK)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMForest/index.html">A Forest of Trees and Structured Adaptive Refinement (DMFOREST)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMPatch/index.html">Sequences of parallel mesh patches (DMPATCH)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMSwarm/index.html">Particle Discretizations (DMSWARM)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMMOAB/index.html">MOAB Mesh Representation (DMMOAB)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMLabel/index.html">Selecting Parts of Meshes (DMLabel)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMPRODUCT/index.html">Tensor products of meshes (DMRODUCT)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMComposite/index.html">DMComposite</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Discretization.html">Discretization and Function Spaces</a><input class="toctree-checkbox" id="toctree-checkbox-11" name="toctree-checkbox-11" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-11"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DT/index.html">Discretization Technology and Quadrature (DT)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/SPACE/index.html">Function Spaces (PetscSpace)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DUALSPACE/index.html">Dual Spaces (PetscDualSpace)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/FE/index.html">Finite Elements (PetscFE)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/FV/index.html">Finite Volumes (PetscFV)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/PF/index.html">Defining your own mathematical functions (PF)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/LANDAU/index.html">Landau Collision Operator</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/LinearSolvers.html">Linear Solvers and Preconditioners</a><input class="toctree-checkbox" id="toctree-checkbox-12" name="toctree-checkbox-12" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-12"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/KSP/index.html">Linear Solvers and Krylov Methods (KSP)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/PC/index.html">Preconditioners (PC)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/NonlinearSolvers.html">Nonlinear Solvers</a><input class="toctree-checkbox" id="toctree-checkbox-13" name="toctree-checkbox-13" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-13"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/SNES/index.html">Nonlinear Solvers (SNES)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/SNESFAS/index.html">Full Approximation Scheme (FAS) nonlinear multigrid</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Timestepping.html">Forward and Adjoint Timestepping</a><input class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-14"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/TS/index.html">Time Stepping ODE and DAE Solvers (TS)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Sensitivity/index.html">Sensitivity Analysis for ODE and DAE</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Characteristic/index.html">Semi-Lagrangian Solves using the Method of Characteristics</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Optimization.html">Optimization</a><input class="toctree-checkbox" id="toctree-checkbox-15" name="toctree-checkbox-15" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-15"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Tao/index.html">Optimization Solvers (Tao)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/TaoLineSearch/index.html">Optimization Line Search (TaoLineSearch)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Visualization.html">Graphics and Visualization</a><input class="toctree-checkbox" id="toctree-checkbox-16" name="toctree-checkbox-16" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-16"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Draw/index.html">Graphics (Draw)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Viewer/index.html">Viewing Objects (Viewer)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/System.html">System Routines, Profiling, Data Structures</a><input class="toctree-checkbox" id="toctree-checkbox-17" name="toctree-checkbox-17" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-17"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Sys/index.html">PETSc Options, IO, and System Utilities</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/PetscH/index.html">Hash Tables</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Log/index.html">Profiling and Logging</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Device/index.html">Device</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Matlab/index.html">Matlab</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Bag/index.html">Bag</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/BM/index.html">Benchmarks (BM)</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../changes/index.html">Changes for each release</a></li>
<li class="toctree-l2"><a class="reference internal" href="../manualpages/singleindex.html">Single Index of all PETSc Manual Pages</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../changes/index.html">Changes for each release</a></li>
<li class="toctree-l1"><a class="reference internal" href="../manualpages/singleindex.html">Single Index of all PETSc Manual Pages</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../overview/previous_release_docs.html">Documentation for previous PETSc releases</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-18"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.22/docs"> 3.22</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.21/docs"> 3.21</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.20/docs"> 3.20</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.19/docs"> 3.19</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.18/docs"> 3.18</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.17/docs"> 3.17</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.16/docs"> 3.16</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.15/docs"> 3.15</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.14/docs"> 3.14</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.13/docs"> 3.13</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.12/docs"> 3.12</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.11/docs"> 3.11</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.10/docs"> 3.10</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.9/docs"> 3.9</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.8/docs"> 3.8</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.7/docs"> 3.7</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.6/docs"> 3.6</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.5/docs"> 3.5</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.4/docs"> 3.4</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.3/docs"> 3.3</a></li>
</ul>
</li>
</ul>
</div>
</nav></div>
    </div>
  
  
  <div class="sidebar-primary-items__end sidebar-primary__section">
  </div>
  
  <div id="rtd-footer-container"></div>


      </div>
      
      <main id="main-content" class="bd-main">
        
        
          <div class="bd-content">
            <div class="bd-article-container">
              
              <div class="bd-header-article">
<div class="header-article-items header-article__inner">
  
    <div class="header-article-items__start">
      
        <div class="header-article-item">





<nav aria-label="Breadcrumb">
  <ul class="bd-breadcrumbs">
    
    <li class="breadcrumb-item breadcrumb-home">
      <a href="../index.html" class="nav-link" aria-label="Home">
        <i class="fa-solid fa-home"></i>
      </a>
    </li>
    
    <li class="breadcrumb-item"><a href="../overview/index.html" class="nav-link">Overview</a></li>
    
    
    <li class="breadcrumb-item"><i class="fa-solid fa-ellipsis"></i></li>
    
    
    <li class="breadcrumb-item"><a href="additional.html" class="nav-link">Additional Information</a></li>
    
    <li class="breadcrumb-item active" aria-current="page">STREAMS:...</li>
  </ul>
</nav>
</div>
      
    </div>
  
  
</div>
</div>
              
              
              
                
<div id="searchbox"></div>
                <article class="bd-article">
                  
  <section class="tex2jax_ignore mathjax_ignore" id="streams-example-study">
<span id="ch-streams"></span><h1>STREAMS: Example Study<a class="headerlink" href="#streams-example-study" title="Link to this heading">#</a></h1>
<p>Most algorithms in PETSc are memory
bandwidth limited. The speed of a simulation depends more on the total achievable <a class="footnote-reference brackets" href="#achievable-footnote" id="id1" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a> memory bandwidth of the computer than the speed
(or number) of floating point units.
The STREAMS benchmark, a key tool in our field, is invaluable for gaining insights into parallel performance (scaling) by measuring achievable memory bandwidth.
PETSc contains
multiple implementations of the <code class="docutils notranslate"><span class="pre">triad</span></code> STREAMS benchmark: including an
<a href="../src/benchmarks/streams/OpenMPVersion.c.html">OpenMP version</a> and an
<a href="../src/benchmarks/streams/OpenMPVersion.c.html">MPI version</a>.</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="o">++</span><span class="n">j</span><span class="p">)</span><span class="w"> </span><span class="n">a</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">b</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="o">+</span><span class="n">scalar</span><span class="o">*</span><span class="n">c</span><span class="p">[</span><span class="n">j</span><span class="p">]</span>
</pre></div>
</div>
<p>STREAMS measures the total memory bandwidth achievable when running <code class="docutils notranslate"><span class="pre">n</span></code> independent threads or processes on non-overlapping memory regions of an array of total length
<code class="docutils notranslate"><span class="pre">N</span></code> on a shared memory node.
The bandwidth is then computed as <code class="docutils notranslate"><span class="pre">3*n*sizeof(double)/min(time[])</span></code>. The timing is done with <code class="docutils notranslate"><span class="pre"><a href="http://www.mpich.org/static/docs/latest/www3/MPI_Wtime.html#MPI_Wtime">MPI_Wtime</a>()</span></code>. A call to the timer takes less than 3e-08 seconds, significantly
smaller than the benchmark time. The STREAMS benchmark is intentionally embarrassingly parallel, that is, each thread or process works on its own data, completely independently of other threads or processes data.
Though real simulations have more complex memory access patterns, most computations for PDEs have large sections of private data and share only data along ghost (halo) regions. Thus the completely
independent non-overlapping memory STREAMS model still provides useful information.</p>
<p>As more threads or processes are added, the bandwidth achieved begins to saturate at some <code class="docutils notranslate"><span class="pre">n</span></code>, generally less than the number of cores on the node. How quickly the bandwidth
saturates, and the speed up (or parallel efficiency) obtained on a given system indicates the likely performance of memory bandwidth-limited computations.</p>
<p>Fig. <a class="reference internal" href="#fig-gcc-streams"><span class="std std-ref">STREAMS benchmark gcc</span></a> plots the total memory bandwidth achieved and the speedup for runs on an Intel system whose details are provided below. The achieved bandwidth
increases rapidly with more cores initially but then less so as more cores are utilized. Also, note that the improvement may, unintuitively, be non-monotone when adding
more cores. This is due to the complex interconnect between the cores and their various levels of caches and how the threads or processes are assigned to cores.</p>
<figure class="align-default" id="fig-gcc-streams">
<img alt="STREAMS benchmark gcc" src="../_images/gcc_streams.svg" /><figcaption>
<p><span class="caption-number">Fig. 16 </span><span class="caption-text">STREAMS benchmark gcc</span><a class="headerlink" href="#fig-gcc-streams" title="Link to this image">#</a></p>
</figcaption>
</figure>
<p>There are three important concepts needed to understand memory bandwidth-limited computing.</p>
<ul class="simple">
<li><p>Thread or process <strong>binding</strong> to hardware subsets of the shared memory node. The Unix operating system allows threads and processes to migrate among the cores of a node
during a computation. This migration is managed by the operating system (OS). <a class="footnote-reference brackets" href="#memorymigration-footnote" id="id2" role="doc-noteref"><span class="fn-bracket">[</span>2<span class="fn-bracket">]</span></a>
A thread or process that is “near” some data may suddenly be far from the data when the thread or process gets migrated.
Binding the thread or process to a hardware unit prevents or limits the migration.</p></li>
<li><p>Thread or process <strong>mapping</strong> (assignment) to hardware subsets when more threads or processes are used. Physical memory is divided into multiple distinct units, each of which can
independently provide a certain memory bandwidth. Different cores may be more closely connected to different memory units. This results in
non-uniform memory access (<strong>NUMA</strong>), meaning the memory latency or bandwidth for any particular core depends on the physical address of the requested memory.
When increasing from one thread or process to two, one obviously would like the second thread
or process to use a different memory unit
and not share the same unit with the first thread or process.
Mapping each new thread or process to cores that do not share the previously assigned core’s memory unit ensures a higher total achievable bandwidth.</p></li>
<li><p>In addition to mapping, one must ensure that each thread or process <strong>uses data on the closest memory unit</strong>. The OS selects the memory unit to place new pages
of virtual memory based on <strong>first touch</strong>:
the core of the first thread or process to touch (read or write to) a memory address determines to which memory unit the page of the data is assigned. This is automatic for multiple processes since only one process (on a particular core) will ever touch its data. For threads, care must be taken that the data a thread is to compute on is first touched by that thread.
For example, the performance will suffer if the first thread initializes an entire array that multiple threads will later access.
For small data arrays that remain in the cache, first touch may produce no performance difference.</p></li>
</ul>
<p>MPI and OpenMP provide ways to bind and map processes and cores. They also provide ways to display the current mapping.</p>
<ul class="simple">
<li><p>MPI, options to <code class="docutils notranslate"><span class="pre">mpiexec</span></code></p>
<ul>
<li><p>–bind-to hwthread | core | l1cache | l2cache | l3cache | socket | numa | board</p></li>
<li><p>–map-by hwthread | core | socket | numa | board | node</p></li>
<li><p>–report-bindings</p></li>
<li><p>–cpu-list list of cores</p></li>
<li><p>–cpu-set list of sets of cores</p></li>
</ul>
</li>
<li><p>OpenMP, environmental variables</p>
<ul>
<li><p>OMP_NUM_THREADS=n</p></li>
<li><p>OMP_PROC_BIND=close | spread</p></li>
<li><p>OMP_PLACES=”list of sets of cores” for example {0:2},{2:2},{32:2},{34:2}</p></li>
<li><p>OMP_DISPLAY_ENV=false | true</p></li>
<li><p>OMP_DISPLAY_AFFINITY=false | true</p></li>
</ul>
</li>
</ul>
<p>Providing appropriate values may be crucial to high performance; the defaults may produce poor results. The best bindings for the STREAMS benchmark are often the best bindings for large PETSc applications. The Linux commands <code class="docutils notranslate"><span class="pre">lscpu</span></code> and <code class="docutils notranslate"><span class="pre">numactl</span> <span class="pre">-H</span></code> provide useful information about the hardware configuration.</p>
<p>It is possible that the MPI initialization (including the use of <code class="docutils notranslate"><span class="pre">mpiexec</span></code>) can change the default OpenMP binding/mapping behavior and thus seriously affect the application runtime.
The <a href="../src/sys/tests/ex69.c.html">C</a> and <a href="../src/sys/tests/ex69f.F90.html">Fortran</a>) examples demonstrate this.</p>
<p>We run
<code class="docutils notranslate"><span class="pre">ex69f</span></code> with four OpenMP threads without <code class="docutils notranslate"><span class="pre">mpiexec</span></code> and see almost perfect scaling.
The CPU time of the process, which is summed over the four threads in process, is the same as the wall clock time indicating that each thread is run on a different core as desired.</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n">$</span><span class="w"> </span><span class="n">OMP_NUM_THREADS</span><span class="o">=</span><span class="mi">4</span><span class="w">  </span><span class="p">.</span><span class="o">/</span><span class="n">ex69f</span>
<span class="w">  </span><span class="n">CPU</span><span class="w"> </span><span class="n">time</span><span class="w"> </span><span class="n">reported</span><span class="w"> </span><span class="n">by</span><span class="w"> </span><span class="n">cpu_time</span><span class="p">()</span><span class="w">               </span><span class="mf">6.1660000000000006E-002</span>
<span class="w">  </span><span class="n">Wall</span><span class="w"> </span><span class="n">clock</span><span class="w"> </span><span class="n">time</span><span class="w"> </span><span class="n">reported</span><span class="w"> </span><span class="n">by</span><span class="w"> </span><span class="n">system_clock</span><span class="p">()</span><span class="w">    </span><span class="mf">1.8335562000000000E-002</span>
<span class="w">  </span><span class="n">Wall</span><span class="w"> </span><span class="n">clock</span><span class="w"> </span><span class="n">time</span><span class="w"> </span><span class="n">reported</span><span class="w"> </span><span class="n">by</span><span class="w"> </span><span class="n">omp_get_wtime</span><span class="p">()</span><span class="w">   </span><span class="mf">1.8330062011955306E-002</span>
</pre></div>
</div>
<p>Running under <code class="docutils notranslate"><span class="pre">mpiexec</span></code> gives a very different wall clock time, indicating that all four threads ran on the same core.</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n">$</span><span class="w"> </span><span class="n">OMP_NUM_THREADS</span><span class="o">=</span><span class="mi">4</span><span class="w"> </span><span class="n">mpiexec</span><span class="w"> </span><span class="o">-</span><span class="n">n</span><span class="w"> </span><span class="mi">1</span><span class="w">  </span><span class="p">.</span><span class="o">/</span><span class="n">ex69f</span>
<span class="w">  </span><span class="n">CPU</span><span class="w"> </span><span class="n">time</span><span class="w"> </span><span class="n">reported</span><span class="w"> </span><span class="n">by</span><span class="w"> </span><span class="n">cpu_time</span><span class="p">()</span><span class="w">               </span><span class="mf">7.2290999999999994E-002</span>
<span class="w">  </span><span class="n">Wall</span><span class="w"> </span><span class="n">clock</span><span class="w"> </span><span class="n">time</span><span class="w"> </span><span class="n">reported</span><span class="w"> </span><span class="n">by</span><span class="w"> </span><span class="n">system_clock</span><span class="p">()</span><span class="w">    </span><span class="mf">7.2356641999999999E-002</span>
<span class="w">  </span><span class="n">Wall</span><span class="w"> </span><span class="n">clock</span><span class="w"> </span><span class="n">time</span><span class="w"> </span><span class="n">reported</span><span class="w"> </span><span class="n">by</span><span class="w"> </span><span class="n">omp_get_wtime</span><span class="p">()</span><span class="w">   </span><span class="mf">7.2353694995399565E-002</span>
</pre></div>
</div>
<p>If we add some binding/mapping options to <code class="docutils notranslate"><span class="pre">mpiexec</span></code> we obtain</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n">$</span><span class="w"> </span><span class="n">OMP_NUM_THREADS</span><span class="o">=</span><span class="mi">4</span><span class="w"> </span><span class="n">mpiexec</span><span class="w"> </span><span class="o">--</span><span class="n">bind</span><span class="o">-</span><span class="n">to</span><span class="w"> </span><span class="n">numa</span><span class="w"> </span><span class="o">-</span><span class="n">n</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">--</span><span class="n">map</span><span class="o">-</span><span class="n">by</span><span class="w"> </span><span class="n">core</span><span class="w"> </span><span class="p">.</span><span class="o">/</span><span class="n">ex69f</span>
<span class="w">  </span><span class="n">CPU</span><span class="w"> </span><span class="n">time</span><span class="w"> </span><span class="n">reported</span><span class="w"> </span><span class="n">by</span><span class="w"> </span><span class="n">cpu_time</span><span class="p">()</span><span class="w">               </span><span class="mf">7.0021000000000000E-002</span>
<span class="w">  </span><span class="n">Wall</span><span class="w"> </span><span class="n">clock</span><span class="w"> </span><span class="n">time</span><span class="w"> </span><span class="n">reported</span><span class="w"> </span><span class="n">by</span><span class="w"> </span><span class="n">system_clock</span><span class="p">()</span><span class="w">    </span><span class="mf">1.8489282999999999E-002</span>
<span class="w">  </span><span class="n">Wall</span><span class="w"> </span><span class="n">clock</span><span class="w"> </span><span class="n">time</span><span class="w"> </span><span class="n">reported</span><span class="w"> </span><span class="n">by</span><span class="w"> </span><span class="n">omp_get_wtime</span><span class="p">()</span><span class="w">   </span><span class="mf">1.8486462999135256E-002</span>
</pre></div>
</div>
<p>Thus we conclude that this <code class="docutils notranslate"><span class="pre">mpiexec</span></code> implementation is, by default, binding the process (including all of its threads) to a single core.
Consider also the <code class="docutils notranslate"><span class="pre">mpiexec</span></code> option <code class="docutils notranslate"><span class="pre">--map-by</span> <span class="pre">socket:pe=$OMP_NUM_THREADS</span></code> to ensure each thread gets is own core for computation.</p>
<p>Note that setting
<code class="docutils notranslate"><span class="pre">OMP_PROC_BIND=spread</span></code> alone does not resolve the problem, as the output below indicates.</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n">$</span><span class="w"> </span><span class="n">OMP_PROC_BIND</span><span class="o">=</span><span class="n">spread</span><span class="w"> </span><span class="n">OMP_NUM_THREADS</span><span class="o">=</span><span class="mi">4</span><span class="w"> </span><span class="n">mpiexec</span><span class="w"> </span><span class="o">-</span><span class="n">n</span><span class="w"> </span><span class="mi">1</span><span class="w">  </span><span class="p">.</span><span class="o">/</span><span class="n">ex69f</span>
<span class="w">  </span><span class="n">CPU</span><span class="w"> </span><span class="n">time</span><span class="w"> </span><span class="n">reported</span><span class="w"> </span><span class="n">by</span><span class="w"> </span><span class="n">cpu_time</span><span class="p">()</span><span class="w">               </span><span class="mf">7.2841999999999990E-002</span>
<span class="w">  </span><span class="n">Wall</span><span class="w"> </span><span class="n">clock</span><span class="w"> </span><span class="n">time</span><span class="w"> </span><span class="n">reported</span><span class="w"> </span><span class="n">by</span><span class="w"> </span><span class="n">system_clock</span><span class="p">()</span><span class="w">    </span><span class="mf">7.2946015000000003E-002</span>
<span class="w">  </span><span class="n">Wall</span><span class="w"> </span><span class="n">clock</span><span class="w"> </span><span class="n">time</span><span class="w"> </span><span class="n">reported</span><span class="w"> </span><span class="n">by</span><span class="w"> </span><span class="n">omp_get_wtime</span><span class="p">()</span><span class="w">   </span><span class="mf">7.2942997998325154E-002</span>
</pre></div>
</div>
<p>The Fortran routine <code class="docutils notranslate"><span class="pre">cpu_time()</span></code> can sometimes produce misleading results when run with multiple threads. Consider again the
<a href="../src/sys/tests/ex69f.F90.html">Fortran</a> example. For an OpenMP parallel loop with enough available cores and the proper binding of threads
to cores, one expects the CPU time for the process to be roughly the number of threads times the wall clock time. However, for a loop that is not parallelized (like the second
loop in the Fortran example), the CPU time one would expect would match the wall clock time. However, this may not be the case; for example, we have run the Fortran example
on an Intel system with the Intel ifort compiler and observed the recorded CPU for the second loop to be roughly the number of threads times the wall clock time even
though only a single thread is computing the loop. Thus, comparing the CPU time to the wall clock time of a computation with OpenMP does not give you
a good measure of the speedup produced by OpenMP.</p>
<section id="detailed-streams-study-for-large-arrays">
<h2>Detailed STREAMS study for large arrays<a class="headerlink" href="#detailed-streams-study-for-large-arrays" title="Link to this heading">#</a></h2>
<p>We now present a detailed study of a particular Intel Icelake system, the Intel(R) Xeon(R) Platinum 8362 CPU &#64; 2.80GH. It has 32 cores on each of two sockets
(each with a single NUMA region, so a total of two NUMA regions), a
48 Megabyte L3 cache and 32 1.25 Megabyte L2 caches, each shared by 2 cores.
It is running the Rocky Linux 8.8 (Green Obsidian) distribution. The compilers
used are GNU 12.2, Intel(R) oneAPI Compiler 2023.0.0 with both icc and icx, and NVIDIA nvhpc/23.1. The MPI implementation is OpenMPI 4.0.7, except for nvhpc, which uses 3.15. The compiler options were</p>
<ul class="simple">
<li><p>gcc -O3 -march=native</p></li>
<li><p>icc -O3 -march=native</p></li>
<li><p>icx -O3 -ffinite-math-only (the -xHost option, that replaces -march=native, crashed the compiler so was not used)</p></li>
<li><p>nvc -O3 -march=native</p></li>
</ul>
<p>We first run the STREAMS benchmark with large double precision arrays of length <span class="math">\(1.6\times10^8\)</span>; the size was selected to be large enough to eliminate cache effects.
Fig. <a class="reference internal" href="#fig-streams"><span class="std std-ref">Comprehensive STREAMS performance on Intel system</span></a> shows the achieved bandwidth for gcc, icc, icx, and nvc using MPI and OpenMP with their default bindings and with the MPI binding of <code class="docutils notranslate"><span class="pre">--bind-to</span> <span class="pre">core</span> <span class="pre">--map-by</span> <span class="pre">numa</span></code>
and the OpenMP binding of <code class="docutils notranslate"><span class="pre">spread</span></code>.</p>
<figure class="align-default" id="fig-streams">
<img alt="STREAMS benchmark" src="../_images/streams.svg" /><figcaption>
<p><span class="caption-number">Fig. 17 </span><span class="caption-text">Comprehensive STREAMS performance on Intel system</span><a class="headerlink" href="#fig-streams" title="Link to this image">#</a></p>
</figcaption>
</figure>
<p>Note the two dips in the performance with OpenMP and gcc using binding in Fig. <a class="reference internal" href="#fig-gcc-streams"><span class="std std-ref">STREAMS benchmark gcc</span></a>.
Requesting the <code class="docutils notranslate"><span class="pre">spread</span></code> binding produces better results for small core counts but poorer ones for larger ones.
These are a result of a bug in the gcc <code class="docutils notranslate"><span class="pre">spread</span></code> option, placing more threads in one NUMA domain than the other.
For example, with gcc, the <code class="docutils notranslate"><span class="pre">OMP_DISPLAY_AFFINITY</span></code> shows that for 28 threads, 12 are placed on NUMA region 1, and 16 are placed on the other NUMA region.
The other compilers spread the cores evenly.</p>
<p>Fig. <a class="reference internal" href="#fig-icc-streams"><span class="std std-ref">STREAMS benchmark icc</span></a> shows the performance with the icc compiler. Note that the icc compiler produces significantly faster code for
the benchmark than the other compilers
so its STREAMS speedups are smaller,
though it
provides better performance. No significant dips occur with the OpenMP binding using icc, icx, and nvc;
using <code class="docutils notranslate"><span class="pre">OMP_DISPLAY_AFFINITY</span></code> confirms, for example, that 14 threads (out of 28) are assigned to each NUMA domain, unlike with gcc.
Using the exact thread placement that icc uses with gcc using the OpenMP <code class="docutils notranslate"><span class="pre">OMP_PLACES</span></code> option removes most of the dip in the gcc OpenMP binding result.
Thus, we conclude that on this system, the <code class="docutils notranslate"><span class="pre">spread</span></code> option does not always give the best thread placement with gcc due to its bug.</p>
<figure class="align-default" id="fig-icc-streams">
<img alt="STREAMS benchmark icc" src="../_images/icc_streams.svg" /><figcaption>
<p><span class="caption-number">Fig. 18 </span><span class="caption-text">STREAMS benchmark icc</span><a class="headerlink" href="#fig-icc-streams" title="Link to this image">#</a></p>
</figcaption>
</figure>
<p>Fig. <a class="reference internal" href="#fig-icx-streams"><span class="std std-ref">STREAMS benchmark icx</span></a> shows the performance with the icx compiler.</p>
<figure class="align-default" id="fig-icx-streams">
<img alt="STREAMS benchmark icx" src="../_images/icx_streams.svg" /><figcaption>
<p><span class="caption-number">Fig. 19 </span><span class="caption-text">STREAMS benchmark icx</span><a class="headerlink" href="#fig-icx-streams" title="Link to this image">#</a></p>
</figcaption>
</figure>
<figure class="align-default" id="fig-nvc-streams">
<img alt="STREAMS benchmark nvc" src="../_images/nvc_streams.svg" /><figcaption>
<p><span class="caption-number">Fig. 20 </span><span class="caption-text">STREAMS benchmark nvc</span><a class="headerlink" href="#fig-nvc-streams" title="Link to this image">#</a></p>
</figcaption>
</figure>
<p>To understand the disparity in the STREAMS performance with icc we reran it with the highest optimization level that produced the same results as gcc and icx: <code class="docutils notranslate"><span class="pre">-O1</span></code> without <code class="docutils notranslate"><span class="pre">-march=native</span></code>.
The results are displayed in Fig. <a class="reference internal" href="#fig-icc-o1-streams"><span class="std std-ref">STREAMS benchmark icc -O1</span></a>; sure enough, the results now match that of gcc and icx.</p>
<figure class="align-default" id="fig-icc-o1-streams">
<img alt="STREAMS benchmark icc -O1" src="../_images/icc_O1_streams.svg" /><figcaption>
<p><span class="caption-number">Fig. 21 </span><span class="caption-text">STREAMS benchmark icc -O1</span><a class="headerlink" href="#fig-icc-o1-streams" title="Link to this image">#</a></p>
</figcaption>
</figure>
<p>Next we display the STREAMS results using gcc with parallel efficiency instead of speedup in <a class="reference internal" href="#fig-streams-pe"><span class="std std-ref">STREAMS parallel efficiency gcc</span></a></p>
<figure class="align-default" id="fig-streams-pe">
<img alt="STREAMS parallel efficiency" src="../_images/gcc_streams_pe.svg" /><figcaption>
<p><span class="caption-number">Fig. 22 </span><span class="caption-text">STREAMS parallel efficiency gcc</span><a class="headerlink" href="#fig-streams-pe" title="Link to this image">#</a></p>
</figcaption>
</figure>
<p>Observations:</p>
<ul class="simple">
<li><p>For MPI, the default binding and mapping on this system produces results that are as good as providing a specific binding and mapping. This is not true on many systems!</p></li>
<li><p>For OpenMP gcc, the default binding is better than using <code class="docutils notranslate"><span class="pre">spread</span></code>, because <code class="docutils notranslate"><span class="pre">spread</span></code> has a bug. For the other compilers using <code class="docutils notranslate"><span class="pre">spread</span></code> is crucial for good performance on more than 32 cores.</p></li>
<li><p>We do not have any explanation why the improvement in speedup for gcc, icx, and nvc slows down between 32 and 48 cores and then improves rapidly since we believe appropriate bindings are being used.</p></li>
</ul>
<p>We now present a limited version of the analysis above on an Apple MacBook Pro M2 Max using MPICH, version 4.1, gcc version 13.2 (installed via Homebrew), XCode 15.0.1
and -O3 optimization flags with a smaller N of 80,000,000. macOS contains no public API for setting or controlling affinities so it is not possible to set bindings for either MPI or OpenMP. In addition, the M2 has a combination of performance and efficiency cores which we have no control over the use of.</p>
<p>Fig. <a class="reference internal" href="#fig-m2-gcc-streams"><span class="std std-ref">STREAMS benchmark on Apple M2</span></a> provides the results. Based on the plateau in the middle of the plot, we assume that the core numbering that
is used by MPICH does not produce the best
binding.</p>
<figure class="align-default" id="fig-m2-gcc-streams">
<img alt="STREAMS benchmark on Apple M2" src="../_images/m2_gcc_streams.svg" /><figcaption>
<p><span class="caption-number">Fig. 23 </span><span class="caption-text">STREAMS benchmark on Apple M2</span><a class="headerlink" href="#fig-m2-gcc-streams" title="Link to this image">#</a></p>
<div class="legend">
<p>OpenMPI (installed via Homebrew) produced similar results.</p>
</div>
</figcaption>
</figure>
</section>
<section id="detailed-study-with-application">
<h2>Detailed study with application<a class="headerlink" href="#detailed-study-with-application" title="Link to this heading">#</a></h2>
<p>We now move on to a <a href="../src/ksp/ksp/tutorials/ex45.c.html">PETSc application</a> which solves a three-dimensional Poisson problem on a unit
cube discretized with
finite differences whose linear system is solved with the PETSc algebraic multigrid preconditioner, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PCGAMG.html">PCGAMG</a></span></code> and Krylov accelerator GMRES. Strong scaling is used to compare with the STREAMS benchmark: measuring the time to construct the preconditioner,
the time to solve the linear system with the preconditioner, and the time for the matrix-vector products. These are displayed in Fig. <a class="reference internal" href="#fig-gamg"><span class="std std-ref">GAMG speedup</span></a>. The runtime options were
<code class="docutils notranslate"><span class="pre">-da_refine</span> <span class="pre">6</span> <span class="pre">-pc_type</span> <span class="pre">gamg</span> <span class="pre">-log_view</span></code>. This study did not attempt to tune the default <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PCGAMG.html">PCGAMG</a></span></code> parameters.
There were very similar speedups for all the
compilers so we only display results for gcc.</p>
<figure class="align-default" id="fig-gamg">
<img alt="GAMG speedup" src="../_images/gamg.svg" /><figcaption>
<p><span class="caption-number">Fig. 24 </span><span class="caption-text">GAMG speedup</span><a class="headerlink" href="#fig-gamg" title="Link to this image">#</a></p>
</figcaption>
</figure>
<figure class="align-default" id="fig-gamg-pe">
<img alt="GAMG parallel efficiency" src="../_images/gamg_pe.svg" /><figcaption>
<p><span class="caption-number">Fig. 25 </span><span class="caption-text">GAMG parallel efficiency</span><a class="headerlink" href="#fig-gamg-pe" title="Link to this image">#</a></p>
</figcaption>
</figure>
<p>The dips in the performance at certain core counts are consistent between compilers
and results from the amount of MPI communication required from the communication pattern which results from the different three-dimensional parallel
grid layout.</p>
<p>We now present GAMG on the Apple MacBook Pro M2 Max.
Fig. <a class="reference internal" href="#fig-m2-gamg"><span class="std std-ref">GAMG speedup Apple M2</span></a> provides the results. The performance is better than predicted by the STREAMS benchmark for all portions of the solver.</p>
<figure class="align-default" id="fig-m2-gamg">
<img alt="GAMG speedup on Apple M2" src="../_images/m2_gamg.svg" /><figcaption>
<p><span class="caption-number">Fig. 26 </span><span class="caption-text">GAMG speedup Apple M2</span><a class="headerlink" href="#fig-m2-gamg" title="Link to this image">#</a></p>
</figcaption>
</figure>
</section>
<section id="application-with-the-mpi-linear-solver-server">
<span id="sec-pcmpi-study"></span><h2>Application with the MPI linear solver server<a class="headerlink" href="#application-with-the-mpi-linear-solver-server" title="Link to this heading">#</a></h2>
<p>We now run the same PETSc application using the MPI linear solver server mode, set using <code class="docutils notranslate"><span class="pre">-mpi_linear_solver_server</span></code>.
All compilers deliver largely the same performance so we only present results with gcc.
We plot the speedup in Fig. <a class="reference internal" href="#fig-gamg-server"><span class="std std-ref">GAMG server speedup</span></a> and parallel efficiency in <a class="reference internal" href="#fig-gamg-server-pe"><span class="std std-ref">GAMG server parallel efficiency</span></a>
Note that it is far below the parallel solve without the server. However, the distribution time for these runs was always less than three percent of the complete solution time.
The reason for the poorer performance is because in the pure MPI version, the vectors are partitioned directly from the three-dimensional grid; the cube is divided into (approximate)
sub-cubes, this minimizes the inter-process communication, especially in the matrix-vector product. In server mode, the vector is laid out using the cube’s natural ordering, and then each MPI process is assigned a contiguous subset of the vector. As a result, the flop rate for the matrix-vector product is significantly higher than that of the pure MPI version.
This indicates that a naive use of the MPI linear solver server will not produce as much performance as a usage that considers the matrix/vector layouts by performing an
initial grid partitioning. For example, if OpenMP is used to generate the matrix, it would be appropriate to have each OpenMP thread assigned a contiguous
vector mapping to a sub-cube of the domain. This would require, of course, a far more complicated OpenMP code that is written using MPI-like parallelism and decomposition of the data.</p>
<p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PCMPI.html">PCMPI</a></span></code> has two approaches for distributing the linear system. The first uses <code class="docutils notranslate"><span class="pre"><a href="http://www.mpich.org/static/docs/latest/www3/MPI_Scatterv.html#MPI_Scatterv">MPI_Scatterv</a>()</span></code> to communicate the matrix and vector entries from the initial compute process to all of the
server processes. Unfortunately, <code class="docutils notranslate"><span class="pre"><a href="http://www.mpich.org/static/docs/latest/www3/MPI_Scatterv.html#MPI_Scatterv">MPI_Scatterv</a>()</span></code> does not scale with more MPI processes; hence, the solution time is limited by the <code class="docutils notranslate"><span class="pre"><a href="http://www.mpich.org/static/docs/latest/www3/MPI_Scatterv.html#MPI_Scatterv">MPI_Scatterv</a>()</span></code>. To remove this limitation,
the second communication mechanism is Unix shared memory <code class="docutils notranslate"><span class="pre">shmget()</span></code>. Here, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PCMPI.html">PCMPI</a></span></code> allocates shared memory
from which all the MPI processes in the server
can access their portion of the matrices and vectors that they need.
There is still a (now much smaller) server processing overhead since the initial data storage of the sequential matrix (in <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MATSEQAIJ.html">MATSEQAIJ</a></span></code> storage)
still must be converted to <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MATMPIAIJ.html">MATMPIAIJ</a></span></code> storage. <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Vec/VecPlaceArray.html">VecPlaceArray</a>()</span></code> is used to convert the sequential vector to an MPI vector, so there is
no overhead, not even a copy, for this operation.</p>
<figure class="align-default" id="fig-gamg-server">
<img alt="GAMG server speedup" src="../_images/gamg_server.svg" /><figcaption>
<p><span class="caption-number">Fig. 27 </span><span class="caption-text">GAMG server speedup</span><a class="headerlink" href="#fig-gamg-server" title="Link to this image">#</a></p>
</figcaption>
</figure>
<figure class="align-default" id="fig-gamg-server-pe">
<img alt="GAMG server parallel efficiency" src="../_images/gamg_server_pe.svg" /><figcaption>
<p><span class="caption-number">Fig. 28 </span><span class="caption-text">GAMG server parallel efficiency</span><a class="headerlink" href="#fig-gamg-server-pe" title="Link to this image">#</a></p>
</figcaption>
</figure>
<figure class="align-default" id="fig-gamg-server-pe-streams">
<img alt="GAMG server parallel efficiency" src="../_images/gamg_server_pe_streams.svg" /><figcaption>
<p><span class="caption-number">Fig. 29 </span><span class="caption-text">GAMG server parallel efficiency vs STREAMS</span><a class="headerlink" href="#fig-gamg-server-pe-streams" title="Link to this image">#</a></p>
</figcaption>
</figure>
<p>In <a class="reference internal" href="#fig-gamg-server-pe-streams"><span class="std std-ref">GAMG server parallel efficiency vs STREAMS</span></a>, we plot the parallel efficiency of the linear solve and the STREAMS benchmark, which track each other well.
This example demonstrates the <strong>utility of the STREAMS benchmark to predict the speedup (parallel efficiency) of a memory bandwidth limited application</strong> on a shared memory Linux system.</p>
<p>For the Apple M2, we present the results using Unix shared-memory communication of the matrix and vectors to the server processes
in <a class="reference internal" href="#fig-m2-gamg-server-shared-speedup"><span class="std std-ref">GAMG server solver speedup on Apple M2</span></a>.
To run this one must first set up the machine to use shared memory as described in <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Sys/PetscShmgetAllocateArray.html">PetscShmgetAllocateArray</a>()</span></code></p>
<figure class="align-default" id="fig-m2-gamg-server-shared-speedup">
<img alt="GAMG solver speedup" src="../_images/m2_gamg_server_shared_speedup.svg" /><figcaption>
<p><span class="caption-number">Fig. 30 </span><span class="caption-text">GAMG server solver speedup on Apple M2</span><a class="headerlink" href="#fig-m2-gamg-server-shared-speedup" title="Link to this image">#</a></p>
</figcaption>
</figure>
<p>This example demonstrates that the <strong>MPI linear solver server feature of PETSc can generate a reasonable speedup in the linear solver</strong> on machines that have significant
memory bandwidth. However, one should not expect the speedup to be near the total number of cores on the compute node.</p>
<p class="rubric">Footnotes</p>
<span class="target" id="id1"></span></section>
</section>
<hr class="footnotes docutils" />
<aside class="footnote-list brackets">
<aside class="footnote brackets" id="achievable-footnote" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id1">1</a><span class="fn-bracket">]</span></span>
<p>Achievable memory bandwidth is the actual bandwidth one can obtain
as opposed to the theoretical peak that is calculated using the hardware specification.</p>
</aside>
<aside class="footnote brackets" id="memorymigration-footnote" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id2">2</a><span class="fn-bracket">]</span></span>
<p>Data can also be migrated among different memory sockets during a computation by the OS, but we ignore this possibility in the discussion.</p>
</aside>
</aside>


                </article>
              
              
              
              
              
                <footer class="prev-next-footer">
                  
<div class="prev-next-area">
    <a class="left-prev"
       href="performance.html"
       title="previous page">
      <i class="fa-solid fa-angle-left"></i>
      <div class="prev-next-info">
        <p class="prev-next-subtitle">previous</p>
        <p class="prev-next-title">Hints for Performance Tuning</p>
      </div>
    </a>
    <a class="right-next"
       href="blas-lapack.html"
       title="next page">
      <div class="prev-next-info">
        <p class="prev-next-subtitle">next</p>
        <p class="prev-next-title">The Use of BLAS and LAPACK in PETSc and external libraries</p>
      </div>
      <i class="fa-solid fa-angle-right"></i>
    </a>
</div>
                </footer>
              
            </div>
            
            
              
            
          </div>
          <footer class="bd-footer-content">
            
          </footer>
        
      </main>
    </div>
  </div>
  
  <!-- Scripts loaded after <body> so the DOM is not blocked -->
  <script src="../_static/scripts/bootstrap.js?digest=bd9e20870c6007c4c509"></script>
<script src="../_static/scripts/pydata-sphinx-theme.js?digest=bd9e20870c6007c4c509"></script>

  <footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
  
    <div class="footer-items__start">
      
        <div class="footer-item">

  <p class="copyright">
    
      © Copyright 1991-2025, UChicago Argonne, LLC and the PETSc Development Team.
      <br/>
    
  </p>
</div>
      
        <div class="footer-item">

  <p class="sphinx-version">
    Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 7.3.7.
    <br/>
  </p>
</div>
      
    </div>
  
  
  
    <div class="footer-items__end">
      
        <div class="footer-item">
<p class="theme-version">
  Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.15.1.
</p></div>
      
        <div class="footer-item"><p class="last-updated">
  Last updated on 2025-04-30T13:10:40-0500 (v3.23.1).
  <br/>
</p></div>
      
    </div>
  
</div>

  </footer>
  </body>
</html>