File: ts.html

package info (click to toggle)
petsc 3.23.1%2Bdfsg1-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 515,576 kB
  • sloc: ansic: 751,607; cpp: 51,542; python: 38,598; f90: 17,352; javascript: 3,493; makefile: 3,157; sh: 1,502; xml: 619; objc: 445; java: 13; csh: 1
file content (2400 lines) | stat: -rw-r--r-- 187,731 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400

<!DOCTYPE html>


<html lang="en" data-content_root="../" >

  <head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />

    <title>TS: Scalable ODE and DAE Solvers &#8212; PETSc 3.23.1 documentation</title>
  
  
  
  <script data-cfasync="false">
    document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
    document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
  </script>
  
  <!-- Loaded before other Sphinx assets -->
  <link href="../_static/styles/theme.css?digest=bd9e20870c6007c4c509" rel="stylesheet" />
<link href="../_static/styles/bootstrap.css?digest=bd9e20870c6007c4c509" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=bd9e20870c6007c4c509" rel="stylesheet" />

  
  <link href="../_static/vendor/fontawesome/6.5.1/css/all.min.css?digest=bd9e20870c6007c4c509" rel="stylesheet" />
  <link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.1/webfonts/fa-solid-900.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.1/webfonts/fa-brands-400.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../_static/vendor/fontawesome/6.5.1/webfonts/fa-regular-400.woff2" />

    <link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=8f2a1f02" />
    <link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
    <link rel="stylesheet" type="text/css" href="../_static/sphinx-design.min.css?v=87e54e7c" />
    <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/npm/katex@0.16.10/dist/katex.min.css" />
    <link rel="stylesheet" type="text/css" href="../_static/katex-math.css?v=91adb8b6" />
    <link rel="stylesheet" type="text/css" href="../_static/css/custom.css?v=dbe1606d" />
  
  <!-- Pre-loaded scripts that we'll load fully later -->
  <link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=bd9e20870c6007c4c509" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=bd9e20870c6007c4c509" />
  <script src="../_static/vendor/fontawesome/6.5.1/js/all.min.js?digest=bd9e20870c6007c4c509"></script>

    <script src="../_static/documentation_options.js?v=34da53a5"></script>
    <script src="../_static/doctools.js?v=9a2dae69"></script>
    <script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
    <script src="../_static/clipboard.min.js?v=a7894cd8"></script>
    <script src="../_static/copybutton.js?v=a56c686a"></script>
    <script src="../_static/design-tabs.js?v=f930bc37"></script>
    <script src="../_static/katex.min.js?v=be8ff15f"></script>
    <script src="../_static/auto-render.min.js?v=ad136472"></script>
    <script src="../_static/katex_autorenderer.js?v=bebc588a"></script>
    <script>DOCUMENTATION_OPTIONS.pagename = 'manual/ts';</script>
    <link rel="icon" href="../_static/petsc_favicon.png"/>
    <link rel="index" title="Index" href="../genindex.html" />
    <link rel="search" title="Search" href="../search.html" />
    <link rel="next" title="TAO: Optimization Solvers" href="tao.html" />
    <link rel="prev" title="SNES: Nonlinear Solvers" href="snes.html" />
  <meta name="viewport" content="width=device-width, initial-scale=1"/>
  <meta name="docsearch:language" content="en"/>
    <meta name="docbuild:last-update" content="2025-04-30T13:10:40-0500 (v3.23.1)"/>
  </head>
  
  
  <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">

  
  
  <a id="pst-skip-link" class="skip-link" href="#main-content">Skip to main content</a>
  
  <div id="pst-scroll-pixel-helper"></div>

  
  <button type="button" class="btn rounded-pill" id="pst-back-to-top">
    <i class="fa-solid fa-arrow-up"></i>
    Back to top
  </button>

  
  <input type="checkbox"
          class="sidebar-toggle"
          name="__primary"
          id="__primary"/>
  <label class="overlay overlay-primary" for="__primary"></label>
  
  <input type="checkbox"
          class="sidebar-toggle"
          name="__secondary"
          id="__secondary"/>
  <label class="overlay overlay-secondary" for="__secondary"></label>
  
  <div class="search-button__wrapper">
    <div class="search-button__overlay"></div>
    <div class="search-button__search-container">
<form class="bd-search d-flex align-items-center"
      action="../search.html"
      method="get">
  <i class="fa-solid fa-magnifying-glass"></i>
  <input type="search"
         class="form-control"
         name="q"
         id="search-input"
         placeholder="Search the docs ..."
         aria-label="Search the docs ..."
         autocomplete="off"
         autocorrect="off"
         autocapitalize="off"
         spellcheck="false"/>
  <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form></div>
  </div>

  <header>
  
    <div class="bd-header navbar navbar-expand-lg bd-navbar">
<div class="bd-header__inner bd-page-width">
  <label class="sidebar-toggle primary-toggle" for="__primary">
    <span class="fa-solid fa-bars"></span>
  </label>
  
  
  <div class="col-lg-3 navbar-header-items__start">
    
      <div class="navbar-item">

  

<a class="navbar-brand logo" href="../index.html">
  
  
  
  
  
    
    
      
    
    
    <img src="../_static/PETSc-TAO_RGB.svg" class="logo__image only-light" alt="PETSc 3.23.1 documentation - Home"/>
    <script>document.write(`<img src="../_static/PETSc-TAO_RGB_white.svg" class="logo__image only-dark" alt="PETSc 3.23.1 documentation - Home"/>`);</script>
  
  
</a></div>
    
  </div>
  
  <div class="col-lg-9 navbar-header-items">
    
    <div class="me-auto navbar-header-items__center">
      
        <div class="navbar-item">
<nav class="navbar-nav">
  <ul class="bd-navbar-elements navbar-nav">
    
                    <li class="nav-item current active">
                      <a class="nav-link nav-internal" href="../overview/index.html">
                        Overview
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../install/index.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../tutorials/index.html">
                        Tutorials
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="index.html">
                        User-Guide
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../manualpages/index.html">
                        C/Fortran API
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../petsc4py/index.html">
                        petsc4py API
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../faq/index.html">
                        FAQ
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../community/index.html">
                        Community
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../developers/index.html">
                        Developers
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../miscellaneous/index.html">
                        Misc.
                      </a>
                    </li>
                
  </ul>
</nav></div>
      
    </div>
    
    
    <div class="navbar-header-items__end">
      
        <div class="navbar-item navbar-persistent--container">
          

 <script>
 document.write(`
   <button class="btn navbar-btn search-button-field search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <i class="fa-solid fa-magnifying-glass"></i>
    <span class="search-button__default-text">Search</span>
    <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
   </button>
 `);
 </script>
        </div>
      
      
        <div class="navbar-item">

<script>
document.write(`
  <button class="btn btn-sm navbar-btn theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <span class="theme-switch nav-link" data-mode="light"><i class="fa-solid fa-sun fa-lg"></i></span>
    <span class="theme-switch nav-link" data-mode="dark"><i class="fa-solid fa-moon fa-lg"></i></span>
    <span class="theme-switch nav-link" data-mode="auto"><i class="fa-solid fa-circle-half-stroke fa-lg"></i></span>
  </button>
`);
</script></div>
      
        <div class="navbar-item"><ul class="navbar-icon-links navbar-nav"
    aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          
          <a href="https://gitlab.com/petsc/petsc" title="GitLab" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fab fa-gitlab fa-lg" aria-hidden="true"></i></span>
            <span class="sr-only">GitLab</span></a>
        </li>
</ul></div>
      
    </div>
    
  </div>
  
  
    <div class="navbar-persistent--mobile">

 <script>
 document.write(`
   <button class="btn navbar-btn search-button-field search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <i class="fa-solid fa-magnifying-glass"></i>
    <span class="search-button__default-text">Search</span>
    <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
   </button>
 `);
 </script>
    </div>
  

  
    <label class="sidebar-toggle secondary-toggle" for="__secondary" tabindex="0">
      <span class="fa-solid fa-outdent"></span>
    </label>
  
</div>

    </div>
  
  </header>

  <div class="bd-container">
    <div class="bd-container__inner bd-page-width">
      
      
      
      <div class="bd-sidebar-primary bd-sidebar">
        

  
  <div class="sidebar-header-items sidebar-primary__section">
    
    
      <div class="sidebar-header-items__center">
        
          <div class="navbar-item">
<nav class="navbar-nav">
  <ul class="bd-navbar-elements navbar-nav">
    
                    <li class="nav-item current active">
                      <a class="nav-link nav-internal" href="../overview/index.html">
                        Overview
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../install/index.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../tutorials/index.html">
                        Tutorials
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="index.html">
                        User-Guide
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../manualpages/index.html">
                        C/Fortran API
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../petsc4py/index.html">
                        petsc4py API
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../faq/index.html">
                        FAQ
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../community/index.html">
                        Community
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../developers/index.html">
                        Developers
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../miscellaneous/index.html">
                        Misc.
                      </a>
                    </li>
                
  </ul>
</nav></div>
        
      </div>
    
    
    
      <div class="sidebar-header-items__end">
        
          <div class="navbar-item">

<script>
document.write(`
  <button class="btn btn-sm navbar-btn theme-switch-button" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
    <span class="theme-switch nav-link" data-mode="light"><i class="fa-solid fa-sun fa-lg"></i></span>
    <span class="theme-switch nav-link" data-mode="dark"><i class="fa-solid fa-moon fa-lg"></i></span>
    <span class="theme-switch nav-link" data-mode="auto"><i class="fa-solid fa-circle-half-stroke fa-lg"></i></span>
  </button>
`);
</script></div>
        
          <div class="navbar-item"><ul class="navbar-icon-links navbar-nav"
    aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          
          <a href="https://gitlab.com/petsc/petsc" title="GitLab" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fab fa-gitlab fa-lg" aria-hidden="true"></i></span>
            <span class="sr-only">GitLab</span></a>
        </li>
</ul></div>
        
      </div>
    
  </div>
  
    <div class="sidebar-primary-items__start sidebar-primary__section">
        <div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
     aria-label="Section Navigation">
  <p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
  <div class="bd-toc-item navbar-nav"><ul class="current nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../overview/nutshell.html">PETSc in a nutshell</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/features.html">Supported Systems</a></li>

<li class="toctree-l1"><a class="reference internal" href="../overview/gpu_roadmap.html">GPU Support Roadmap</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/vector_table.html">Summary of Vector Types Available In PETSc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/matrix_table.html">Summary of Matrix Types Available In PETSc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/linear_solve_table.html">Summary of Sparse Linear Solvers Available In PETSc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/nonlinear_solve_table.html">Summary of Nonlinear Solvers Available In PETSc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/integrator_table.html">Summary of Time Integrators Available In PETSc</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/tao_solve_table.html">Summary of Tao Solvers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/discrete_table.html">Summary of Discretization Management Systems</a></li>
<li class="toctree-l1"><a class="reference internal" href="../overview/plex_transform_table.html">Summary of Unstructured Mesh Transformations</a></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="index.html">User-Guide</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-1"><i class="fa-solid fa-chevron-down"></i></label><ul class="current">
<li class="toctree-l2 has-children"><a class="reference internal" href="introduction.html">Introduction to PETSc</a><input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-2"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="about_this_manual.html">About This Manual</a></li>
<li class="toctree-l3"><a class="reference internal" href="getting_started.html">Getting Started</a></li>






</ul>
</li>
<li class="toctree-l2 current active has-children"><a class="reference internal" href="programming.html">The Solvers in PETSc/TAO</a><input checked="" class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-3"><i class="fa-solid fa-chevron-down"></i></label><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="vec.html">Vectors and Parallel Data</a></li>
<li class="toctree-l3"><a class="reference internal" href="mat.html">Matrices</a></li>
<li class="toctree-l3"><a class="reference internal" href="ksp.html">KSP: Linear System Solvers</a></li>
<li class="toctree-l3"><a class="reference internal" href="snes.html">SNES: Nonlinear Solvers</a></li>
<li class="toctree-l3 current active"><a class="current reference internal" href="#">TS: Scalable ODE and DAE Solvers</a></li>

<li class="toctree-l3"><a class="reference internal" href="tao.html">TAO: Optimization Solvers</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="dm.html">DM: Interfacing Between Solvers and Models/Discretizations</a><input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-4"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="dmbase.html">DM Basics</a></li>
<li class="toctree-l3"><a class="reference internal" href="section.html">PetscSection: Connecting Grids to Data</a></li>
<li class="toctree-l3"><a class="reference internal" href="dmplex.html">DMPlex: Unstructured Grids</a></li>
<li class="toctree-l3"><a class="reference internal" href="dmstag.html">DMSTAG: Staggered, Structured Grid</a></li>
<li class="toctree-l3"><a class="reference internal" href="dmnetwork.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="dt.html">PetscDT: Discretization Technology in PETSc</a></li>
<li class="toctree-l3"><a class="reference internal" href="fe.html">PetscFE: Finite Element Infrastructure in PETSc</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="additional.html">Additional Information</a><input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-5"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="fortran.html">PETSc for Fortran Users</a></li>
<li class="toctree-l3"><a class="reference internal" href="versionchecking.html">Checking the PETSc version</a></li>
<li class="toctree-l3"><a class="reference internal" href="matlab.html">Using MATLAB with PETSc</a></li>
<li class="toctree-l3"><a class="reference internal" href="profiling.html">Profiling</a></li>
<li class="toctree-l3"><a class="reference internal" href="performance.html">Hints for Performance Tuning</a></li>
<li class="toctree-l3"><a class="reference internal" href="streams.html">STREAMS: Example Study</a></li>
<li class="toctree-l3"><a class="reference internal" href="blas-lapack.html">The Use of BLAS and LAPACK in PETSc and external libraries</a></li>
<li class="toctree-l3"><a class="reference internal" href="other.html">Other PETSc Features</a></li>

<li class="toctree-l3"><a class="reference internal" href="advanced.html">Advanced Features of Matrices and Solvers</a></li>
<li class="toctree-l3"><a class="reference internal" href="tests.html">Running PETSc Tests</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../manualpages/index.html">C/Fortran API</a><input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-6"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Vector.html">Vectors and Index Sets</a><input class="toctree-checkbox" id="toctree-checkbox-7" name="toctree-checkbox-7" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-7"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Vec/index.html">Vector Operations (Vec)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/IS/index.html">Index sets (IS)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Matrix.html">Matrices and Matrix Operations</a><input class="toctree-checkbox" id="toctree-checkbox-8" name="toctree-checkbox-8" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-8"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Mat/index.html">Matrix Operations (Mat)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/MatGraphOperations/index.html">Matrix colorings (MatColoring), orderings (MatOrdering), partitionings (MatPartitioning), and coarsening (MatCoarsen)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/MatFD/index.html">Finite difference computation of Jacobians (MatFD)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/DataLayout.html">Data Layout and Communication</a><input class="toctree-checkbox" id="toctree-checkbox-9" name="toctree-checkbox-9" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-9"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/PetscSF/index.html">Star Forest Communication (PetscSF)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/PetscSection/index.html">Section Data Layout (PetscSection)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/AO/index.html">Application Orderings (AO)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/DataManagement.html">Data Management between Vec and Mat, and Distributed Mesh Data Structures</a><input class="toctree-checkbox" id="toctree-checkbox-10" name="toctree-checkbox-10" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-10"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DM/index.html">Data Management (DM)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMDA/index.html">Structured Grids (DMDA)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMStag/index.html">Staggered, Structured Grids (DMSTAG)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMPlex/index.html">Unstructured Grids and Cell Complexes (DMPLEX)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMNetwork/index.html">Graphs and Networks (DMNETWORK)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMForest/index.html">A Forest of Trees and Structured Adaptive Refinement (DMFOREST)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMPatch/index.html">Sequences of parallel mesh patches (DMPATCH)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMSwarm/index.html">Particle Discretizations (DMSWARM)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMMOAB/index.html">MOAB Mesh Representation (DMMOAB)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMLabel/index.html">Selecting Parts of Meshes (DMLabel)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMPRODUCT/index.html">Tensor products of meshes (DMRODUCT)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DMComposite/index.html">DMComposite</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Discretization.html">Discretization and Function Spaces</a><input class="toctree-checkbox" id="toctree-checkbox-11" name="toctree-checkbox-11" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-11"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DT/index.html">Discretization Technology and Quadrature (DT)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/SPACE/index.html">Function Spaces (PetscSpace)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/DUALSPACE/index.html">Dual Spaces (PetscDualSpace)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/FE/index.html">Finite Elements (PetscFE)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/FV/index.html">Finite Volumes (PetscFV)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/PF/index.html">Defining your own mathematical functions (PF)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/LANDAU/index.html">Landau Collision Operator</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/LinearSolvers.html">Linear Solvers and Preconditioners</a><input class="toctree-checkbox" id="toctree-checkbox-12" name="toctree-checkbox-12" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-12"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/KSP/index.html">Linear Solvers and Krylov Methods (KSP)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/PC/index.html">Preconditioners (PC)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/NonlinearSolvers.html">Nonlinear Solvers</a><input class="toctree-checkbox" id="toctree-checkbox-13" name="toctree-checkbox-13" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-13"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/SNES/index.html">Nonlinear Solvers (SNES)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/SNESFAS/index.html">Full Approximation Scheme (FAS) nonlinear multigrid</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Timestepping.html">Forward and Adjoint Timestepping</a><input class="toctree-checkbox" id="toctree-checkbox-14" name="toctree-checkbox-14" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-14"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/TS/index.html">Time Stepping ODE and DAE Solvers (TS)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Sensitivity/index.html">Sensitivity Analysis for ODE and DAE</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Characteristic/index.html">Semi-Lagrangian Solves using the Method of Characteristics</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Optimization.html">Optimization</a><input class="toctree-checkbox" id="toctree-checkbox-15" name="toctree-checkbox-15" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-15"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Tao/index.html">Optimization Solvers (Tao)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/TaoLineSearch/index.html">Optimization Line Search (TaoLineSearch)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/Visualization.html">Graphics and Visualization</a><input class="toctree-checkbox" id="toctree-checkbox-16" name="toctree-checkbox-16" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-16"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Draw/index.html">Graphics (Draw)</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Viewer/index.html">Viewing Objects (Viewer)</a></li>
</ul>
</li>
<li class="toctree-l2 has-children"><a class="reference internal" href="../manualpages/System.html">System Routines, Profiling, Data Structures</a><input class="toctree-checkbox" id="toctree-checkbox-17" name="toctree-checkbox-17" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-17"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Sys/index.html">PETSc Options, IO, and System Utilities</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/PetscH/index.html">Hash Tables</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Log/index.html">Profiling and Logging</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Device/index.html">Device</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Matlab/index.html">Matlab</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/Bag/index.html">Bag</a></li>
<li class="toctree-l3"><a class="reference internal" href="../manualpages/BM/index.html">Benchmarks (BM)</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../changes/index.html">Changes for each release</a></li>
<li class="toctree-l2"><a class="reference internal" href="../manualpages/singleindex.html">Single Index of all PETSc Manual Pages</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../changes/index.html">Changes for each release</a></li>
<li class="toctree-l1"><a class="reference internal" href="../manualpages/singleindex.html">Single Index of all PETSc Manual Pages</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../overview/previous_release_docs.html">Documentation for previous PETSc releases</a><input class="toctree-checkbox" id="toctree-checkbox-18" name="toctree-checkbox-18" type="checkbox"/><label class="toctree-toggle" for="toctree-checkbox-18"><i class="fa-solid fa-chevron-down"></i></label><ul>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.22/docs"> 3.22</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.21/docs"> 3.21</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.20/docs"> 3.20</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.19/docs"> 3.19</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.18/docs"> 3.18</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.17/docs"> 3.17</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.16/docs"> 3.16</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.15/docs"> 3.15</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.14/docs"> 3.14</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.13/docs"> 3.13</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.12/docs"> 3.12</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.11/docs"> 3.11</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.10/docs"> 3.10</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.9/docs"> 3.9</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.8/docs"> 3.8</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.7/docs"> 3.7</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.6/docs"> 3.6</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.5/docs"> 3.5</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.4/docs"> 3.4</a></li>
<li class="toctree-l2"><a class="reference external" href="https://web.cels.anl.gov/projects/petsc/vault/petsc-3.3/docs"> 3.3</a></li>
</ul>
</li>
</ul>
</div>
</nav></div>
    </div>
  
  
  <div class="sidebar-primary-items__end sidebar-primary__section">
  </div>
  
  <div id="rtd-footer-container"></div>


      </div>
      
      <main id="main-content" class="bd-main">
        
        
          <div class="bd-content">
            <div class="bd-article-container">
              
              <div class="bd-header-article">
<div class="header-article-items header-article__inner">
  
    <div class="header-article-items__start">
      
        <div class="header-article-item">





<nav aria-label="Breadcrumb">
  <ul class="bd-breadcrumbs">
    
    <li class="breadcrumb-item breadcrumb-home">
      <a href="../index.html" class="nav-link" aria-label="Home">
        <i class="fa-solid fa-home"></i>
      </a>
    </li>
    
    <li class="breadcrumb-item"><a href="../overview/index.html" class="nav-link">Overview</a></li>
    
    
    <li class="breadcrumb-item"><i class="fa-solid fa-ellipsis"></i></li>
    
    
    <li class="breadcrumb-item"><a href="programming.html" class="nav-link">The Solvers in PETSc/TAO</a></li>
    
    <li class="breadcrumb-item active" aria-current="page">TS:...</li>
  </ul>
</nav>
</div>
      
    </div>
  
  
</div>
</div>
              
              
              
                
<div id="searchbox"></div>
                <article class="bd-article">
                  
  <section class="tex2jax_ignore mathjax_ignore" id="ts-scalable-ode-and-dae-solvers">
<span id="ch-ts"></span><h1>TS: Scalable ODE and DAE Solvers<a class="headerlink" href="#ts-scalable-ode-and-dae-solvers" title="Link to this heading">#</a></h1>
<p>The <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TS.html">TS</a></span></code> library provides a framework for the scalable solution of
ODEs and DAEs arising from the discretization of time-dependent PDEs.</p>
<p><strong>Simple Example:</strong> Consider the PDE</p>
<div class="math">
\[
u_t = u_{xx}
\]</div>
<p>discretized with centered finite differences in space yielding the
semi-discrete equation</p>
<div class="math">
\[
\begin{aligned}
          (u_i)_t & =  & \frac{u_{i+1} - 2 u_{i} + u_{i-1}}{h^2}, \\
           u_t      &  = & \tilde{A} u;\end{aligned}
\]</div>
<p>or with piecewise linear finite elements approximation in space
<span class="math">\(u(x,t) \doteq \sum_i \xi_i(t) \phi_i(x)\)</span> yielding the
semi-discrete equation</p>
<div class="math">
\[
B {\xi}'(t) = A \xi(t)
\]</div>
<p>Now applying the backward Euler method results in</p>
<div class="math">
\[
( B - dt^n A  ) u^{n+1} = B u^n,
\]</div>
<p>in which</p>
<div class="math">
\[
{u^n}_i = \xi_i(t_n) \doteq u(x_i,t_n),
\]</div>
<div class="math">
\[
{\xi}'(t_{n+1}) \doteq \frac{{u^{n+1}}_i - {u^{n}}_i }{dt^{n}},
\]</div>
<p><span class="math">\(A\)</span> is the stiffness matrix, and <span class="math">\(B\)</span> is the identity for
finite differences or the mass matrix for the finite element method.</p>
<p>The PETSc interface for solving time dependent problems assumes the
problem is written in the form</p>
<div class="math">
\[
F(t,u,\dot{u}) = G(t,u), \quad u(t_0) = u_0.
\]</div>
<p>In general, this is a differential algebraic equation (DAE) <a class="footnote-reference brackets" href="#id9" id="id1" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a>. For
ODE with nontrivial mass matrices such as arise in FEM, the implicit/DAE
interface significantly reduces overhead to prepare the system for
algebraic solvers (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code>/<code class="docutils notranslate"><span class="pre"><a href="../manualpages/KSP/KSP.html">KSP</a></span></code>) by having the user assemble the
correctly shifted matrix. Therefore this interface is also useful for
ODE systems.</p>
<p>To solve an ODE or DAE one uses:</p>
<ul>
<li><p>Function <span class="math">\(F(t,u,\dot{u})\)</span></p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetIFunction.html">TSSetIFunction</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">R</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">f</span><span class="p">)(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">funP</span><span class="p">);</span>
</pre></div>
</div>
<p>The vector <code class="docutils notranslate"><span class="pre">R</span></code> is an optional location to store the residual. The
arguments to the function <code class="docutils notranslate"><span class="pre">f()</span></code> are the timestep context, current
time, input state <span class="math">\(u\)</span>, input time derivative <span class="math">\(\dot{u}\)</span>,
and the (optional) user-provided context <code class="docutils notranslate"><span class="pre">funP</span></code>. If
<span class="math">\(F(t,u,\dot{u}) = \dot{u}\)</span> then one need not call this
function.</p>
</li>
<li><p>Function <span class="math">\(G(t,u)\)</span>, if it is nonzero, is provided with the
function</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetRHSFunction.html">TSSetRHSFunction</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">R</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">f</span><span class="p">)(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">funP</span><span class="p">);</span>
</pre></div>
</div>
</li>
<li><p>Jacobian</p>
<p><span class="math">\(\sigma F_{\dot{u}}(t^n,u^n,\dot{u}^n) + F_u(t^n,u^n,\dot{u}^n)\)</span></p>
<p>If using a fully implicit or semi-implicit (IMEX) method one also
can provide an appropriate (approximate) Jacobian matrix of</p>
<p><span class="math">\(F()\)</span></p>
<p>.</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetIJacobian.html">TSSetIJacobian</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">A</span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">B</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">fjac</span><span class="p">)(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">jacP</span><span class="p">);</span>
</pre></div>
</div>
<p>The arguments for the function <code class="docutils notranslate"><span class="pre">fjac()</span></code> are the timestep context,
current time, input state <span class="math">\(u\)</span>, input derivative
<span class="math">\(\dot{u}\)</span>, input shift <span class="math">\(\sigma\)</span>, matrix <span class="math">\(A\)</span>,
preconditioning matrix <span class="math">\(B\)</span>, and the (optional) user-provided
context <code class="docutils notranslate"><span class="pre">jacP</span></code>.</p>
<p>The Jacobian needed for the nonlinear system is, by the chain rule,</p>
<div class="math">
\[
  \begin{aligned}
      \frac{d F}{d u^n} &  = &  \frac{\partial F}{\partial \dot{u}}|_{u^n} \frac{\partial \dot{u}}{\partial u}|_{u^n} + \frac{\partial F}{\partial u}|_{u^n}.\end{aligned}
  \]</div>
<p>For any ODE integration method the approximation of <span class="math">\(\dot{u}\)</span>
is linear in <span class="math">\(u^n\)</span> hence
<span class="math">\(\frac{\partial \dot{u}}{\partial u}|_{u^n} = \sigma\)</span>, where
the shift <span class="math">\(\sigma\)</span> depends on the ODE integrator and time step
but not on the function being integrated. Thus</p>
<div class="math">
\[
  \begin{aligned}
      \frac{d F}{d u^n} &  = &    \sigma F_{\dot{u}}(t^n,u^n,\dot{u}^n) + F_u(t^n,u^n,\dot{u}^n).\end{aligned}
  \]</div>
<p>This explains why the user provide Jacobian is in the given form for
all integration methods. An equivalent way to derive the formula is
to note that</p>
<div class="math">
\[
  F(t^n,u^n,\dot{u}^n) = F(t^n,u^n,w+\sigma*u^n)
  \]</div>
<p>where <span class="math">\(w\)</span> is some linear combination of previous time solutions
of <span class="math">\(u\)</span> so that</p>
<div class="math">
\[
  \frac{d F}{d u^n} = \sigma F_{\dot{u}}(t^n,u^n,\dot{u}^n) + F_u(t^n,u^n,\dot{u}^n)
  \]</div>
<p>again by the chain rule.</p>
<p>For example, consider backward Euler’s method applied to the ODE
<span class="math">\(F(t, u, \dot{u}) = \dot{u} - f(t, u)\)</span> with
<span class="math">\(\dot{u} = (u^n - u^{n-1})/\delta t\)</span> and
<span class="math">\(\frac{\partial \dot{u}}{\partial u}|_{u^n} = 1/\delta t\)</span>
resulting in</p>
<div class="math">
\[
  \begin{aligned}
      \frac{d F}{d u^n} & = &   (1/\delta t)F_{\dot{u}} + F_u(t^n,u^n,\dot{u}^n).\end{aligned}
  \]</div>
<p>But <span class="math">\(F_{\dot{u}} = 1\)</span>, in this special case, resulting in the
expected Jacobian <span class="math">\(I/\delta t - f_u(t,u^n)\)</span>.</p>
</li>
<li><p>Jacobian</p>
<p><span class="math">\(G_u\)</span></p>
<p>If using a fully implicit method and the function</p>
<p><span class="math">\(G()\)</span></p>
<p>is
provided, one also can provide an appropriate (approximate)
Jacobian matrix of</p>
<p><span class="math">\(G()\)</span></p>
<p>.</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetRHSJacobian.html">TSSetRHSJacobian</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">A</span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">B</span><span class="p">,</span>
<span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">fjac</span><span class="p">)(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">jacP</span><span class="p">);</span>
</pre></div>
</div>
<p>The arguments for the function <code class="docutils notranslate"><span class="pre">fjac()</span></code> are the timestep context,
current time, input state <span class="math">\(u\)</span>, matrix <span class="math">\(A\)</span>,
preconditioning matrix <span class="math">\(B\)</span>, and the (optional) user-provided
context <code class="docutils notranslate"><span class="pre">jacP</span></code>.</p>
</li>
</ul>
<p>Providing appropriate <span class="math">\(F()\)</span> and <span class="math">\(G()\)</span> for your problem
allows for the easy runtime switching between explicit, semi-implicit
(IMEX), and fully implicit methods.</p>
<section id="basic-ts-options">
<span id="sec-ts-basic"></span><h2>Basic TS Options<a class="headerlink" href="#basic-ts-options" title="Link to this heading">#</a></h2>
<p>The user first creates a <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TS.html">TS</a></span></code> object with the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="kt">int</span><span class="w"> </span><span class="nf"><a href="../manualpages/TS/TSCreate.html">TSCreate</a></span><span class="p">(</span><span class="n"><a href="../manualpages/Sys/MPI_Comm.html">MPI_Comm</a></span><span class="w"> </span><span class="n">comm</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="o">*</span><span class="n">ts</span><span class="p">);</span>
</pre></div>
</div>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="kt">int</span><span class="w"> </span><span class="nf"><a href="../manualpages/TS/TSSetProblemType.html">TSSetProblemType</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TSProblemType.html">TSProblemType</a></span><span class="w"> </span><span class="n">problemtype</span><span class="p">);</span>
</pre></div>
</div>
<p>The <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSProblemType.html">TSProblemType</a></span></code> is one of <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSProblemType.html">TS_LINEAR</a></span></code> or <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSProblemType.html">TS_NONLINEAR</a></span></code>.</p>
<p>To set up <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TS.html">TS</a></span></code> for solving an ODE, one must set the “initial
conditions” for the ODE with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetSolution.html">TSSetSolution</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">initialsolution</span><span class="p">);</span>
</pre></div>
</div>
<p>One can set the solution method with the routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetType.html">TSSetType</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TSType.html">TSType</a></span><span class="w"> </span><span class="n">type</span><span class="p">);</span>
</pre></div>
</div>
<p>Some of the currently supported types are <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSEULER.html">TSEULER</a></span></code>, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRK.html">TSRK</a></span></code> (Runge-Kutta), <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSBEULER.html">TSBEULER</a></span></code>, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSCN.html">TSCN</a></span></code> (Crank-Nicolson), <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSTHETA.html">TSTHETA</a></span></code>, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSGLLE.html">TSGLLE</a></span></code> (generalized linear), and <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSPSEUDO.html">TSPSEUDO</a></span></code>.
They can also be set with the options database option <code class="docutils notranslate"><span class="pre">-ts_type</span> <span class="pre">euler,</span> <span class="pre">rk,</span> <span class="pre">beuler,</span> <span class="pre">cn,</span> <span class="pre">theta,</span> <span class="pre">gl,</span> <span class="pre">pseudo,</span> <span class="pre">sundials,</span> <span class="pre">eimex,</span> <span class="pre">arkimex,</span> <span class="pre">rosw</span></code>.
A list of available methods is given in <a class="reference internal" href="../overview/integrator_table.html#integrator-table"><span class="std std-ref">Summary of Time Integrators Available In PETSc</span></a>.</p>
<p>Set the initial time with the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetTime.html">TSSetTime</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">time</span><span class="p">);</span>
</pre></div>
</div>
<p>One can change the timestep with the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetTimeStep.html">TSSetTimeStep</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">dt</span><span class="p">);</span>
</pre></div>
</div>
<p>can determine the current timestep with the routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSGetTimeStep.html">TSGetTimeStep</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="o">*</span><span class="w"> </span><span class="n">dt</span><span class="p">);</span>
</pre></div>
</div>
<p>Here, “current” refers to the timestep being used to attempt to promote
the solution form <span class="math">\(u^n\)</span> to <span class="math">\(u^{n+1}.\)</span></p>
<p>One sets the total number of timesteps to run or the total time to run
(whatever is first) with the commands</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetMaxSteps.html">TSSetMaxSteps</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">maxsteps</span><span class="p">);</span>
<span class="n"><a href="../manualpages/TS/TSSetMaxTime.html">TSSetMaxTime</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">maxtime</span><span class="p">);</span>
</pre></div>
</div>
<p>and determines the behavior near the final time with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetExactFinalTime.html">TSSetExactFinalTime</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TSExactFinalTimeOption.html">TSExactFinalTimeOption</a></span><span class="w"> </span><span class="n">eftopt</span><span class="p">);</span>
</pre></div>
</div>
<p>where <code class="docutils notranslate"><span class="pre">eftopt</span></code> is one of
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSExactFinalTimeOption.html">TS_EXACTFINALTIME_STEPOVER</a></span></code>,<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSExactFinalTimeOption.html">TS_EXACTFINALTIME_INTERPOLATE</a></span></code>, or
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSExactFinalTimeOption.html">TS_EXACTFINALTIME_MATCHSTEP</a></span></code>. One performs the requested number of
time steps with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSolve.html">TSSolve</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">U</span><span class="p">);</span>
</pre></div>
</div>
<p>The solve call implicitly sets up the timestep context; this can be done
explicitly with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetUp.html">TSSetUp</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">);</span>
</pre></div>
</div>
<p>One destroys the context with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSDestroy.html">TSDestroy</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="o">*</span><span class="n">ts</span><span class="p">);</span>
</pre></div>
</div>
<p>and views it with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSView.html">TSView</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Viewer/PetscViewer.html">PetscViewer</a></span><span class="w"> </span><span class="n">viewer</span><span class="p">);</span>
</pre></div>
</div>
<p>In place of <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSolve.html">TSSolve</a>()</span></code>, a single step can be taken using</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSStep.html">TSStep</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">);</span>
</pre></div>
</div>
</section>
<section id="dae-formulations">
<span id="sec-imex"></span><h2>DAE Formulations<a class="headerlink" href="#dae-formulations" title="Link to this heading">#</a></h2>
<p>You can find a discussion of DAEs in <span id="id2">[<a class="reference internal" href="#id1010" title="Uri M Ascher and Linda R Petzold. Computer methods for ordinary differential equations and differential-algebraic equations. Volume 61. SIAM, 1998.">AP98</a>]</span> or <a class="reference external" href="http://www.scholarpedia.org/article/Differential-algebraic_equations">Scholarpedia</a>. In PETSc, TS deals with the semi-discrete form of the equations, so that space has already been discretized. If the DAE depends explicitly on the coordinate <span class="math">\(x\)</span>, then this will just appear as any other data for the equation, not as an explicit argument. Thus we have</p>
<div class="math">
\[
F(t, u, \dot{u}) = 0
\]</div>
<p>In this form, only fully implicit solvers are appropriate. However, specialized solvers for restricted forms of DAE are supported by PETSc. Below we consider an ODE which is augmented with algebraic constraints on the variables.</p>
<section id="hessenberg-index-1-dae">
<h3>Hessenberg Index-1 DAE<a class="headerlink" href="#hessenberg-index-1-dae" title="Link to this heading">#</a></h3>
<blockquote>
<div><p>This is a Semi-Explicit Index-1 DAE which has the form</p>
</div></blockquote>
<div class="math">
\[
\begin{aligned}
  \dot{u} &= f(t, u, z) \\
        0 &= h(t, u, z)
\end{aligned}
\]</div>
<p>where <span class="math">\(z\)</span> is a new constraint variable, and the Jacobian <span class="math">\(\frac{dh}{dz}\)</span> is non-singular everywhere. We have suppressed the <span class="math">\(x\)</span> dependence since it plays no role here. Using the non-singularity of the Jacobian and the Implicit Function Theorem, we can solve for <span class="math">\(z\)</span> in terms of <span class="math">\(u\)</span>. This means we could, in principle, plug <span class="math">\(z(u)\)</span> into the first equation to obtain a simple ODE, even if this is not the numerical process we use. Below we show that this type of DAE can be used with IMEX schemes.</p>
</section>
<section id="hessenberg-index-2-dae">
<h3>Hessenberg Index-2 DAE<a class="headerlink" href="#hessenberg-index-2-dae" title="Link to this heading">#</a></h3>
<blockquote>
<div><p>This DAE has the form</p>
</div></blockquote>
<div class="math">
\[
\begin{aligned}
  \dot{u} &= f(t, u, z) \\
        0 &= h(t, u)
\end{aligned}
\]</div>
<p>Notice that the constraint equation <span class="math">\(h\)</span> is not a function of the constraint variable <span class="math">\(z\)</span>. This means that we cannot naively invert as we did in the index-1 case. Our strategy will be to convert this into an index-1 DAE using a time derivative, which loosely corresponds to the idea of an index being the number of derivatives necessary to get back to an ODE. If we differentiate the constraint equation with respect to time, we can use the ODE to simplify it,</p>
<div class="math">
\[
\begin{aligned}
        0 &= \dot{h}(t, u) \\
          &= \frac{dh}{du} \dot{u} + \frac{\partial h}{\partial t} \\
          &= \frac{dh}{du} f(t, u, z) + \frac{\partial h}{\partial t}
\end{aligned}
\]</div>
<p>If the Jacobian <span class="math">\(\frac{dh}{du} \frac{df}{dz}\)</span> is non-singular, then we have precisely a semi-explicit index-1 DAE, and we can once again use the PETSc IMEX tools to solve it. A common example of an index-2 DAE is the incompressible Navier-Stokes equations, since the continuity equation <span class="math">\(\nabla\cdot u = 0\)</span> does not involve the pressure. Using PETSc IMEX with the above conversion then corresponds to the Segregated Runge-Kutta method applied to this equation <span id="id3">[<a class="reference internal" href="#id1011" title="Oriol Colomés and Santiago Badia. Segregated Runge–Kutta methods for the incompressible Navier–Stokes equations. International Journal for Numerical Methods in Engineering, 105(5):372–400, 2016.">ColomesB16</a>]</span>.</p>
</section>
</section>
<section id="using-implicit-explicit-imex-methods">
<h2>Using Implicit-Explicit (IMEX) Methods<a class="headerlink" href="#using-implicit-explicit-imex-methods" title="Link to this heading">#</a></h2>
<p>For “stiff” problems or those with multiple time scales <span class="math">\(F()\)</span> will
be treated implicitly using a method suitable for stiff problems and
<span class="math">\(G()\)</span> will be treated explicitly when using an IMEX method like
TSARKIMEX. <span class="math">\(F()\)</span> is typically linear or weakly nonlinear while
<span class="math">\(G()\)</span> may have very strong nonlinearities such as arise in
non-oscillatory methods for hyperbolic PDE. The user provides three
pieces of information, the APIs for which have been described above.</p>
<ul class="simple">
<li><p>“Slow” part <span class="math">\(G(t,u)\)</span> using <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetRHSFunction.html">TSSetRHSFunction</a>()</span></code>.</p></li>
<li><p>“Stiff” part <span class="math">\(F(t,u,\dot u)\)</span> using <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetIFunction.html">TSSetIFunction</a>()</span></code>.</p></li>
<li><p>Jacobian <span class="math">\(F_u + \sigma F_{\dot u}\)</span> using <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetIJacobian.html">TSSetIJacobian</a>()</span></code>.</p></li>
</ul>
<p>The user needs to set <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetEquationType.html">TSSetEquationType</a>()</span></code> to <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSEquationType.html">TS_EQ_IMPLICIT</a></span></code> or
higher if the problem is implicit; e.g.,
<span class="math">\(F(t,u,\dot u) = M \dot u - f(t,u)\)</span>, where <span class="math">\(M\)</span> is not the
identity matrix:</p>
<ul class="simple">
<li><p>the problem is an implicit ODE (defined implicitly through
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetIFunction.html">TSSetIFunction</a>()</span></code>) or</p></li>
<li><p>a DAE is being solved.</p></li>
</ul>
<p>An IMEX problem representation can be made implicit by setting <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSARKIMEXSetFullyImplicit.html">TSARKIMEXSetFullyImplicit</a>()</span></code>.
Note that multilevel preconditioners (e.g. <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PCMG.html">PCMG</a></span></code>), won’t work in the fully implicit case; the
same holds true for any other <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TS.html">TS</a></span></code> type requiring a fully implicit formulation in case both
Jacobians are specified.</p>
<p>In PETSc, DAEs and ODEs are formulated as <span class="math">\(F(t,u,\dot{u})=G(t,u)\)</span>, where <span class="math">\(F()\)</span> is meant to be integrated implicitly and <span class="math">\(G()\)</span> explicitly. An IMEX formulation such as <span class="math">\(M\dot{u}=f(t,u)+g(t,u)\)</span> requires the user to provide <span class="math">\(M^{-1} g(t,u)\)</span> or solve <span class="math">\(g(t,u) - M x=0\)</span> in place of <span class="math">\(G(t,u)\)</span>. General cases such as <span class="math">\(F(t,u,\dot{u})=G(t,u)\)</span> are not amenable to IMEX Runge-Kutta, but can be solved by using fully implicit methods. Some use-case examples for <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSARKIMEX.html">TSARKIMEX</a></span></code> are listed in <a class="reference internal" href="#tab-de-forms"><span class="std std-numref">Table 13</span></a> and a list of methods with a summary of their properties is given in <a class="reference internal" href="#tab-imex-rk-petsc"><span class="std std-ref">IMEX Runge-Kutta schemes</span></a>.</p>
<table class="table" id="tab-de-forms">
<caption><span class="caption-number">Table 13 </span><span class="caption-text">Use case examples for <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSARKIMEX.html">TSARKIMEX</a></span></code></span><a class="headerlink" href="#tab-de-forms" title="Link to this table">#</a></caption>
<colgroup>
<col style="width: 25.0%" />
<col style="width: 25.0%" />
<col style="width: 50.0%" />
</colgroup>
<tbody>
<tr class="row-odd"><td><p><span class="math">\(\dot{u} = g(t,u)\)</span></p></td>
<td><p>nonstiff ODE</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= \dot{u} \\ G(t,u) &amp;= g(t,u)\end{aligned}\)</span></p></td>
</tr>
<tr class="row-even"><td><p><span class="math">\(M \dot{u} = g(t,u)\)</span></p></td>
<td><p>nonstiff ODE with mass matrix</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= \dot{u} \\ G(t,u) &amp;= M^{-1} g(t,u)\end{aligned}\)</span></p></td>
</tr>
<tr class="row-odd"><td><p><span class="math">\(\dot{u} = f(t,u)\)</span></p></td>
<td><p>stiff ODE</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= \dot{u} - f(t,u) \\ G(t,u) &amp;= 0\end{aligned}\)</span></p></td>
</tr>
<tr class="row-even"><td><p><span class="math">\(M \dot{u} = f(t,u)\)</span></p></td>
<td><p>stiff ODE with mass matrix</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= M \dot{u} - f(t,u) \\ G(t,u) &amp;= 0\end{aligned}\)</span></p></td>
</tr>
<tr class="row-odd"><td><p><span class="math">\(\dot{u} = f(t,u) + g(t,u)\)</span></p></td>
<td><p>stiff-nonstiff ODE</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= \dot{u} - f(t,u) \\ G(t,u) &amp;= g(t,u)\end{aligned}\)</span></p></td>
</tr>
<tr class="row-even"><td><p><span class="math">\(M \dot{u} = f(t,u) + g(t,u)\)</span></p></td>
<td><p>stiff-nonstiff ODE with mass matrix</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= M\dot{u} - f(t,u) \\ G(t,u) &amp;= M^{-1} g(t,u)\end{aligned}\)</span></p></td>
</tr>
<tr class="row-odd"><td><p><span class="math">\(\begin{aligned}\dot{u} &amp;= f(t,u,z) + g(t,u,z)\\0 &amp;= h(t,y,z)\end{aligned}\)</span></p></td>
<td><p>semi-explicit index-1 DAE</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= \begin{pmatrix}\dot{u} - f(t,u,z)\\h(t, u, z)\end{pmatrix}\\G(t,u) &amp;= g(t,u)\end{aligned}\)</span></p></td>
</tr>
<tr class="row-even"><td><p><span class="math">\(f(t,u,\dot{u})=0\)</span></p></td>
<td><p>fully implicit ODE/DAE</p></td>
<td><p><span class="math">\(\begin{aligned}F(t,u,\dot{u}) &amp;= f(t,u,\dot{u})\\G(t,u) &amp;= 0\end{aligned}\)</span>; the user needs to set <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetEquationType.html">TSSetEquationType</a>()</span></code> to <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSEquationType.html">TS_EQ_IMPLICIT</a></span></code> or higher</p></td>
</tr>
</tbody>
</table>
<p><a class="reference internal" href="#tab-imex-rk-petsc"><span class="std std-numref">Table 14</span></a> lists of the currently available IMEX Runge-Kutta schemes. For each method, it gives the <code class="docutils notranslate"><span class="pre">-ts_arkimex_type</span></code> name, the reference, the total number of stages/implicit stages, the order/stage-order, the implicit stability properties (IM), stiff accuracy (SA), the existence of an embedded scheme, and dense output (DO).</p>
<table class="table" id="tab-imex-rk-petsc">
<caption><span class="caption-number">Table 14 </span><span class="caption-text">IMEX Runge-Kutta schemes</span><a class="headerlink" href="#tab-imex-rk-petsc" title="Link to this table">#</a></caption>
<thead>
<tr class="row-odd"><th class="head"><p>Name</p></th>
<th class="head"><p>Reference</p></th>
<th class="head"><p>Stages (IM)</p></th>
<th class="head"><p>Order (Stage)</p></th>
<th class="head"><p>IM</p></th>
<th class="head"><p>SA</p></th>
<th class="head"><p>Embed</p></th>
<th class="head"><p>DO</p></th>
<th class="head"><p>Remarks</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>a2</p></td>
<td><p>based on CN</p></td>
<td><p>2 (1)</p></td>
<td><p>2 (2)</p></td>
<td><p>A-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (1)</p></td>
<td><p>yes (2)</p></td>
<td></td>
</tr>
<tr class="row-odd"><td><p>l2</p></td>
<td><p>SSP2(2,2,2) <span id="id1">[<a class="reference internal" href="../manualpages/TS/TSARKIMEXPRSSP2.html#id1007" title="L. Pareschi and G. Russo. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. Journal of Scientific Computing, 25(1):129–155, 2005.">PR05</a>]</span></p></td>
<td><p>2 (2)</p></td>
<td><p>2 (1)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (1)</p></td>
<td><p>yes (2)</p></td>
<td><p>SSP SDIRK</p></td>
</tr>
<tr class="row-even"><td><p>ars122</p></td>
<td><p>ARS122 <span id="id2">[<a class="reference internal" href="../manualpages/TS/TSARKIMEXARS443.html#id1010" title="U.M. Ascher, S.J. Ruuth, and R.J. Spiteri. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Applied Numerical Mathematics, 25:151–167, 1997.">ARS97</a>]</span></p></td>
<td><p>2 (1)</p></td>
<td><p>3 (1)</p></td>
<td><p>A-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (1)</p></td>
<td><p>yes (2)</p></td>
<td></td>
</tr>
<tr class="row-odd"><td><p>2c</p></td>
<td><p><span id="id3">[<a class="reference internal" href="#id1004" title="F.X. Giraldo, J.F. Kelly, and E.M. Constantinescu. Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM Journal on Scientific Computing, 35(5):B1162-B1194, 2013. doi:10.1137/120876034.">GKC13</a>]</span></p></td>
<td><p>3 (2)</p></td>
<td><p>2 (2)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (1)</p></td>
<td><p>yes (2)</p></td>
<td><p>SDIRK</p></td>
</tr>
<tr class="row-even"><td><p>2d</p></td>
<td><p><span id="id4">[<a class="reference internal" href="#id1004" title="F.X. Giraldo, J.F. Kelly, and E.M. Constantinescu. Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM Journal on Scientific Computing, 35(5):B1162-B1194, 2013. doi:10.1137/120876034.">GKC13</a>]</span></p></td>
<td><p>3 (2)</p></td>
<td><p>2 (2)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (1)</p></td>
<td><p>yes (2)</p></td>
<td><p>SDIRK</p></td>
</tr>
<tr class="row-odd"><td><p>2e</p></td>
<td><p><span id="id5">[<a class="reference internal" href="#id1004" title="F.X. Giraldo, J.F. Kelly, and E.M. Constantinescu. Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM Journal on Scientific Computing, 35(5):B1162-B1194, 2013. doi:10.1137/120876034.">GKC13</a>]</span></p></td>
<td><p>3 (2)</p></td>
<td><p>2 (2)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (1)</p></td>
<td><p>yes (2)</p></td>
<td><p>SDIRK</p></td>
</tr>
<tr class="row-even"><td><p>prssp2</p></td>
<td><p>PRS(3,3,2) <span id="id6">[<a class="reference internal" href="../manualpages/TS/TSARKIMEXPRSSP2.html#id1007" title="L. Pareschi and G. Russo. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. Journal of Scientific Computing, 25(1):129–155, 2005.">PR05</a>]</span></p></td>
<td><p>3 (3)</p></td>
<td><p>3 (1)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>no</p></td>
<td><p>no</p></td>
<td><p>SSP</p></td>
</tr>
<tr class="row-odd"><td><p>3</p></td>
<td><p><span id="id7">[<a class="reference internal" href="../manualpages/TS/TSARKIMEX5.html#id1008" title="C.A. Kennedy and M.H. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math., 44(1-2):139–181, 2003. doi:10.1016/S0168-9274(02)00138-1.">KC03</a>]</span></p></td>
<td><p>4 (3)</p></td>
<td><p>3 (2)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (2)</p></td>
<td><p>yes (2)</p></td>
<td><p>SDIRK</p></td>
</tr>
<tr class="row-even"><td><p>bpr3</p></td>
<td><p><span id="id8">[<a class="reference internal" href="#id1008" title="S. Boscarino, L. Pareschi, and G. Russo. Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. Arxiv preprint arXiv:1110.4375, 2011.">BPR11</a>]</span></p></td>
<td><p>5 (4)</p></td>
<td><p>3 (2)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>no</p></td>
<td><p>no</p></td>
<td><p>SDIRK</p></td>
</tr>
<tr class="row-odd"><td><p>ars443</p></td>
<td><p><span id="id9">[<a class="reference internal" href="../manualpages/TS/TSARKIMEXARS443.html#id1010" title="U.M. Ascher, S.J. Ruuth, and R.J. Spiteri. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Applied Numerical Mathematics, 25:151–167, 1997.">ARS97</a>]</span></p></td>
<td><p>5 (4)</p></td>
<td><p>3 (1)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>no</p></td>
<td><p>no</p></td>
<td><p>SDIRK</p></td>
</tr>
<tr class="row-even"><td><p>4</p></td>
<td><p><span id="id10">[<a class="reference internal" href="../manualpages/TS/TSARKIMEX5.html#id1008" title="C.A. Kennedy and M.H. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math., 44(1-2):139–181, 2003. doi:10.1016/S0168-9274(02)00138-1.">KC03</a>]</span></p></td>
<td><p>6 (5)</p></td>
<td><p>4 (2)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (3)</p></td>
<td><p>yes</p></td>
<td><p>SDIRK</p></td>
</tr>
<tr class="row-odd"><td><p>5</p></td>
<td><p><span id="id11">[<a class="reference internal" href="../manualpages/TS/TSARKIMEX5.html#id1008" title="C.A. Kennedy and M.H. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math., 44(1-2):139–181, 2003. doi:10.1016/S0168-9274(02)00138-1.">KC03</a>]</span></p></td>
<td><p>8 (7)</p></td>
<td><p>5 (2)</p></td>
<td><p>L-Stable</p></td>
<td><p>yes</p></td>
<td><p>yes (4)</p></td>
<td><p>yes (3)</p></td>
<td><p>SDIRK</p></td>
</tr>
</tbody>
</table>
<p>ROSW are linearized implicit Runge-Kutta methods known as Rosenbrock
W-methods. They can accommodate inexact Jacobian matrices in their
formulation. A series of methods are available in PETSc are listed in
<a class="reference internal" href="#tab-imex-rosw-petsc"><span class="std std-numref">Table 15</span></a> below. For each method, it gives the reference, the total number of stages and implicit stages, the scheme order and stage order, the implicit stability properties (IM), stiff accuracy (SA), the existence of an embedded scheme, dense output (DO), the capacity to use inexact Jacobian matrices (-W), and high order integration of differential algebraic equations (PDAE).</p>
<table class="table" id="tab-imex-rosw-petsc">
<caption><span class="caption-number">Table 15 </span><span class="caption-text">Rosenbrock W-schemes</span><a class="headerlink" href="#tab-imex-rosw-petsc" title="Link to this table">#</a></caption>
<thead>
<tr class="row-odd"><th class="head"><p>TS</p></th>
<th class="head"><p>Reference</p></th>
<th class="head"><p>Stages (IM)</p></th>
<th class="head"><p>Order (Stage)</p></th>
<th class="head"><p>IM</p></th>
<th class="head"><p>SA</p></th>
<th class="head"><p>Embed</p></th>
<th class="head"><p>DO</p></th>
<th class="head"><p>-W</p></th>
<th class="head"><p>PDAE</p></th>
<th class="head"><p>Remarks</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>theta1</p></td>
<td><p>classical</p></td>
<td><p>1(1)</p></td>
<td><p>1(1)</p></td>
<td><p>L-Stable</p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-odd"><td><p>theta2</p></td>
<td><p>classical</p></td>
<td><p>1(1)</p></td>
<td><p>2(2)</p></td>
<td><p>A-Stable</p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-even"><td><p>2m</p></td>
<td><p>Zoltan</p></td>
<td><p>2(2)</p></td>
<td><p>2(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>No</p></td>
<td><p>Yes(1)</p></td>
<td><p>Yes(2)</p></td>
<td><p>Yes</p></td>
<td><p>No</p></td>
<td><p>SSP</p></td>
</tr>
<tr class="row-odd"><td><p>2p</p></td>
<td><p>Zoltan</p></td>
<td><p>2(2)</p></td>
<td><p>2(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>No</p></td>
<td><p>Yes(1)</p></td>
<td><p>Yes(2)</p></td>
<td><p>Yes</p></td>
<td><p>No</p></td>
<td><p>SSP</p></td>
</tr>
<tr class="row-even"><td><p>ra3pw</p></td>
<td><p><span id="id1">[<a class="reference internal" href="../manualpages/TS/TSROSWRA3PW.html#id1014" title="J. Rang and L. Angermann. New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1. BIT Numerical Mathematics, 45(4):761–787, 2005. doi:10.1007/s10543-005-0035-y.">RA05</a>]</span></p></td>
<td><p>3(3)</p></td>
<td><p>3(1)</p></td>
<td><p>A-Stable</p></td>
<td><p>No</p></td>
<td><p>Yes</p></td>
<td><p>Yes(2)</p></td>
<td><p>No</p></td>
<td><p>Yes(3)</p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-odd"><td><p>ra34pw2</p></td>
<td><p><span id="id2">[<a class="reference internal" href="../manualpages/TS/TSROSWRA3PW.html#id1014" title="J. Rang and L. Angermann. New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1. BIT Numerical Mathematics, 45(4):761–787, 2005. doi:10.1007/s10543-005-0035-y.">RA05</a>]</span></p></td>
<td><p>4(4)</p></td>
<td><p>3(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>Yes</p></td>
<td><p>Yes</p></td>
<td><p>Yes(3)</p></td>
<td><p>Yes</p></td>
<td><p>Yes(3)</p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-even"><td><p>rodas3</p></td>
<td><p><span id="id3">[<a class="reference internal" href="../manualpages/TS/TSROSWSANDU3.html#id1014" title="A. Sandu, J.G. Verwer, J.G. Blom, E.J. Spee, G.R. Carmichael, and F.A. Potra. Benchmarking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock solvers. Atmospheric Environment, 31(20):3459–3472, 1997.">SVB+97</a>]</span></p></td>
<td><p>4(4)</p></td>
<td><p>3(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>Yes</p></td>
<td><p>Yes</p></td>
<td><p>No</p></td>
<td><p>No</p></td>
<td><p>Yes</p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-odd"><td><p>sandu3</p></td>
<td><p><span id="id4">[<a class="reference internal" href="../manualpages/TS/TSROSWSANDU3.html#id1014" title="A. Sandu, J.G. Verwer, J.G. Blom, E.J. Spee, G.R. Carmichael, and F.A. Potra. Benchmarking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock solvers. Atmospheric Environment, 31(20):3459–3472, 1997.">SVB+97</a>]</span></p></td>
<td><p>3(3)</p></td>
<td><p>3(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>Yes</p></td>
<td><p>Yes</p></td>
<td><p>Yes(2)</p></td>
<td><p>No</p></td>
<td><p>No</p></td>
<td><ul class="simple">
<li></li>
</ul>
</td>
</tr>
<tr class="row-even"><td><p>assp3p3s1c</p></td>
<td><p>unpub.</p></td>
<td><p>3(2)</p></td>
<td><p>3(1)</p></td>
<td><p>A-Stable</p></td>
<td><p>No</p></td>
<td><p>Yes</p></td>
<td><p>Yes(2)</p></td>
<td><p>Yes</p></td>
<td><p>No</p></td>
<td><p>SSP</p></td>
</tr>
<tr class="row-odd"><td><p>lassp3p4s2c</p></td>
<td><p>unpub.</p></td>
<td><p>4(3)</p></td>
<td><p>3(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>No</p></td>
<td><p>Yes</p></td>
<td><p>Yes(3)</p></td>
<td><p>Yes</p></td>
<td><p>No</p></td>
<td><p>SSP</p></td>
</tr>
<tr class="row-even"><td><p>lassp3p4s2c</p></td>
<td><p>unpub.</p></td>
<td><p>4(3)</p></td>
<td><p>3(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>No</p></td>
<td><p>Yes</p></td>
<td><p>Yes(3)</p></td>
<td><p>Yes</p></td>
<td><p>No</p></td>
<td><p>SSP</p></td>
</tr>
<tr class="row-odd"><td><p>ark3</p></td>
<td><p>unpub.</p></td>
<td><p>4(3)</p></td>
<td><p>3(1)</p></td>
<td><p>L-Stable</p></td>
<td><p>No</p></td>
<td><p>Yes</p></td>
<td><p>Yes(3)</p></td>
<td><p>Yes</p></td>
<td><p>No</p></td>
<td><p>IMEX-RK</p></td>
</tr>
</tbody>
</table>
</section>
<section id="imex-methods-for-fast-slow-systems">
<h2>IMEX Methods for fast-slow systems<a class="headerlink" href="#imex-methods-for-fast-slow-systems" title="Link to this heading">#</a></h2>
<p>Consider a fast-slow ODE system</p>
<div class="math">
\[
\begin{aligned}
\dot{u}^{slow} & = f^{slow}(t, u^{slow},u^{fast}) \\
M \dot{u}^{fast} & = g^{fast}(t, u^{slow},u^{fast}) + f^{fast}(t, u^{slow},u^{fast})
\end{aligned}
\]</div>
<p>where <span class="math">\(u^{slow}\)</span> is the slow component and <span class="math">\(u^{fast}\)</span> is the
fast component. The fast component can be partitioned additively as
described above. Thus we want to treat <span class="math">\(f^{slow}()\)</span> and
<span class="math">\(f^{fast}()\)</span> explicitly and the other terms implicitly when using
TSARKIMEX. This is achieved by using the following APIs:</p>
<ul class="simple">
<li><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSARKIMEXSetFastSlowSplit.html">TSARKIMEXSetFastSlowSplit</a>()</span></code> informs PETSc to use ARKIMEX to solve a fast-slow system.</p></li>
<li><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRHSSplitSetIS.html">TSRHSSplitSetIS</a>()</span></code> specifies the index set for the slow/fast components.</p></li>
<li><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRHSSplitSetRHSFunction.html">TSRHSSplitSetRHSFunction</a>()</span></code> specifies the parts to be handled explicitly <span class="math">\(f^{slow}()\)</span> and <span class="math">\(f^{fast}()\)</span>.</p></li>
<li><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRHSSplitSetIFunction.html">TSRHSSplitSetIFunction</a>()</span></code> and <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRHSSplitSetIJacobian.html">TSRHSSplitSetIJacobian</a>()</span></code> specify the implicit part and its Jacobian.</p></li>
</ul>
<p>Note that this ODE system can also be solved by padding zeros in the implicit part and using the standard IMEX methods. However, one needs to provide the full-dimensional Jacobian whereas only a partial Jacobian is needed for the fast-slow split which is more efficient in storage and speed.</p>
</section>
<section id="glee-methods">
<h2>GLEE methods<a class="headerlink" href="#glee-methods" title="Link to this heading">#</a></h2>
<p>In this section, we describe explicit and implicit time stepping methods
with global error estimation that are introduced in
<span id="id4">[<a class="reference internal" href="#id1005" title="E.M. Constantinescu. Estimating global errors in time stepping. ArXiv e-prints, March 2016. arXiv:1503.05166.">Con16</a>]</span>. The solution vector for a
GLEE method is either [<span class="math">\(y\)</span>, <span class="math">\(\tilde{y}\)</span>] or
[<span class="math">\(y\)</span>,<span class="math">\(\varepsilon\)</span>], where <span class="math">\(y\)</span> is the solution,
<span class="math">\(\tilde{y}\)</span> is the “auxiliary solution,” and <span class="math">\(\varepsilon\)</span>
is the error. The working vector that <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSGLEE.html">TSGLEE</a></span></code> uses is <span class="math">\(Y\)</span> =
[<span class="math">\(y\)</span>,<span class="math">\(\tilde{y}\)</span>], or [<span class="math">\(y\)</span>,<span class="math">\(\varepsilon\)</span>]. A
GLEE method is defined by</p>
<ul class="simple">
<li><p><span class="math">\((p,r,s)\)</span>: (order, steps, and stages),</p></li>
<li><p><span class="math">\(\gamma\)</span>: factor representing the global error ratio,</p></li>
<li><p><span class="math">\(A, U, B, V\)</span>: method coefficients,</p></li>
<li><p><span class="math">\(S\)</span>: starting method to compute the working vector from the
solution (say at the beginning of time integration) so that
<span class="math">\(Y = Sy\)</span>,</p></li>
<li><p><span class="math">\(F\)</span>: finalizing method to compute the solution from the working
vector,<span class="math">\(y = FY\)</span>.</p></li>
<li><p><span class="math">\(F_\text{embed}\)</span>: coefficients for computing the auxiliary
solution <span class="math">\(\tilde{y}\)</span> from the working vector
(<span class="math">\(\tilde{y} = F_\text{embed} Y\)</span>),</p></li>
<li><p><span class="math">\(F_\text{error}\)</span>: coefficients to compute the estimated error
vector from the working vector
(<span class="math">\(\varepsilon = F_\text{error} Y\)</span>).</p></li>
<li><p><span class="math">\(S_\text{error}\)</span>: coefficients to initialize the auxiliary
solution (<span class="math">\(\tilde{y}\)</span> or <span class="math">\(\varepsilon\)</span>) from a specified
error vector (<span class="math">\(\varepsilon\)</span>). It is currently implemented only
for <span class="math">\(r = 2\)</span>. We have <span class="math">\(y_\text{aux} =
S_{error}[0]*\varepsilon + S_\text{error}[1]*y\)</span>, where
<span class="math">\(y_\text{aux}\)</span> is the 2nd component of the working vector
<span class="math">\(Y\)</span>.</p></li>
</ul>
<p>The methods can be described in two mathematically equivalent forms:
propagate two components (“<span class="math">\(y\tilde{y}\)</span> form”) and propagating the
solution and its estimated error (“<span class="math">\(y\varepsilon\)</span> form”). The two
forms are not explicitly specified in <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSGLEE.html">TSGLEE</a></span></code>; rather, the specific
values of <span class="math">\(B, U, S, F, F_{embed}\)</span>, and <span class="math">\(F_{error}\)</span>
characterize whether the method is in <span class="math">\(y\tilde{y}\)</span> or
<span class="math">\(y\varepsilon\)</span> form.</p>
<p>The API used by this <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TS.html">TS</a></span></code> method includes:</p>
<ul>
<li><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSGetSolutionComponents.html">TSGetSolutionComponents</a></span></code>: Get all the solution components of the
working vector</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n">ierr</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n"><a href="../manualpages/TS/TSGetSolutionComponents.html">TSGetSolutionComponents</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="kt">int</span><span class="o">*</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="o">*</span><span class="p">)</span>
</pre></div>
</div>
<p>Call with <code class="docutils notranslate"><span class="pre">NULL</span></code> as the last argument to get the total number of
components in the working vector <span class="math">\(Y\)</span> (this is <span class="math">\(r\)</span> (not
<span class="math">\(r-1\)</span>)), then call to get the <span class="math">\(i\)</span>-th solution component.</p>
</li>
<li><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSGetAuxSolution.html">TSGetAuxSolution</a></span></code>: Returns the auxiliary solution
<span class="math">\(\tilde{y}\)</span> (computed as <span class="math">\(F_\text{embed} Y\)</span>)</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n">ierr</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n"><a href="../manualpages/TS/TSGetAuxSolution.html">TSGetAuxSolution</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="o">*</span><span class="p">)</span>
</pre></div>
</div>
</li>
<li><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSGetTimeError.html">TSGetTimeError</a></span></code>: Returns the estimated error vector
<span class="math">\(\varepsilon\)</span> (computed as <span class="math">\(F_\text{error} Y\)</span> if
<span class="math">\(n=0\)</span> or restores the error estimate at the end of the previous
step if <span class="math">\(n=-1\)</span>)</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n">ierr</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n"><a href="../manualpages/TS/TSGetTimeError.html">TSGetTimeError</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">n</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="o">*</span><span class="p">)</span>
</pre></div>
</div>
</li>
<li><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetTimeError.html">TSSetTimeError</a></span></code>: Initializes the auxiliary solution
(<span class="math">\(\tilde{y}\)</span> or <span class="math">\(\varepsilon\)</span>) for a specified initial
error.</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n">ierr</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n"><a href="../manualpages/TS/TSSetTimeError.html">TSSetTimeError</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">)</span>
</pre></div>
</div>
</li>
</ul>
<p>The local error is estimated as <span class="math">\(\varepsilon(n+1)-\varepsilon(n)\)</span>.
This is to be used in the error control. The error in <span class="math">\(y\tilde{y}\)</span>
GLEE is
<span class="math">\(\varepsilon(n) = \frac{1}{1-\gamma} * (\tilde{y}(n) - y(n))\)</span>.</p>
<p>Note that <span class="math">\(y\)</span> and <span class="math">\(\tilde{y}\)</span> are reported to <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSAdapt.html">TSAdapt</a></span></code>
<code class="docutils notranslate"><span class="pre">basic</span></code> (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSADAPTBASIC.html">TSADAPTBASIC</a></span></code>), and thus it computes the local error as
<span class="math">\(\varepsilon_{loc} = (\tilde{y} -
y)\)</span>. However, the actual local error is <span class="math">\(\varepsilon_{loc}
= \varepsilon_{n+1} - \varepsilon_n = \frac{1}{1-\gamma} * [(\tilde{y} -
y)_{n+1} - (\tilde{y} - y)_n]\)</span>.</p>
<p><a class="reference internal" href="#tab-imex-glee-petsc"><span class="std std-numref">Table 16</span></a> lists currently available GL schemes with global error estimation <span id="id5">[<a class="reference internal" href="#id1005" title="E.M. Constantinescu. Estimating global errors in time stepping. ArXiv e-prints, March 2016. arXiv:1503.05166.">Con16</a>]</span>.</p>
<table class="table" id="tab-imex-glee-petsc">
<caption><span class="caption-number">Table 16 </span><span class="caption-text">GL schemes with global error estimation</span><a class="headerlink" href="#tab-imex-glee-petsc" title="Link to this table">#</a></caption>
<thead>
<tr class="row-odd"><th class="head"><p>TS</p></th>
<th class="head"><p>Reference</p></th>
<th class="head"><p>IM/EX</p></th>
<th class="head"><p><span class="math">\((p,r,s)\)</span></p></th>
<th class="head"><p><span class="math">\(\gamma\)</span></p></th>
<th class="head"><p>Form</p></th>
<th class="head"><p>Notes</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p><code class="docutils notranslate"><span class="pre">TSGLEEi1</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">BE1</span></code></p></td>
<td><p>IM</p></td>
<td><p><span class="math">\((1,3,2)\)</span></p></td>
<td><p><span class="math">\(0.5\)</span></p></td>
<td><p><span class="math">\(y\varepsilon\)</span></p></td>
<td><p>Based on backward Euler</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSGLEE23.html">TSGLEE23</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">23</span></code></p></td>
<td><p>EX</p></td>
<td><p><span class="math">\((2,3,2)\)</span></p></td>
<td><p><span class="math">\(0\)</span></p></td>
<td><p><span class="math">\(y\varepsilon\)</span></p></td>
<td></td>
</tr>
<tr class="row-even"><td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSGLEE24.html">TSGLEE24</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">24</span></code></p></td>
<td><p>EX</p></td>
<td><p><span class="math">\((2,4,2)\)</span></p></td>
<td><p><span class="math">\(0\)</span></p></td>
<td><p><span class="math">\(y\tilde{y}\)</span></p></td>
<td></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils notranslate"><span class="pre">TSGLEE25I</span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">25i</span></code></p></td>
<td><p>EX</p></td>
<td><p><span class="math">\((2,5,2)\)</span></p></td>
<td><p><span class="math">\(0\)</span></p></td>
<td><p><span class="math">\(y\tilde{y}\)</span></p></td>
<td></td>
</tr>
<tr class="row-even"><td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSGLEE35.html">TSGLEE35</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">35</span></code></p></td>
<td><p>EX</p></td>
<td><p><span class="math">\((3,5,2)\)</span></p></td>
<td><p><span class="math">\(0\)</span></p></td>
<td><p><span class="math">\(y\tilde{y}\)</span></p></td>
<td></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSGLEEEXRK2A.html">TSGLEEEXRK2A</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">exrk2a</span></code></p></td>
<td><p>EX</p></td>
<td><p><span class="math">\((2,6,2)\)</span></p></td>
<td><p><span class="math">\(0.25\)</span></p></td>
<td><p><span class="math">\(y\varepsilon\)</span></p></td>
<td></td>
</tr>
<tr class="row-even"><td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSGLEERK32G1.html">TSGLEERK32G1</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">rk32g1</span></code></p></td>
<td><p>EX</p></td>
<td><p><span class="math">\((3,8,2)\)</span></p></td>
<td><p><span class="math">\(0\)</span></p></td>
<td><p><span class="math">\(y\varepsilon\)</span></p></td>
<td></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSGLEERK285EX.html">TSGLEERK285EX</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">rk285ex</span></code></p></td>
<td><p>EX</p></td>
<td><p><span class="math">\((2,9,2)\)</span></p></td>
<td><p><span class="math">\(0.25\)</span></p></td>
<td><p><span class="math">\(y\varepsilon\)</span></p></td>
<td></td>
</tr>
</tbody>
</table>
</section>
<section id="using-fully-implicit-methods">
<h2>Using fully implicit methods<a class="headerlink" href="#using-fully-implicit-methods" title="Link to this heading">#</a></h2>
<p>To use a fully implicit method like <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSTHETA.html">TSTHETA</a></span></code>, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSBDF.html">TSBDF</a></span></code> or <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSDIRK.html">TSDIRK</a></span></code>, either
provide the Jacobian of <span class="math">\(F()\)</span> (and <span class="math">\(G()\)</span> if <span class="math">\(G()\)</span> is
provided) or use a <code class="docutils notranslate"><span class="pre"><a href="../manualpages/DM/DM.html">DM</a></span></code> that provides a coloring so the Jacobian can
be computed efficiently via finite differences.</p>
</section>
<section id="using-the-explicit-runge-kutta-timestepper-with-variable-timesteps">
<h2>Using the Explicit Runge-Kutta timestepper with variable timesteps<a class="headerlink" href="#using-the-explicit-runge-kutta-timestepper-with-variable-timesteps" title="Link to this heading">#</a></h2>
<p>The explicit Euler and Runge-Kutta methods require the ODE be in the
form</p>
<div class="math">
\[
\dot{u} = G(u,t).
\]</div>
<p>The user can either call <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetRHSFunction.html">TSSetRHSFunction</a>()</span></code> and/or they can call
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetIFunction.html">TSSetIFunction</a>()</span></code> (so long as the function provided to
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetIFunction.html">TSSetIFunction</a>()</span></code> is equivalent to <span class="math">\(\dot{u} + \tilde{F}(t,u)\)</span>)
but the Jacobians need not be provided. <a class="footnote-reference brackets" href="#id10" id="id6" role="doc-noteref"><span class="fn-bracket">[</span>2<span class="fn-bracket">]</span></a></p>
<p>The Explicit Runge-Kutta timestepper with variable timesteps is an
implementation of the standard Runge-Kutta with an embedded method. The
error in each timestep is calculated using the solutions from the
Runge-Kutta method and its embedded method (the 2-norm of the difference
is used). The default method is the <span class="math">\(3\)</span>rd-order Bogacki-Shampine
method with a <span class="math">\(2\)</span>nd-order embedded method (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRK3BS.html">TSRK3BS</a></span></code>). Other
available methods are the <span class="math">\(5\)</span>th-order Fehlberg RK scheme with a
<span class="math">\(4\)</span>th-order embedded method (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRK5F.html">TSRK5F</a></span></code>), the
<span class="math">\(5\)</span>th-order Dormand-Prince RK scheme with a <span class="math">\(4\)</span>th-order
embedded method (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRK5DP.html">TSRK5DP</a></span></code>), the <span class="math">\(5\)</span>th-order Bogacki-Shampine
RK scheme with a <span class="math">\(4\)</span>th-order embedded method (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRK5BS.html">TSRK5BS</a></span></code>, and
the <span class="math">\(6\)</span>th-, <span class="math">\(7\)</span>th, and <span class="math">\(8\)</span>th-order robust Verner
RK schemes with a <span class="math">\(5\)</span>th-, <span class="math">\(6\)</span>th, and <span class="math">\(7\)</span>th-order
embedded method, respectively (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRK6VR.html">TSRK6VR</a></span></code>, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRK7VR.html">TSRK7VR</a></span></code>, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRK8VR.html">TSRK8VR</a></span></code>).
Variable timesteps cannot be used with RK schemes that do not have an
embedded method (<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRK1FE.html">TSRK1FE</a></span></code> - <span class="math">\(1\)</span>st-order, <span class="math">\(1\)</span>-stage
forward Euler, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRK2A.html">TSRK2A</a></span></code> - <span class="math">\(2\)</span>nd-order, <span class="math">\(2\)</span>-stage RK
scheme, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRK3.html">TSRK3</a></span></code> - <span class="math">\(3\)</span>rd-order, <span class="math">\(3\)</span>-stage RK scheme,
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRK4.html">TSRK4</a></span></code> - <span class="math">\(4\)</span>-th order, <span class="math">\(4\)</span>-stage RK scheme).</p>
</section>
<section id="special-cases">
<h2>Special Cases<a class="headerlink" href="#special-cases" title="Link to this heading">#</a></h2>
<ul>
<li><p><span class="math">\(\dot{u} = A u.\)</span> First compute the matrix <span class="math">\(A\)</span> then call</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetProblemType.html">TSSetProblemType</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TSProblemType.html">TS_LINEAR</a></span><span class="p">);</span>
<span class="n"><a href="../manualpages/TS/TSSetRHSFunction.html">TSSetRHSFunction</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="nb">NULL</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TSComputeRHSFunctionLinear.html">TSComputeRHSFunctionLinear</a></span><span class="p">,</span><span class="nb">NULL</span><span class="p">);</span>
<span class="n"><a href="../manualpages/TS/TSSetRHSJacobian.html">TSSetRHSJacobian</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TSComputeRHSJacobianConstant.html">TSComputeRHSJacobianConstant</a></span><span class="p">,</span><span class="nb">NULL</span><span class="p">);</span>
</pre></div>
</div>
<p>or</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetProblemType.html">TSSetProblemType</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TSProblemType.html">TS_LINEAR</a></span><span class="p">);</span>
<span class="n"><a href="../manualpages/TS/TSSetIFunction.html">TSSetIFunction</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="nb">NULL</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TSComputeIFunctionLinear.html">TSComputeIFunctionLinear</a></span><span class="p">,</span><span class="nb">NULL</span><span class="p">);</span>
<span class="n"><a href="../manualpages/TS/TSSetIJacobian.html">TSSetIJacobian</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TSComputeIJacobianConstant.html">TSComputeIJacobianConstant</a></span><span class="p">,</span><span class="nb">NULL</span><span class="p">);</span>
</pre></div>
</div>
</li>
<li><p><span class="math">\(\dot{u} = A(t) u.\)</span> Use</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetProblemType.html">TSSetProblemType</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TSProblemType.html">TS_LINEAR</a></span><span class="p">);</span>
<span class="n"><a href="../manualpages/TS/TSSetRHSFunction.html">TSSetRHSFunction</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="nb">NULL</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TSComputeRHSFunctionLinear.html">TSComputeRHSFunctionLinear</a></span><span class="p">,</span><span class="nb">NULL</span><span class="p">);</span>
<span class="n"><a href="../manualpages/TS/TSSetRHSJacobian.html">TSSetRHSJacobian</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n">YourComputeRHSJacobian</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">appctx</span><span class="p">);</span>
</pre></div>
</div>
<p>where <code class="docutils notranslate"><span class="pre">YourComputeRHSJacobian()</span></code> is a function you provide that
computes <span class="math">\(A\)</span> as a function of time. Or use</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetProblemType.html">TSSetProblemType</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TSProblemType.html">TS_LINEAR</a></span><span class="p">);</span>
<span class="n"><a href="../manualpages/TS/TSSetIFunction.html">TSSetIFunction</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="nb">NULL</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TSComputeIFunctionLinear.html">TSComputeIFunctionLinear</a></span><span class="p">,</span><span class="nb">NULL</span><span class="p">);</span>
<span class="n"><a href="../manualpages/TS/TSSetIJacobian.html">TSSetIJacobian</a></span><span class="p">(</span><span class="n">ts</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n">A</span><span class="p">,</span><span class="n">YourComputeIJacobian</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="n">appctx</span><span class="p">);</span>
</pre></div>
</div>
</li>
</ul>
</section>
<section id="monitoring-and-visualizing-solutions">
<h2>Monitoring and visualizing solutions<a class="headerlink" href="#monitoring-and-visualizing-solutions" title="Link to this heading">#</a></h2>
<ul class="simple">
<li><p><code class="docutils notranslate"><span class="pre">-ts_monitor</span></code> - prints the time and timestep at each iteration.</p></li>
<li><p><code class="docutils notranslate"><span class="pre">-ts_adapt_monitor</span></code> - prints information about the timestep
adaption calculation at each iteration.</p></li>
<li><p><code class="docutils notranslate"><span class="pre">-ts_monitor_lg_timestep</span></code> - plots the size of each timestep,
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSMonitorLGTimeStep.html">TSMonitorLGTimeStep</a>()</span></code>.</p></li>
<li><p><code class="docutils notranslate"><span class="pre">-ts_monitor_lg_solution</span></code> - for ODEs with only a few components
(not arising from the discretization of a PDE) plots the solution as
a function of time, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSMonitorLGSolution.html">TSMonitorLGSolution</a>()</span></code>.</p></li>
<li><p><code class="docutils notranslate"><span class="pre">-ts_monitor_lg_error</span></code> - for ODEs with only a few components plots
the error as a function of time, only if <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetSolutionFunction.html">TSSetSolutionFunction</a>()</span></code>
is provided, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSMonitorLGError.html">TSMonitorLGError</a>()</span></code>.</p></li>
<li><p><code class="docutils notranslate"><span class="pre">-ts_monitor_draw_solution</span></code> - plots the solution at each iteration,
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSMonitorDrawSolution.html">TSMonitorDrawSolution</a>()</span></code>.</p></li>
<li><p><code class="docutils notranslate"><span class="pre">-ts_monitor_draw_error</span></code> - plots the error at each iteration only
if <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetSolutionFunction.html">TSSetSolutionFunction</a>()</span></code> is provided,
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSMonitorDrawSolution.html">TSMonitorDrawSolution</a>()</span></code>.</p></li>
<li><p><code class="docutils notranslate"><span class="pre">-ts_monitor_solution</span> <span class="pre">binary[:filename]</span></code> - saves the solution at each
iteration to a binary file, <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSMonitorSolution.html">TSMonitorSolution</a>()</span></code>. Solution viewers work
with other time-aware formats, e.g., <code class="docutils notranslate"><span class="pre">-ts_monitor_solution</span> <span class="pre">cgns:sol.cgns</span></code>,
and can output one solution every 10 time steps by adding
<code class="docutils notranslate"><span class="pre">-ts_monitor_solution_interval</span> <span class="pre">10</span></code>. Use <code class="docutils notranslate"><span class="pre">-ts_monitor_solution_interval</span> <span class="pre">-1</span></code>
to output data only at then end of a time loop.</p></li>
<li><p><code class="docutils notranslate"><span class="pre">-ts_monitor_solution_vtk</span> <span class="pre">&lt;filename-%03D.vts&gt;</span></code> - saves the solution
at each iteration to a file in vtk format,
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSMonitorSolutionVTK.html">TSMonitorSolutionVTK</a>()</span></code>.</p></li>
</ul>
</section>
<section id="error-control-via-variable-time-stepping">
<h2>Error control via variable time-stepping<a class="headerlink" href="#error-control-via-variable-time-stepping" title="Link to this heading">#</a></h2>
<p>Most of the time stepping methods available in PETSc have an error
estimation and error control mechanism. This mechanism is implemented by
changing the step size in order to maintain user specified absolute and
relative tolerances. The PETSc object responsible with error control is
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSAdapt.html">TSAdapt</a></span></code>. The available <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSAdapt.html">TSAdapt</a></span></code> types are listed in the following table.</p>
<table class="table" id="tab-adaptors">
<caption><span class="caption-number">Table 17 </span><span class="caption-text"><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSAdapt.html">TSAdapt</a></span></code>: available adaptors</span><a class="headerlink" href="#tab-adaptors" title="Link to this table">#</a></caption>
<thead>
<tr class="row-odd"><th class="head"><p>ID</p></th>
<th class="head"><p>Name</p></th>
<th class="head"><p>Notes</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSADAPTNONE.html">TSADAPTNONE</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">none</span></code></p></td>
<td><p>no adaptivity</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSADAPTBASIC.html">TSADAPTBASIC</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">basic</span></code></p></td>
<td><p>the default adaptor</p></td>
</tr>
<tr class="row-even"><td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSADAPTGLEE.html">TSADAPTGLEE</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">glee</span></code></p></td>
<td><p>extension of the basic adaptor to treat <span class="math">\({\rm Tol}_{\rm A}\)</span> and <span class="math">\({\rm Tol}_{\rm R}\)</span> as separate criteria. It can also control global errors if the integrator (e.g., <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSGLEE.html">TSGLEE</a></span></code>) provides this information</p></td>
</tr>
<tr class="row-odd"><td><p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSADAPTDSP.html">TSADAPTDSP</a></span></code></p></td>
<td><p><code class="docutils notranslate"><span class="pre">dsp</span></code></p></td>
<td><p>adaptive controller for time-stepping based on digital signal processing</p></td>
</tr>
</tbody>
</table>
<p>When using <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSADAPTBASIC.html">TSADAPTBASIC</a></span></code> (the default), the user typically provides a
desired absolute <span class="math">\({\rm Tol}_{\rm A}\)</span> or a relative
<span class="math">\({\rm Tol}_{\rm R}\)</span> error tolerance by invoking
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetTolerances.html">TSSetTolerances</a>()</span></code> or at the command line with options <code class="docutils notranslate"><span class="pre">-ts_atol</span></code>
and <code class="docutils notranslate"><span class="pre">-ts_rtol</span></code>. The error estimate is based on the local truncation
error, so for every step the algorithm verifies that the estimated local
truncation error satisfies the tolerances provided by the user and
computes a new step size to be taken. For multistage methods, the local
truncation is obtained by comparing the solution <span class="math">\(y\)</span> to a lower
order <span class="math">\(\widehat{p}=p-1\)</span> approximation, <span class="math">\(\widehat{y}\)</span>, where
<span class="math">\(p\)</span> is the order of the method and <span class="math">\(\widehat{p}\)</span> the order
of <span class="math">\(\widehat{y}\)</span>.</p>
<p>The adaptive controller at step <span class="math">\(n\)</span> computes a tolerance level</p>
<div class="math">
\[
\begin{aligned}
Tol_n(i)&=&{\rm Tol}_{\rm A}(i) +  \max(y_n(i),\widehat{y}_n(i)) {\rm Tol}_{\rm R}(i)\,,\end{aligned}
\]</div>
<p>and forms the acceptable error level</p>
<div class="math">
\[
\begin{aligned}
\rm wlte_n&=& \frac{1}{m} \sum_{i=1}^{m}\sqrt{\frac{\left\|y_n(i)
  -\widehat{y}_n(i)\right\|}{Tol(i)}}\,,\end{aligned}
\]</div>
<p>where the errors are computed componentwise, <span class="math">\(m\)</span> is the dimension
of <span class="math">\(y\)</span> and <code class="docutils notranslate"><span class="pre">-ts_adapt_wnormtype</span></code> is <code class="docutils notranslate"><span class="pre">2</span></code> (default). If
<code class="docutils notranslate"><span class="pre">-ts_adapt_wnormtype</span></code> is <code class="docutils notranslate"><span class="pre">infinity</span></code> (max norm), then</p>
<div class="math">
\[
\begin{aligned}
\rm wlte_n&=& \max_{1\dots m}\frac{\left\|y_n(i)
  -\widehat{y}_n(i)\right\|}{Tol(i)}\,.\end{aligned}
\]</div>
<p>The error tolerances are satisfied when <span class="math">\(\rm wlte\le 1.0\)</span>.</p>
<p>The next step size is based on this error estimate, and determined by</p>
<div class="math" id="equation-hnew">
<span class="eqno">(5)<a class="headerlink" href="#equation-hnew" title="Permalink to this equation">#</a></span>\[
\begin{aligned}
 \Delta t_{\rm new}(t)&=&\Delta t_{\rm{old}} \min(\alpha_{\max},
 \max(\alpha_{\min}, \beta (1/\rm wlte)^\frac{1}{\widehat{p}+1}))\,,\end{aligned}
\]</div>
<p>where <span class="math">\(\alpha_{\min}=\)</span><code class="docutils notranslate"><span class="pre">-ts_adapt_clip</span></code>[0] and
<span class="math">\(\alpha_{\max}\)</span>=<code class="docutils notranslate"><span class="pre">-ts_adapt_clip</span></code>[1] keep the change in
<span class="math">\(\Delta t\)</span> to within a certain factor, and <span class="math">\(\beta&lt;1\)</span> is
chosen through <code class="docutils notranslate"><span class="pre">-ts_adapt_safety</span></code> so that there is some margin to
which the tolerances are satisfied and so that the probability of
rejection is decreased.</p>
<p>This adaptive controller works in the following way. After completing
step <span class="math">\(k\)</span>, if <span class="math">\(\rm wlte_{k+1} \le 1.0\)</span>, then the step is
accepted and the next step is modified according to
<a class="reference internal" href="#equation-hnew">(5)</a>; otherwise, the step is rejected and retaken
with the step length computed in <a class="reference internal" href="#equation-hnew">(5)</a>.</p>
<p><code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSADAPTGLEE.html">TSADAPTGLEE</a></span></code> is an extension of the basic
adaptor to treat <span class="math">\({\rm Tol}_{\rm A}\)</span> and <span class="math">\({\rm Tol}_{\rm R}\)</span>
as separate criteria. it can also control global errors if the
integrator (e.g., <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSGLEE.html">TSGLEE</a></span></code>) provides this information.</p>
</section>
<section id="handling-of-discontinuities">
<h2>Handling of discontinuities<a class="headerlink" href="#handling-of-discontinuities" title="Link to this heading">#</a></h2>
<p>For problems that involve discontinuous right-hand sides, one can set an
“event” function <span class="math">\(g(t,u)\)</span> for PETSc to detect and locate the times
of discontinuities (zeros of <span class="math">\(g(t,u)\)</span>). Events can be defined
through the event monitoring routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetEventHandler.html">TSSetEventHandler</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">nevents</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="o">*</span><span class="n">direction</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w"> </span><span class="o">*</span><span class="n">terminate</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">indicator</span><span class="p">)(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscScalar.html">PetscScalar</a></span><span class="o">*</span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="w"> </span><span class="n">eventP</span><span class="p">),</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">postevent</span><span class="p">)(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="p">[],</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="w"> </span><span class="n">eventP</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">eventP</span><span class="p">);</span>
</pre></div>
</div>
<p>Here, <code class="docutils notranslate"><span class="pre">nevents</span></code> denotes the number of events, <code class="docutils notranslate"><span class="pre">direction</span></code> sets the
type of zero crossing to be detected for an event (+1 for positive
zero-crossing, -1 for negative zero-crossing, and 0 for both),
<code class="docutils notranslate"><span class="pre">terminate</span></code> conveys whether the time-stepping should continue or halt
when an event is located, <code class="docutils notranslate"><span class="pre">eventmonitor</span></code> is a user- defined routine
that specifies the event description, <code class="docutils notranslate"><span class="pre">postevent</span></code> is an optional
user-defined routine to take specific actions following an event.</p>
<p>The arguments to <code class="docutils notranslate"><span class="pre">indicator()</span></code> are the timestep context, current
time, input state <span class="math">\(u\)</span>, array of event function value, and the
(optional) user-provided context <code class="docutils notranslate"><span class="pre">eventP</span></code>.</p>
<p>The arguments to <code class="docutils notranslate"><span class="pre">postevent()</span></code> routine are the timestep context,
number of events occurred, indices of events occurred, current time, input
state <span class="math">\(u\)</span>, a boolean flag indicating forward solve (1) or adjoint
solve (0), and the (optional) user-provided context <code class="docutils notranslate"><span class="pre">eventP</span></code>.</p>
</section>
<section id="explicit-integrators-with-finite-element-mass-matrices">
<span id="sec-tchem"></span><h2>Explicit integrators with finite element mass matrices<a class="headerlink" href="#explicit-integrators-with-finite-element-mass-matrices" title="Link to this heading">#</a></h2>
<p>Discretized finite element problems often have the form <span class="math">\(M \dot u = G(t, u)\)</span> where <span class="math">\(M\)</span> is the mass matrix.
Such problems can be solved using <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/DMTSSetIFunction.html">DMTSSetIFunction</a>()</span></code> with implicit integrators.
When <span class="math">\(M\)</span> is nonsingular (i.e., the problem is an ODE, not a DAE), explicit integrators can be applied to <span class="math">\(\dot u = M^{-1} G(t, u)\)</span> or <span class="math">\(\dot u = \hat M^{-1} G(t, u)\)</span>, where <span class="math">\(\hat M\)</span> is the lumped mass matrix.
While the true mass matrix generally has a dense inverse and thus must be solved iteratively, the lumped mass matrix is diagonal (e.g., computed via collocated quadrature or row sums of <span class="math">\(M\)</span>).
To have PETSc create and apply a (lumped) mass matrix automatically, first use <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/DMTSSetRHSFunction.html">DMTSSetRHSFunction</a>()</span></code> to specify <span class="math">\(G\)</span> and set a <code class="docutils notranslate"><span class="pre"><a href="../manualpages/FE/PetscFE.html">PetscFE</a></span></code> using <code class="docutils notranslate"><span class="pre"><a href="../manualpages/DM/DMAddField.html">DMAddField</a>()</span></code> and <code class="docutils notranslate"><span class="pre"><a href="../manualpages/DM/DMCreateDS.html">DMCreateDS</a>()</span></code>, then call either <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/DMTSCreateRHSMassMatrix.html">DMTSCreateRHSMassMatrix</a>()</span></code> or <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/DMTSCreateRHSMassMatrixLumped.html">DMTSCreateRHSMassMatrixLumped</a>()</span></code> to automatically create the mass matrix and a <code class="docutils notranslate"><span class="pre"><a href="../manualpages/KSP/KSP.html">KSP</a></span></code> that will be used to apply <span class="math">\(M^{-1}\)</span>.
This <code class="docutils notranslate"><span class="pre"><a href="../manualpages/KSP/KSP.html">KSP</a></span></code> can be customized using the <code class="docutils notranslate"><span class="pre">&quot;mass_&quot;</span></code> prefix.</p>
</section>
<section id="performing-sensitivity-analysis-with-the-ts-ode-solvers">
<span id="section-sa"></span><h2>Performing sensitivity analysis with the TS ODE Solvers<a class="headerlink" href="#performing-sensitivity-analysis-with-the-ts-ode-solvers" title="Link to this heading">#</a></h2>
<p>The <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TS.html">TS</a></span></code> library provides a framework based on discrete adjoint models
for sensitivity analysis for ODEs and DAEs. The ODE/DAE solution process
(henceforth called the forward run) can be obtained by using either
explicit or implicit solvers in <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TS.html">TS</a></span></code>, depending on the problem
properties. Currently supported method types are <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSRK.html">TSRK</a></span></code> (Runge-Kutta)
explicit methods and <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSTHETA.html">TSTHETA</a></span></code> implicit methods, which include
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSBEULER.html">TSBEULER</a></span></code> and <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSCN.html">TSCN</a></span></code>.</p>
<section id="using-the-discrete-adjoint-methods">
<h3>Using the discrete adjoint methods<a class="headerlink" href="#using-the-discrete-adjoint-methods" title="Link to this heading">#</a></h3>
<p>Consider the ODE/DAE</p>
<div class="math">
\[
F(t,y,\dot{y},p) = 0, \quad y(t_0)=y_0(p) \quad t_0 \le t \le t_F
\]</div>
<p>and the cost function(s)</p>
<div class="math">
\[
\Psi_i(y_0,p) = \Phi_i(y_F,p) + \int_{t_0}^{t_F} r_i(y(t),p,t)dt \quad i=1,...,n_\text{cost}.
\]</div>
<p>The <code class="docutils notranslate"><span class="pre">TSAdjoint</span></code> routines of PETSc provide</p>
<div class="math">
\[
\frac{\partial \Psi_i}{\partial y_0} = \lambda_i
\]</div>
<p>and</p>
<div class="math">
\[
\frac{\partial \Psi_i}{\partial p} = \mu_i + \lambda_i (\frac{\partial y_0}{\partial p}).
\]</div>
<p>To perform the discrete adjoint sensitivity analysis one first sets up
the <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TS.html">TS</a></span></code> object for a regular forward run but with one extra function
call</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetSaveTrajectory.html">TSSetSaveTrajectory</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">),</span>
</pre></div>
</div>
<p>then calls <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSolve.html">TSSolve</a>()</span></code> in the usual manner.</p>
<p>One must create two arrays of <span class="math">\(n_\text{cost}\)</span> vectors
<span class="math">\(\lambda\)</span> and <span class="math">\(\mu\)</span> (if there are no parameters <span class="math">\(p\)</span>
then one can use <code class="docutils notranslate"><span class="pre">NULL</span></code> for the <span class="math">\(\mu\)</span> array.) The
<span class="math">\(\lambda\)</span> vectors are the same dimension and parallel layout as
the solution vector for the ODE, the <span class="math">\(\mu\)</span> vectors are of dimension
<span class="math">\(p\)</span>; when <span class="math">\(p\)</span> is small usually all its elements are on the
first MPI process, while the vectors have no entries on the other
processes. <span class="math">\(\lambda_i\)</span> and <span class="math">\(\mu_i\)</span> should be initialized with
the values <span class="math">\(d\Phi_i/dy|_{t=t_F}\)</span> and <span class="math">\(d\Phi_i/dp|_{t=t_F}\)</span>
respectively. Then one calls</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/Sensitivity/TSSetCostGradients.html">TSSetCostGradients</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">numcost</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="o">*</span><span class="n">lambda</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="o">*</span><span class="n">mu</span><span class="p">);</span>
</pre></div>
</div>
<p>where <code class="docutils notranslate"><span class="pre">numcost</span></code> denotes <span class="math">\(n_\text{cost}\)</span>.
If <span class="math">\(F()\)</span> is a function of <span class="math">\(p\)</span> one needs to also provide the
Jacobian <span class="math">\(-F_p\)</span> with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/Sensitivity/TSSetRHSJacobianP.html">TSSetRHSJacobianP</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">Amat</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">fp</span><span class="p">)(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">)</span>
</pre></div>
</div>
<p>or</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/Sensitivity/TSSetIJacobianP.html">TSSetIJacobianP</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">Amat</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">fp</span><span class="p">)(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">)</span>
</pre></div>
</div>
<p>or both, depending on which form is used to define the ODE.</p>
<p>The arguments for the function <code class="docutils notranslate"><span class="pre">fp()</span></code> are the timestep context,
current time, <span class="math">\(y\)</span>, and the (optional) user-provided context.</p>
<p>If there is an integral term in the cost function, i.e. <span class="math">\(r\)</span> is
nonzero, it can be transformed into another ODE that is augmented to the
original ODE. To evaluate the integral, one needs to create a child
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TS.html">TS</a></span></code> objective by calling</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/Sensitivity/TSCreateQuadratureTS.html">TSCreateQuadratureTS</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscBool.html">PetscBool</a></span><span class="w"> </span><span class="n">fwd</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="o">*</span><span class="n">quadts</span><span class="p">);</span>
</pre></div>
</div>
<p>and provide the ODE RHS function (which evaluates the integrand
<span class="math">\(r\)</span>) with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetRHSFunction.html">TSSetRHSFunction</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">quadts</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">R</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">rf</span><span class="p">)(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">)</span>
</pre></div>
</div>
<p>Similar to the settings for the original ODE, Jacobians of the integrand
can be provided with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetRHSJacobian.html">TSSetRHSJacobian</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">quadts</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">DRDU</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">DRDU</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">drdyf</span><span class="p">)(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="o">*</span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">)</span>
<span class="n"><a href="../manualpages/Sensitivity/TSSetRHSJacobianP.html">TSSetRHSJacobianP</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">quadts</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">DRDU</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">DRDU</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">drdyp</span><span class="p">)(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="o">*</span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">ctx</span><span class="p">)</span>
</pre></div>
</div>
<p>where <span class="math">\(\mathrm{drdyf}= dr /dy\)</span>, <span class="math">\(\mathrm{drdpf} = dr /dp\)</span>.
Since the integral term is additive to the cost function, its gradient
information will be included in <span class="math">\(\lambda\)</span> and <span class="math">\(\mu\)</span>.</p>
<p>Lastly, one starts the backward run by calling</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/Sensitivity/TSAdjointSolve.html">TSAdjointSolve</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">).</span>
</pre></div>
</div>
<p>One can obtain the value of the integral term by calling</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/Sensitivity/TSGetCostIntegral.html">TSGetCostIntegral</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="o">*</span><span class="n">q</span><span class="p">).</span>
</pre></div>
</div>
<p>or accessing directly the solution vector used by <code class="docutils notranslate"><span class="pre">quadts</span></code>.</p>
<p>The second argument of <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Sensitivity/TSCreateQuadratureTS.html">TSCreateQuadratureTS</a>()</span></code> allows one to choose
if the integral term is evaluated in the forward run (inside
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSolve.html">TSSolve</a>()</span></code>) or in the backward run (inside <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Sensitivity/TSAdjointSolve.html">TSAdjointSolve</a>()</span></code>) when
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/Sensitivity/TSSetCostGradients.html">TSSetCostGradients</a>()</span></code> and <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Sensitivity/TSSetCostIntegrand.html">TSSetCostIntegrand</a>()</span></code> are called before
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSolve.html">TSSolve</a>()</span></code>. Note that this also allows for evaluating the integral
without having to use the adjoint solvers.</p>
<p>To provide a better understanding of the use of the adjoint solvers, we
introduce a simple example, corresponding to
<a href="../src/ts/tutorials/power_grid/ex3sa.c.html">TS Power Grid Tutorial ex3sa</a>.
The problem is to study dynamic security of power system when there are
credible contingencies such as short-circuits or loss of generators,
transmission lines, or loads. The dynamic security constraints are
incorporated as equality constraints in the form of discretized
differential equations and inequality constraints for bounds on the
trajectory. The governing ODE system is</p>
<div class="math">
\[
\begin{aligned}
    \phi' &= &\omega_B (\omega - \omega_S)  \\
    2H/\omega_S \, \omega' & =& p_m - p_{max} sin(\phi) -D (\omega - \omega_S), \quad t_0 \leq t \leq t_F,\end{aligned}
\]</div>
<p>where <span class="math">\(\phi\)</span> is the phase angle and <span class="math">\(\omega\)</span> is the
frequency.</p>
<p>The initial conditions at time <span class="math">\(t_0\)</span> are</p>
<div class="math">
\[
\begin{aligned}
\phi(t_0) &=& \arcsin \left( p_m / p_{max} \right), \\
w(t_0) & =& 1.\end{aligned}
\]</div>
<p><span class="math">\(p_{max}\)</span> is a positive number when the system operates normally.
At an event such as fault incidence/removal, <span class="math">\(p_{max}\)</span> will change
to <span class="math">\(0\)</span> temporarily and back to the original value after the fault
is fixed. The objective is to maximize <span class="math">\(p_m\)</span> subject to the above
ODE constraints and <span class="math">\(\phi&lt;\phi_S\)</span> during all times. To accommodate
the inequality constraint, we want to compute the sensitivity of the
cost function</p>
<div class="math">
\[
\Psi(p_m,\phi) = -p_m + c \int_{t_0}^{t_F} \left( \max(0, \phi - \phi_S ) \right)^2 dt
\]</div>
<p>with respect to the parameter <span class="math">\(p_m\)</span>. <span class="math">\(numcost\)</span> is <span class="math">\(1\)</span>
since it is a scalar function.</p>
<p>For ODE solution, PETSc requires user-provided functions to evaluate the
system <span class="math">\(F(t,y,\dot{y},p)\)</span> (set by <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetIFunction.html">TSSetIFunction</a>()</span></code> ) and its
corresponding Jacobian <span class="math">\(F_y + \sigma F_{\dot y}\)</span> (set by
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSSetIJacobian.html">TSSetIJacobian</a>()</span></code>). Note that the solution state <span class="math">\(y\)</span> is
<span class="math">\([ \phi \;  \omega ]^T\)</span> here. For sensitivity analysis, we need to
provide a routine to compute <span class="math">\(\mathrm{f}_p=[0 \; 1]^T\)</span> using
<code class="docutils notranslate"><span class="pre">TSASetRHSJacobianP()</span></code>, and three routines corresponding to the
integrand <span class="math">\(r=c \left( \max(0, \phi - \phi_S ) \right)^2\)</span>,
<span class="math">\(r_p = [0 \; 0]^T\)</span> and
<span class="math">\(r_y= [ 2 c \left( \max(0, \phi - \phi_S ) \right) \; 0]^T\)</span> using
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/Sensitivity/TSSetCostIntegrand.html">TSSetCostIntegrand</a>()</span></code>.</p>
<p>In the adjoint run, <span class="math">\(\lambda\)</span> and <span class="math">\(\mu\)</span> are initialized as
<span class="math">\([ 0 \;  0 ]^T\)</span> and <span class="math">\([-1]\)</span> at the final time <span class="math">\(t_F\)</span>.
After <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Sensitivity/TSAdjointSolve.html">TSAdjointSolve</a>()</span></code>, the sensitivity of the cost function w.r.t.
initial conditions is given by the sensitivity variable <span class="math">\(\lambda\)</span>
(at time <span class="math">\(t_0\)</span>) directly. And the sensitivity of the cost function
w.r.t. the parameter <span class="math">\(p_m\)</span> can be computed (by users) as</p>
<div class="math">
\[
\frac{\mathrm{d} \Psi}{\mathrm{d} p_m} = \mu(t_0) + \lambda(t_0)  \frac{\mathrm{d} \left[ \phi(t_0) \; \omega(t_0) \right]^T}{\mathrm{d} p_m}  .
\]</div>
<p>For explicit methods where one does not need to provide the Jacobian
<span class="math">\(F_u\)</span> for the forward solve one still does need it for the
backward solve and thus must call</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetRHSJacobian.html">TSSetRHSJacobian</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">Amat</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">Pmat</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">f</span><span class="p">)(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">fP</span><span class="p">);</span>
</pre></div>
</div>
<p>Examples include:</p>
<ul class="simple">
<li><p>discrete adjoint sensitivity using explicit and implicit time stepping methods for an ODE problem
<a href="../src/ts/tutorials/ex20adj.c.html">TS Tutorial ex20adj</a>,</p></li>
<li><p>an optimization problem using the discrete adjoint models of the ERK (for nonstiff ODEs)
and the Theta methods (for stiff DAEs)
<a href="../src/ts/tutorials/ex20opt_ic.c.html">TS Tutorial ex20opt_ic</a>
and
<a href="../src/ts/tutorials/ex20opt_p.c.html">TS Tutorial ex20opt_p</a>,</p></li>
<li><p>an ODE-constrained optimization using the discrete adjoint models of the
Theta methods for cost function with an integral term
<a href="../src/ts/tutorials/power_grid/ex3opt.c.html">TS Power Grid Tutorial ex3opt</a>,</p></li>
<li><p>discrete adjoint sensitivity using the Crank-Nicolson methods for DAEs with discontinuities
<a href="../src/ts/tutorials/power_grid/stability_9bus/ex9busadj.c.html">TS Power Grid Stability Tutorial ex9busadj</a>,</p></li>
<li><p>a DAE-constrained optimization problem using the discrete adjoint models of the Crank-Nicolson
methods for cost function with an integral term
<a href="../src/ts/tutorials/power_grid/stability_9bus/ex9busopt.c.html">TS Power Grid Tutorial ex9busopt</a>,</p></li>
<li><p>discrete adjoint sensitivity using the Crank-Nicolson methods for a PDE problem
<a href="../src/ts/tutorials/advection-diffusion-reaction/ex5adj.c.html">TS Advection-Diffusion-Reaction Tutorial ex5adj</a>.</p></li>
</ul>
</section>
<section id="checkpointing">
<h3>Checkpointing<a class="headerlink" href="#checkpointing" title="Link to this heading">#</a></h3>
<p>The discrete adjoint model requires the states (and stage values in the
context of multistage timestepping methods) to evaluate the Jacobian
matrices during the adjoint (backward) run. By default, PETSc stores the
whole trajectory to disk as binary files, each of which contains the
information for a single time step including state, time, and stage
values (optional). One can also make PETSc store the trajectory to
memory with the option <code class="docutils notranslate"><span class="pre">-ts_trajectory_type</span> <span class="pre">memory</span></code>. However, there
might not be sufficient memory capacity especially for large-scale
problems and long-time integration.</p>
<p>A so-called checkpointing scheme is needed to solve this problem. The
scheme stores checkpoints at selective time steps and recomputes the
missing information. The <code class="docutils notranslate"><span class="pre">revolve</span></code> library is used by PETSc
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSTrajectory.html">TSTrajectory</a></span></code> to generate an optimal checkpointing schedule that
minimizes the recomputations given a limited number of available
checkpoints. One can specify the number of available checkpoints with
the option
<code class="docutils notranslate"><span class="pre">-ts_trajectory_max_cps_ram</span> <span class="pre">[maximum</span> <span class="pre">number</span> <span class="pre">of</span> <span class="pre">checkpoints</span> <span class="pre">in</span> <span class="pre">RAM]</span></code>.
Note that one checkpoint corresponds to one time step.</p>
<p>The <code class="docutils notranslate"><span class="pre">revolve</span></code> library also provides an optimal multistage
checkpointing scheme that uses both RAM and disk for storage. This
scheme is automatically chosen if one uses both the option
<code class="docutils notranslate"><span class="pre">-ts_trajectory_max_cps_ram</span> <span class="pre">[maximum</span> <span class="pre">number</span> <span class="pre">of</span> <span class="pre">checkpoints</span> <span class="pre">in</span> <span class="pre">RAM]</span></code>
and the option
<code class="docutils notranslate"><span class="pre">-ts_trajectory_max_cps_disk</span> <span class="pre">[maximum</span> <span class="pre">number</span> <span class="pre">of</span> <span class="pre">checkpoints</span> <span class="pre">on</span> <span class="pre">disk]</span></code>.</p>
<p>Some other useful options are listed below.</p>
<ul class="simple">
<li><p><code class="docutils notranslate"><span class="pre">-ts_trajectory_view</span></code> prints the total number of recomputations,</p></li>
<li><p><code class="docutils notranslate"><span class="pre">-ts_monitor</span></code> and <code class="docutils notranslate"><span class="pre">-ts_adjoint_monitor</span></code> allow users to monitor
the progress of the adjoint work flow,</p></li>
<li><p><code class="docutils notranslate"><span class="pre">-ts_trajectory_type</span> <span class="pre">visualization</span></code> may be used to save the whole
trajectory for visualization. It stores the solution and the time,
but no stage values. The binary files generated can be read into
MATLAB via the script
<code class="docutils notranslate"><span class="pre">$PETSC_DIR/share/petsc/matlab/PetscReadBinaryTrajectory.m</span></code>.</p></li>
</ul>
</section>
</section>
<section id="using-sundials-from-petsc">
<span id="sec-sundials"></span><h2>Using Sundials from PETSc<a class="headerlink" href="#using-sundials-from-petsc" title="Link to this heading">#</a></h2>
<p>Sundials is a parallel ODE solver developed by Hindmarsh et al. at LLNL.
The <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TS.html">TS</a></span></code> library provides an interface to use the CVODE component of
Sundials directly from PETSc. (To configure PETSc to use Sundials, see
the installation guide, <code class="docutils notranslate"><span class="pre">installation/index.htm</span></code>.)</p>
<p>To use the Sundials integrators, call</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetType.html">TSSetType</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/TS/TSType.html">TSType</a></span><span class="w"> </span><span class="n"><a href="../manualpages/TS/TSSUNDIALS.html">TSSUNDIALS</a></span><span class="p">);</span>
</pre></div>
</div>
<p>or use the command line option <code class="docutils notranslate"><span class="pre">-ts_type</span></code> <code class="docutils notranslate"><span class="pre">sundials</span></code>.</p>
<p>Sundials’ CVODE solver comes with two main integrator families, Adams
and BDF (backward differentiation formula). One can select these with</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSundialsSetType.html">TSSundialsSetType</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n">TSSundialsLmmType</span><span class="w"> </span><span class="p">[</span><span class="n">SUNDIALS_ADAMS</span><span class="p">,</span><span class="n">SUNDIALS_BDF</span><span class="p">]);</span>
</pre></div>
</div>
<p>or the command line option <code class="docutils notranslate"><span class="pre">-ts_sundials_type</span> <span class="pre">&lt;adams,bdf&gt;</span></code>. BDF is the
default.</p>
<p>Sundials does not use the <code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code> library within PETSc for its
nonlinear solvers, so one cannot change the nonlinear solver options via
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/SNES/SNES.html">SNES</a></span></code>. Rather, Sundials uses the preconditioners within the <code class="docutils notranslate"><span class="pre"><a href="../manualpages/PC/PC.html">PC</a></span></code>
package of PETSc, which can be accessed via</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSundialsGetPC.html">TSSundialsGetPC</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/PC/PC.html">PC</a></span><span class="w"> </span><span class="o">*</span><span class="n">pc</span><span class="p">);</span>
</pre></div>
</div>
<p>The user can then directly set preconditioner options; alternatively,
the usual runtime options can be employed via <code class="docutils notranslate"><span class="pre">-pc_xxx</span></code>.</p>
<p>Finally, one can set the Sundials tolerances via</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSundialsSetTolerance.html">TSSundialsSetTolerance</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="kt">double</span><span class="w"> </span><span class="n">abs</span><span class="p">,</span><span class="kt">double</span><span class="w"> </span><span class="n">rel</span><span class="p">);</span>
</pre></div>
</div>
<p>where <code class="docutils notranslate"><span class="pre">abs</span></code> denotes the absolute tolerance and <code class="docutils notranslate"><span class="pre">rel</span></code> the relative
tolerance.</p>
<p>Other PETSc-Sundials options include</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSundialsSetGramSchmidtType.html">TSSundialsSetGramSchmidtType</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n">TSSundialsGramSchmidtType</span><span class="w"> </span><span class="n">type</span><span class="p">);</span>
</pre></div>
</div>
<p>where <code class="docutils notranslate"><span class="pre">type</span></code> is either <code class="docutils notranslate"><span class="pre">SUNDIALS_MODIFIED_GS</span></code> or
<code class="docutils notranslate"><span class="pre">SUNDIALS_UNMODIFIED_GS</span></code>. This may be set via the options data base
with <code class="docutils notranslate"><span class="pre">-ts_sundials_gramschmidt_type</span> <span class="pre">&lt;modifed,unmodified&gt;</span></code>.</p>
<p>The routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSundialsSetMaxl.html">TSSundialsSetMaxl</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="w"> </span><span class="n">restart</span><span class="p">);</span>
</pre></div>
</div>
<p>sets the number of vectors in the Krylov subpspace used by GMRES. This
may be set in the options database with <code class="docutils notranslate"><span class="pre">-ts_sundials_maxl</span></code> <code class="docutils notranslate"><span class="pre">maxl</span></code>.</p>
</section>
<section id="using-tchem-from-petsc">
<h2>Using TChem from PETSc<a class="headerlink" href="#using-tchem-from-petsc" title="Link to this heading">#</a></h2>
<p>TChem <a class="footnote-reference brackets" href="#id11" id="id7" role="doc-noteref"><span class="fn-bracket">[</span>3<span class="fn-bracket">]</span></a> is a package originally developed at Sandia National
Laboratory that can read in CHEMKIN <a class="footnote-reference brackets" href="#id12" id="id8" role="doc-noteref"><span class="fn-bracket">[</span>4<span class="fn-bracket">]</span></a> data files and compute the
right-hand side function and its Jacobian for a reaction ODE system. To
utilize PETSc’s ODE solvers for these systems, first install PETSc with
the additional <code class="docutils notranslate"><span class="pre">configure</span></code> option <code class="docutils notranslate"><span class="pre">--download-tchem</span></code>. We currently
provide two examples of its use; one for single cell reaction and one
for an “artificial” one dimensional problem with periodic boundary
conditions and diffusion of all species. The self-explanatory examples
are the
<a href="../src/ts/tutorials/extchem.c.html">The TS tutorial extchem</a>
and
<a href="../src/ts/tutorials/extchemfield.c.html">The TS tutorial extchemfield</a>.</p>
<hr></section>
</section>
<section class="tex2jax_ignore mathjax_ignore" id="solving-steady-state-problems-with-pseudo-timestepping">
<h1>Solving Steady-State Problems with Pseudo-Timestepping<a class="headerlink" href="#solving-steady-state-problems-with-pseudo-timestepping" title="Link to this heading">#</a></h1>
<p><strong>Simple Example:</strong> <code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TS.html">TS</a></span></code> provides a general code for performing pseudo
timestepping with a variable timestep at each physical node point. For
example, instead of directly attacking the steady-state problem</p>
<div class="math">
\[
G(u) = 0,
\]</div>
<p>we can use pseudo-transient continuation by solving</p>
<div class="math">
\[
u_t = G(u).
\]</div>
<p>Using time differencing</p>
<div class="math">
\[
u_t \doteq \frac{{u^{n+1}} - {u^{n}} }{dt^{n}}
\]</div>
<p>with the backward Euler method, we obtain nonlinear equations at a
series of pseudo-timesteps</p>
<div class="math">
\[
\frac{1}{dt^n} B (u^{n+1} - u^{n} ) = G(u^{n+1}).
\]</div>
<p>For this problem the user must provide <span class="math">\(G(u)\)</span>, the time steps
<span class="math">\(dt^{n}\)</span> and the left-hand-side matrix <span class="math">\(B\)</span> (or optionally,
if the timestep is position independent and <span class="math">\(B\)</span> is the identity
matrix, a scalar timestep), as well as optionally the Jacobian of
<span class="math">\(G(u)\)</span>.</p>
<p>More generally, this can be applied to implicit ODE and DAE for which
the transient form is</p>
<div class="math">
\[
F(u,\dot{u}) = 0.
\]</div>
<p>For solving steady-state problems with pseudo-timestepping one proceeds
as follows.</p>
<ul>
<li><p>Provide the function <code class="docutils notranslate"><span class="pre">G(u)</span></code> with the routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetRHSFunction.html">TSSetRHSFunction</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="w"> </span><span class="n">r</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">f</span><span class="p">)(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">fP</span><span class="p">);</span>
</pre></div>
</div>
<p>The arguments to the function <code class="docutils notranslate"><span class="pre">f()</span></code> are the timestep context, the
current time, the input for the function, the output for the function
and the (optional) user-provided context variable <code class="docutils notranslate"><span class="pre">fP</span></code>.</p>
</li>
<li><p>Provide the (approximate) Jacobian matrix of <code class="docutils notranslate"><span class="pre">G(u)</span></code> and a function
to compute it at each Newton iteration. This is done with the command</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSSetRHSJacobian.html">TSSetRHSJacobian</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">Amat</span><span class="p">,</span><span class="w"> </span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="w"> </span><span class="n">Pmat</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscErrorCode.html">PetscErrorCode</a></span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="n">f</span><span class="p">)(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Vec/Vec.html">Vec</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Mat/Mat.html">Mat</a></span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span><span class="w"> </span><span class="o">*</span><span class="n">fP</span><span class="p">);</span>
</pre></div>
</div>
<p>The arguments for the function <code class="docutils notranslate"><span class="pre">f()</span></code> are the timestep context, the
current time, the location where the Jacobian is to be computed, the
(approximate) Jacobian matrix, an alternative approximate Jacobian
matrix used to construct the preconditioner, and the optional
user-provided context, passed in as <code class="docutils notranslate"><span class="pre">fP</span></code>. The user must provide the
Jacobian as a matrix; thus, if using a matrix-free approach, one must
create a <code class="docutils notranslate"><span class="pre"><a href="../manualpages/Mat/MATSHELL.html">MATSHELL</a></span></code> matrix.</p>
</li>
</ul>
<p>In addition, the user must provide a routine that computes the
pseudo-timestep. This is slightly different depending on if one is using
a constant timestep over the entire grid, or it varies with location.</p>
<ul>
<li><p>For location-independent pseudo-timestepping, one uses the routine</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSPseudoSetTimeStep.html">TSPseudoSetTimeStep</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscInt.html">PetscInt</a></span><span class="p">(</span><span class="o">*</span><span class="n">dt</span><span class="p">)(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="o">*</span><span class="p">,</span><span class="kt">void</span><span class="o">*</span><span class="p">),</span><span class="kt">void</span><span class="o">*</span><span class="w"> </span><span class="n">dtctx</span><span class="p">);</span>
</pre></div>
</div>
<p>The function <code class="docutils notranslate"><span class="pre">dt</span></code> is a user-provided function that computes the
next pseudo-timestep. As a default one can use
<code class="docutils notranslate"><span class="pre"><a href="../manualpages/TS/TSPseudoTimeStepDefault.html">TSPseudoTimeStepDefault</a>(<a href="../manualpages/TS/TS.html">TS</a>,<a href="../manualpages/Sys/PetscReal.html">PetscReal</a>*,void*)</span></code> for <code class="docutils notranslate"><span class="pre">dt</span></code>. This
routine updates the pseudo-timestep with one of two strategies: the
default</p>
<div class="math">
\[
  dt^{n} = dt_{\mathrm{increment}}*dt^{n-1}*\frac{|| F(u^{n-1}) ||}{|| F(u^{n})||}
  \]</div>
<p>or, the alternative,</p>
<div class="math">
\[
  dt^{n} = dt_{\mathrm{increment}}*dt^{0}*\frac{|| F(u^{0}) ||}{|| F(u^{n})||}
  \]</div>
<p>which can be set with the call</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSPseudoIncrementDtFromInitialDt.html">TSPseudoIncrementDtFromInitialDt</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">);</span>
</pre></div>
</div>
<p>or the option <code class="docutils notranslate"><span class="pre">-ts_pseudo_increment_dt_from_initial_dt</span></code>. The value
<span class="math">\(dt_{\mathrm{increment}}\)</span> is by default <span class="math">\(1.1\)</span>, but can be
reset with the call</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n"><a href="../manualpages/TS/TSPseudoSetTimeStepIncrement.html">TSPseudoSetTimeStepIncrement</a></span><span class="p">(</span><span class="n"><a href="../manualpages/TS/TS.html">TS</a></span><span class="w"> </span><span class="n">ts</span><span class="p">,</span><span class="n"><a href="../manualpages/Sys/PetscReal.html">PetscReal</a></span><span class="w"> </span><span class="n">inc</span><span class="p">);</span>
</pre></div>
</div>
<p>or the option <code class="docutils notranslate"><span class="pre">-ts_pseudo_increment</span> <span class="pre">&lt;inc&gt;</span></code>.</p>
</li>
<li><p>For location-dependent pseudo-timestepping, the interface function
has not yet been created.</p></li>
</ul>
<div class="docutils container" id="id1">
<div role="list" class="citation-list">
<div class="citation" id="id1009" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span>ARS97<span class="fn-bracket">]</span></span>
<span class="backrefs">(<a role="doc-backlink" href="#id2">1</a>,<a role="doc-backlink" href="#id9">2</a>)</span>
<p>U.M. Ascher, S.J. Ruuth, and R.J. Spiteri. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. <em>Applied Numerical Mathematics</em>, 25:151–167, 1997.</p>
</div>
<div class="citation" id="id1010" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id2">AP98</a><span class="fn-bracket">]</span></span>
<p>Uri M Ascher and Linda R Petzold. <em>Computer methods for ordinary differential equations and differential-algebraic equations</em>. Volume 61. SIAM, 1998.</p>
</div>
<div class="citation" id="id1008" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id8">BPR11</a><span class="fn-bracket">]</span></span>
<p>S. Boscarino, L. Pareschi, and G. Russo. Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. Arxiv preprint arXiv:1110.4375, 2011.</p>
</div>
<div class="citation" id="id1011" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id3">ColomesB16</a><span class="fn-bracket">]</span></span>
<p>Oriol Colomés and Santiago Badia. Segregated Runge–Kutta methods for the incompressible Navier–Stokes equations. <em>International Journal for Numerical Methods in Engineering</em>, 105(5):372–400, 2016.</p>
</div>
<div class="citation" id="id1005" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span>Con16<span class="fn-bracket">]</span></span>
<span class="backrefs">(<a role="doc-backlink" href="#id4">1</a>,<a role="doc-backlink" href="#id5">2</a>)</span>
<p>E.M. Constantinescu. Estimating global errors in time stepping. <em>ArXiv e-prints</em>, March 2016. <a class="reference external" href="https://arxiv.org/abs/1503.05166">arXiv:1503.05166</a>.</p>
</div>
<div class="citation" id="id1004" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span>GKC13<span class="fn-bracket">]</span></span>
<span class="backrefs">(<a role="doc-backlink" href="#id3">1</a>,<a role="doc-backlink" href="#id4">2</a>,<a role="doc-backlink" href="#id5">3</a>)</span>
<p>F.X. Giraldo, J.F. Kelly, and E.M. Constantinescu. Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA). <em>SIAM Journal on Scientific Computing</em>, 35(5):B1162–B1194, 2013. <a class="reference external" href="https://doi.org/10.1137/120876034">doi:10.1137/120876034</a>.</p>
</div>
<div class="citation" id="id1007" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span>KC03<span class="fn-bracket">]</span></span>
<span class="backrefs">(<a role="doc-backlink" href="#id7">1</a>,<a role="doc-backlink" href="#id10">2</a>,<a role="doc-backlink" href="#id11">3</a>)</span>
<p>C.A. Kennedy and M.H. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-reaction equations. <em>Appl. Numer. Math.</em>, 44(1-2):139–181, 2003. <a class="reference external" href="https://doi.org/10.1016/S0168-9274(02)00138-1">doi:10.1016/S0168-9274(02)00138-1</a>.</p>
</div>
<div class="citation" id="id1006" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span>PR05<span class="fn-bracket">]</span></span>
<span class="backrefs">(<a role="doc-backlink" href="#id1">1</a>,<a role="doc-backlink" href="#id6">2</a>)</span>
<p>L. Pareschi and G. Russo. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. <em>Journal of Scientific Computing</em>, 25(1):129–155, 2005.</p>
</div>
<div class="citation" id="id1013" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span>RA05<span class="fn-bracket">]</span></span>
<span class="backrefs">(<a role="doc-backlink" href="#id1">1</a>,<a role="doc-backlink" href="#id2">2</a>)</span>
<p>J. Rang and L. Angermann. New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1. <em>BIT Numerical Mathematics</em>, 45(4):761–787, 2005. <a class="reference external" href="https://doi.org/10.1007/s10543-005-0035-y">doi:10.1007/s10543-005-0035-y</a>.</p>
</div>
<div class="citation" id="id1012" role="doc-biblioentry">
<span class="label"><span class="fn-bracket">[</span>SVB+97<span class="fn-bracket">]</span></span>
<span class="backrefs">(<a role="doc-backlink" href="#id3">1</a>,<a role="doc-backlink" href="#id4">2</a>)</span>
<p>A. Sandu, J.G. Verwer, J.G. Blom, E.J. Spee, G.R. Carmichael, and F.A. Potra. Benchmarking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock solvers. <em>Atmospheric Environment</em>, 31(20):3459–3472, 1997.</p>
</div>
</div>
</div>
</section>
<hr class="footnotes docutils" />
<aside class="footnote-list brackets">
<aside class="footnote brackets" id="id9" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id1">1</a><span class="fn-bracket">]</span></span>
<p>If the matrix <span class="math">\(F_{\dot{u}}(t) = \partial F
/ \partial \dot{u}\)</span> is nonsingular then it is an ODE and can be
transformed to the standard explicit form, although this
transformation may not lead to efficient algorithms.</p>
</aside>
<aside class="footnote brackets" id="id10" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id6">2</a><span class="fn-bracket">]</span></span>
<p>PETSc will automatically translate the function provided to the
appropriate form.</p>
</aside>
<aside class="footnote brackets" id="id11" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id7">3</a><span class="fn-bracket">]</span></span>
<p><a class="reference external" href="https://bitbucket.org/jedbrown/tchem">bitbucket.org/jedbrown/tchem</a></p>
</aside>
<aside class="footnote brackets" id="id12" role="doc-footnote">
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id8">4</a><span class="fn-bracket">]</span></span>
<p><a class="reference external" href="https://en.wikipedia.org/wiki/CHEMKIN">en.wikipedia.org/wiki/CHEMKIN</a></p>
</aside>
</aside>


                </article>
              
              
              
              
              
                <footer class="prev-next-footer">
                  
<div class="prev-next-area">
    <a class="left-prev"
       href="snes.html"
       title="previous page">
      <i class="fa-solid fa-angle-left"></i>
      <div class="prev-next-info">
        <p class="prev-next-subtitle">previous</p>
        <p class="prev-next-title">SNES: Nonlinear Solvers</p>
      </div>
    </a>
    <a class="right-next"
       href="tao.html"
       title="next page">
      <div class="prev-next-info">
        <p class="prev-next-subtitle">next</p>
        <p class="prev-next-title">TAO: Optimization Solvers</p>
      </div>
      <i class="fa-solid fa-angle-right"></i>
    </a>
</div>
                </footer>
              
            </div>
            
            
              
                <div class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">


  <div class="sidebar-secondary-item">
<div
    id="pst-page-navigation-heading-2"
    class="page-toc tocsection onthispage">
    <i class="fa-solid fa-list"></i> On this page
  </div>
  <nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
    <ul class="visible nav section-nav flex-column">
<li class="toc-h1 nav-item toc-entry"><a class="reference internal nav-link" href="#">TS: Scalable ODE and DAE Solvers</a><ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#basic-ts-options">Basic TS Options</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#dae-formulations">DAE Formulations</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#hessenberg-index-1-dae">Hessenberg Index-1 DAE</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#hessenberg-index-2-dae">Hessenberg Index-2 DAE</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#using-implicit-explicit-imex-methods">Using Implicit-Explicit (IMEX) Methods</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#imex-methods-for-fast-slow-systems">IMEX Methods for fast-slow systems</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#glee-methods">GLEE methods</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#using-fully-implicit-methods">Using fully implicit methods</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#using-the-explicit-runge-kutta-timestepper-with-variable-timesteps">Using the Explicit Runge-Kutta timestepper with variable timesteps</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#special-cases">Special Cases</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#monitoring-and-visualizing-solutions">Monitoring and visualizing solutions</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#error-control-via-variable-time-stepping">Error control via variable time-stepping</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#handling-of-discontinuities">Handling of discontinuities</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#explicit-integrators-with-finite-element-mass-matrices">Explicit integrators with finite element mass matrices</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#performing-sensitivity-analysis-with-the-ts-ode-solvers">Performing sensitivity analysis with the TS ODE Solvers</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#using-the-discrete-adjoint-methods">Using the discrete adjoint methods</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#checkpointing">Checkpointing</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#using-sundials-from-petsc">Using Sundials from PETSc</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#using-tchem-from-petsc">Using TChem from PETSc</a></li>
</ul>
</li>
<li class="toc-h1 nav-item toc-entry"><a class="reference internal nav-link" href="#solving-steady-state-problems-with-pseudo-timestepping">Solving Steady-State Problems with Pseudo-Timestepping</a></li>
</ul>

  </nav></div>

  <div class="sidebar-secondary-item">

  
  <div class="tocsection editthispage">
    <a href="https://gitlab.com/petsc/petsc/-/edit/release/doc/manual/ts.md">
      <i class="fa-solid fa-pencil"></i>
      
      
        
          Edit on GitLab
        
      
    </a>
  </div>
</div>

  <div class="sidebar-secondary-item">

  <div class="tocsection sourcelink">
    <a href="../_sources/manual/ts.md.txt">
      <i class="fa-solid fa-file-lines"></i> Show Source
    </a>
  </div>
</div>

</div></div>
              
            
          </div>
          <footer class="bd-footer-content">
            
          </footer>
        
      </main>
    </div>
  </div>
  
  <!-- Scripts loaded after <body> so the DOM is not blocked -->
  <script src="../_static/scripts/bootstrap.js?digest=bd9e20870c6007c4c509"></script>
<script src="../_static/scripts/pydata-sphinx-theme.js?digest=bd9e20870c6007c4c509"></script>

  <footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
  
    <div class="footer-items__start">
      
        <div class="footer-item">

  <p class="copyright">
    
      © Copyright 1991-2025, UChicago Argonne, LLC and the PETSc Development Team.
      <br/>
    
  </p>
</div>
      
        <div class="footer-item">

  <p class="sphinx-version">
    Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 7.3.7.
    <br/>
  </p>
</div>
      
    </div>
  
  
  
    <div class="footer-items__end">
      
        <div class="footer-item">
<p class="theme-version">
  Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.15.1.
</p></div>
      
        <div class="footer-item"><p class="last-updated">
  Last updated on 2025-04-30T13:10:40-0500 (v3.23.1).
  <br/>
</p></div>
      
    </div>
  
</div>

  </footer>
  </body>
</html>