File: ex42.c

package info (click to toggle)
petsc 3.23.1%2Bdfsg1-1exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 515,576 kB
  • sloc: ansic: 751,607; cpp: 51,542; python: 38,598; f90: 17,352; javascript: 3,493; makefile: 3,157; sh: 1,502; xml: 619; objc: 445; java: 13; csh: 1
file content (424 lines) | stat: -rw-r--r-- 16,289 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
static const char help[] = "Simple libCEED test to calculate surface area using 1^T M 1";

/*
  This is a recreation of libCeed Example 2: https://libceed.readthedocs.io/en/latest/examples/ceed/
*/

#include <petscdmceed.h>
#include <petscdmplexceed.h>
#include <petscfeceed.h>
#include <petscdmplex.h>
#include <petscds.h>

typedef struct {
  PetscReal         areaExact;
  CeedQFunctionUser setupgeo, apply;
  const char       *setupgeofname, *applyfname;
} AppCtx;

typedef struct {
  CeedQFunction qf_apply;
  CeedOperator  op_apply;
  CeedVector    qdata, uceed, vceed;
} CeedData;

static PetscErrorCode CeedDataDestroy(CeedData *data)
{
  PetscFunctionBeginUser;
  PetscCall(CeedVectorDestroy(&data->qdata));
  PetscCall(CeedVectorDestroy(&data->uceed));
  PetscCall(CeedVectorDestroy(&data->vceed));
  PetscCall(CeedQFunctionDestroy(&data->qf_apply));
  PetscCall(CeedOperatorDestroy(&data->op_apply));
  PetscFunctionReturn(PETSC_SUCCESS);
}

CEED_QFUNCTION(Mass)(void *ctx, const CeedInt Q, const CeedScalar *const *in, CeedScalar *const *out)
{
  const CeedScalar *u = in[0], *qdata = in[1];
  CeedScalar       *v = out[0];

  CeedPragmaSIMD for (CeedInt i = 0; i < Q; ++i) v[i] = qdata[i] * u[i];

  return 0;
}

/*
// Reference (parent) 2D coordinates: X \in [-1, 1]^2
//
// Global physical coordinates given by the mesh (3D): xx \in [-l, l]^3
//
// Local physical coordinates on the manifold (2D): x \in [-l, l]^2
//
// Change of coordinates matrix computed by the library:
//   (physical 3D coords relative to reference 2D coords)
//   dxx_j/dX_i (indicial notation) [3 * 2]
//
// Change of coordinates x (physical 2D) relative to xx (phyisical 3D):
//   dx_i/dxx_j (indicial notation) [2 * 3]
//
// Change of coordinates x (physical 2D) relative to X (reference 2D):
//   (by chain rule)
//   dx_i/dX_j = dx_i/dxx_k * dxx_k/dX_j
//
// The quadrature data is stored in the array qdata.
//
// We require the determinant of the Jacobian to properly compute integrals of the form: int(u v)
//
// Qdata: w * det(dx_i/dX_j)
*/
CEED_QFUNCTION(SetupMassGeoCube)(void *ctx, const CeedInt Q, const CeedScalar *const *in, CeedScalar *const *out)
{
  const CeedScalar *J = in[1], *w = in[2];
  CeedScalar       *qdata = out[0];

  CeedPragmaSIMD for (CeedInt i = 0; i < Q; ++i)
  {
    // Read dxxdX Jacobian entries, stored as [[0 3], [1 4], [2 5]]
    const CeedScalar dxxdX[3][2] = {
      {J[i + Q * 0], J[i + Q * 3]},
      {J[i + Q * 1], J[i + Q * 4]},
      {J[i + Q * 2], J[i + Q * 5]}
    };
    // Modulus of dxxdX column vectors
    const CeedScalar modg1 = PetscSqrtReal(dxxdX[0][0] * dxxdX[0][0] + dxxdX[1][0] * dxxdX[1][0] + dxxdX[2][0] * dxxdX[2][0]);
    const CeedScalar modg2 = PetscSqrtReal(dxxdX[0][1] * dxxdX[0][1] + dxxdX[1][1] * dxxdX[1][1] + dxxdX[2][1] * dxxdX[2][1]);
    // Use normalized column vectors of dxxdX as rows of dxdxx
    const CeedScalar dxdxx[2][3] = {
      {dxxdX[0][0] / modg1, dxxdX[1][0] / modg1, dxxdX[2][0] / modg1},
      {dxxdX[0][1] / modg2, dxxdX[1][1] / modg2, dxxdX[2][1] / modg2}
    };

    CeedScalar dxdX[2][2];
    for (int j = 0; j < 2; ++j)
      for (int k = 0; k < 2; ++k) {
        dxdX[j][k] = 0;
        for (int l = 0; l < 3; ++l) dxdX[j][k] += dxdxx[j][l] * dxxdX[l][k];
      }
    qdata[i + Q * 0] = (dxdX[0][0] * dxdX[1][1] - dxdX[1][0] * dxdX[0][1]) * w[i]; /* det J * weight */
  }
  return 0;
}

/*
// Reference (parent) 2D coordinates: X \in [-1, 1]^2
//
// Global 3D physical coordinates given by the mesh: xx \in [-R, R]^3
//   with R radius of the sphere
//
// Local 3D physical coordinates on the 2D manifold: x \in [-l, l]^3
//   with l half edge of the cube inscribed in the sphere
//
// Change of coordinates matrix computed by the library:
//   (physical 3D coords relative to reference 2D coords)
//   dxx_j/dX_i (indicial notation) [3 * 2]
//
// Change of coordinates x (on the 2D manifold) relative to xx (phyisical 3D):
//   dx_i/dxx_j (indicial notation) [3 * 3]
//
// Change of coordinates x (on the 2D manifold) relative to X (reference 2D):
//   (by chain rule)
//   dx_i/dX_j = dx_i/dxx_k * dxx_k/dX_j [3 * 2]
//
// modJ is given by the magnitude of the cross product of the columns of dx_i/dX_j
//
// The quadrature data is stored in the array qdata.
//
// We require the determinant of the Jacobian to properly compute integrals of
//   the form: int(u v)
//
// Qdata: modJ * w
*/
CEED_QFUNCTION(SetupMassGeoSphere)(void *ctx, const CeedInt Q, const CeedScalar *const *in, CeedScalar *const *out)
{
  const CeedScalar *X = in[0], *J = in[1], *w = in[2];
  CeedScalar       *qdata = out[0];

  CeedPragmaSIMD for (CeedInt i = 0; i < Q; ++i)
  {
    const CeedScalar xx[3][1] = {{X[i + 0 * Q]}, {X[i + 1 * Q]}, {X[i + 2 * Q]}};
    // Read dxxdX Jacobian entries, stored as [[0 3], [1 4], [2 5]]
    const CeedScalar dxxdX[3][2] = {
      {J[i + Q * 0], J[i + Q * 3]},
      {J[i + Q * 1], J[i + Q * 4]},
      {J[i + Q * 2], J[i + Q * 5]}
    };
    // Setup
    const CeedScalar modxxsq = xx[0][0] * xx[0][0] + xx[1][0] * xx[1][0] + xx[2][0] * xx[2][0];
    CeedScalar       xxsq[3][3];
    for (int j = 0; j < 3; ++j)
      for (int k = 0; k < 3; ++k) {
        xxsq[j][k] = 0.;
        for (int l = 0; l < 1; ++l) xxsq[j][k] += xx[j][l] * xx[k][l] / (sqrt(modxxsq) * modxxsq);
      }

    const CeedScalar dxdxx[3][3] = {
      {1. / sqrt(modxxsq) - xxsq[0][0], -xxsq[0][1],                     -xxsq[0][2]                    },
      {-xxsq[1][0],                     1. / sqrt(modxxsq) - xxsq[1][1], -xxsq[1][2]                    },
      {-xxsq[2][0],                     -xxsq[2][1],                     1. / sqrt(modxxsq) - xxsq[2][2]}
    };

    CeedScalar dxdX[3][2];
    for (int j = 0; j < 3; ++j)
      for (int k = 0; k < 2; ++k) {
        dxdX[j][k] = 0.;
        for (int l = 0; l < 3; ++l) dxdX[j][k] += dxdxx[j][l] * dxxdX[l][k];
      }
    // J is given by the cross product of the columns of dxdX
    const CeedScalar J[3][1] = {{dxdX[1][0] * dxdX[2][1] - dxdX[2][0] * dxdX[1][1]}, {dxdX[2][0] * dxdX[0][1] - dxdX[0][0] * dxdX[2][1]}, {dxdX[0][0] * dxdX[1][1] - dxdX[1][0] * dxdX[0][1]}};
    // Use the magnitude of J as our detJ (volume scaling factor)
    const CeedScalar modJ = sqrt(J[0][0] * J[0][0] + J[1][0] * J[1][0] + J[2][0] * J[2][0]);
    qdata[i + Q * 0]      = modJ * w[i];
  }
  return 0;
}

static PetscErrorCode ProcessOptions(MPI_Comm comm, AppCtx *ctx)
{
  DMPlexShape shape = DM_SHAPE_UNKNOWN;

  PetscFunctionBeginUser;
  PetscOptionsBegin(comm, "", "libCEED Test Options", "DMPLEX");
  PetscOptionsEnd();
  PetscCall(PetscOptionsGetEnum(NULL, NULL, "-dm_plex_shape", DMPlexShapes, (PetscEnum *)&shape, NULL));
  ctx->setupgeo      = NULL;
  ctx->setupgeofname = NULL;
  ctx->apply         = Mass;
  ctx->applyfname    = Mass_loc;
  ctx->areaExact     = 0.0;
  switch (shape) {
  case DM_SHAPE_BOX_SURFACE:
    ctx->setupgeo      = SetupMassGeoCube;
    ctx->setupgeofname = SetupMassGeoCube_loc;
    ctx->areaExact     = 6.0;
    break;
  case DM_SHAPE_SPHERE:
    ctx->setupgeo      = SetupMassGeoSphere;
    ctx->setupgeofname = SetupMassGeoSphere_loc;
    ctx->areaExact     = 4.0 * M_PI;
    break;
  default:
    break;
  }
  PetscFunctionReturn(PETSC_SUCCESS);
}

static PetscErrorCode CreateMesh(MPI_Comm comm, AppCtx *ctx, DM *dm)
{
  PetscFunctionBegin;
  PetscCall(DMCreate(comm, dm));
  PetscCall(DMSetType(*dm, DMPLEX));
  PetscCall(DMSetFromOptions(*dm));
  PetscCall(DMViewFromOptions(*dm, NULL, "-dm_view"));
#ifdef PETSC_HAVE_LIBCEED
  {
    Ceed        ceed;
    const char *usedresource;

    PetscCall(DMGetCeed(*dm, &ceed));
    PetscCall(CeedGetResource(ceed, &usedresource));
    PetscCall(PetscPrintf(PetscObjectComm((PetscObject)*dm), "libCEED Backend: %s\n", usedresource));
  }
#endif
  PetscFunctionReturn(PETSC_SUCCESS);
}

static PetscErrorCode SetupDiscretization(DM dm)
{
  DM        cdm;
  PetscFE   fe, cfe;
  PetscInt  dim, cnc;
  PetscBool simplex;

  PetscFunctionBeginUser;
  PetscCall(DMGetDimension(dm, &dim));
  PetscCall(DMPlexIsSimplex(dm, &simplex));
  PetscCall(PetscFECreateDefault(PETSC_COMM_SELF, dim, 1, simplex, NULL, PETSC_DETERMINE, &fe));
  PetscCall(PetscFESetName(fe, "indicator"));
  PetscCall(DMAddField(dm, NULL, (PetscObject)fe));
  PetscCall(PetscFEDestroy(&fe));
  PetscCall(DMCreateDS(dm));
  PetscCall(DMPlexSetClosurePermutationTensor(dm, PETSC_DETERMINE, NULL));
  PetscCall(DMGetCoordinateDim(dm, &cnc));
  PetscCall(PetscFECreateDefault(PETSC_COMM_SELF, dim, cnc, simplex, NULL, PETSC_DETERMINE, &cfe));
  PetscCall(DMSetCoordinateDisc(dm, cfe, PETSC_TRUE));
  PetscCall(PetscFEDestroy(&cfe));
  PetscCall(DMGetCoordinateDM(dm, &cdm));
  PetscCall(DMPlexSetClosurePermutationTensor(cdm, PETSC_DETERMINE, NULL));
  PetscFunctionReturn(PETSC_SUCCESS);
}

static PetscErrorCode LibCeedSetupByDegree(DM dm, AppCtx *ctx, CeedData *data)
{
  PetscDS             ds;
  PetscFE             fe, cfe;
  Ceed                ceed;
  CeedElemRestriction Erestrictx, Erestrictu, Erestrictq;
  CeedQFunction       qf_setupgeo;
  CeedOperator        op_setupgeo;
  CeedVector          xcoord;
  CeedBasis           basisu, basisx;
  CeedInt             Nqdata = 1;
  CeedInt             nqpts, nqptsx;
  DM                  cdm;
  Vec                 coords;
  const PetscScalar  *coordArray;
  PetscInt            dim, cdim, cStart, cEnd, Ncell;

  PetscFunctionBeginUser;
  PetscCall(DMGetCeed(dm, &ceed));
  PetscCall(DMGetDimension(dm, &dim));
  PetscCall(DMGetCoordinateDim(dm, &cdim));
  PetscCall(DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd));
  Ncell = cEnd - cStart;
  // CEED bases
  PetscCall(DMGetDS(dm, &ds));
  PetscCall(PetscDSGetDiscretization(ds, 0, (PetscObject *)&fe));
  PetscCall(PetscFEGetCeedBasis(fe, &basisu));
  PetscCall(DMGetCoordinateDM(dm, &cdm));
  PetscCall(DMGetDS(cdm, &ds));
  PetscCall(PetscDSGetDiscretization(ds, 0, (PetscObject *)&cfe));
  PetscCall(PetscFEGetCeedBasis(cfe, &basisx));

  PetscCall(DMPlexGetCeedRestriction(cdm, NULL, 0, 0, 0, &Erestrictx));
  PetscCall(DMPlexGetCeedRestriction(dm, NULL, 0, 0, 0, &Erestrictu));
  PetscCall(CeedBasisGetNumQuadraturePoints(basisu, &nqpts));
  PetscCall(CeedBasisGetNumQuadraturePoints(basisx, &nqptsx));
  PetscCheck(nqptsx == nqpts, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Number of qpoints for u %" CeedInt_FMT " != %" CeedInt_FMT " Number of qpoints for x", nqpts, nqptsx);
  PetscCall(CeedElemRestrictionCreateStrided(ceed, Ncell, nqpts, Nqdata, Nqdata * Ncell * nqpts, CEED_STRIDES_BACKEND, &Erestrictq));

  PetscCall(DMGetCoordinatesLocal(dm, &coords));
  PetscCall(VecGetArrayRead(coords, &coordArray));
  PetscCall(CeedElemRestrictionCreateVector(Erestrictx, &xcoord, NULL));
  PetscCall(CeedVectorSetArray(xcoord, CEED_MEM_HOST, CEED_COPY_VALUES, (PetscScalar *)coordArray));
  PetscCall(VecRestoreArrayRead(coords, &coordArray));

  // Create the vectors that will be needed in setup and apply
  PetscCall(CeedElemRestrictionCreateVector(Erestrictu, &data->uceed, NULL));
  PetscCall(CeedElemRestrictionCreateVector(Erestrictu, &data->vceed, NULL));
  PetscCall(CeedElemRestrictionCreateVector(Erestrictq, &data->qdata, NULL));

  // Create the Q-function that builds the operator (i.e. computes its quadrature data) and set its context data
  PetscCall(CeedQFunctionCreateInterior(ceed, 1, ctx->setupgeo, ctx->setupgeofname, &qf_setupgeo));
  PetscCall(CeedQFunctionAddInput(qf_setupgeo, "x", cdim, CEED_EVAL_INTERP));
  PetscCall(CeedQFunctionAddInput(qf_setupgeo, "dx", cdim * dim, CEED_EVAL_GRAD));
  PetscCall(CeedQFunctionAddInput(qf_setupgeo, "weight", 1, CEED_EVAL_WEIGHT));
  PetscCall(CeedQFunctionAddOutput(qf_setupgeo, "qdata", Nqdata, CEED_EVAL_NONE));

  // Set up the mass operator
  PetscCall(CeedQFunctionCreateInterior(ceed, 1, ctx->apply, ctx->applyfname, &data->qf_apply));
  PetscCall(CeedQFunctionAddInput(data->qf_apply, "u", 1, CEED_EVAL_INTERP));
  PetscCall(CeedQFunctionAddInput(data->qf_apply, "qdata", Nqdata, CEED_EVAL_NONE));
  PetscCall(CeedQFunctionAddOutput(data->qf_apply, "v", 1, CEED_EVAL_INTERP));

  // Create the operator that builds the quadrature data for the operator
  PetscCall(CeedOperatorCreate(ceed, qf_setupgeo, CEED_QFUNCTION_NONE, CEED_QFUNCTION_NONE, &op_setupgeo));
  PetscCall(CeedOperatorSetField(op_setupgeo, "x", Erestrictx, basisx, CEED_VECTOR_ACTIVE));
  PetscCall(CeedOperatorSetField(op_setupgeo, "dx", Erestrictx, basisx, CEED_VECTOR_ACTIVE));
  PetscCall(CeedOperatorSetField(op_setupgeo, "weight", CEED_ELEMRESTRICTION_NONE, basisx, CEED_VECTOR_NONE));
  PetscCall(CeedOperatorSetField(op_setupgeo, "qdata", Erestrictq, CEED_BASIS_NONE, CEED_VECTOR_ACTIVE));

  // Create the mass operator
  PetscCall(CeedOperatorCreate(ceed, data->qf_apply, CEED_QFUNCTION_NONE, CEED_QFUNCTION_NONE, &data->op_apply));
  PetscCall(CeedOperatorSetField(data->op_apply, "u", Erestrictu, basisu, CEED_VECTOR_ACTIVE));
  PetscCall(CeedOperatorSetField(data->op_apply, "qdata", Erestrictq, CEED_BASIS_NONE, data->qdata));
  PetscCall(CeedOperatorSetField(data->op_apply, "v", Erestrictu, basisu, CEED_VECTOR_ACTIVE));

  // Setup qdata
  PetscCall(CeedOperatorApply(op_setupgeo, xcoord, data->qdata, CEED_REQUEST_IMMEDIATE));

  PetscCall(CeedElemRestrictionDestroy(&Erestrictq));
  PetscCall(CeedQFunctionDestroy(&qf_setupgeo));
  PetscCall(CeedOperatorDestroy(&op_setupgeo));
  PetscCall(CeedVectorDestroy(&xcoord));
  PetscFunctionReturn(PETSC_SUCCESS);
}

int main(int argc, char **argv)
{
  MPI_Comm     comm;
  DM           dm;
  AppCtx       ctx;
  Vec          U, Uloc, V, Vloc;
  PetscScalar *v;
  PetscScalar  area;
  CeedData     ceeddata;

  PetscCall(PetscInitialize(&argc, &argv, NULL, help));
  comm = PETSC_COMM_WORLD;
  PetscCall(ProcessOptions(comm, &ctx));
  PetscCall(CreateMesh(comm, &ctx, &dm));
  PetscCall(SetupDiscretization(dm));

  PetscCall(LibCeedSetupByDegree(dm, &ctx, &ceeddata));

  PetscCall(DMCreateGlobalVector(dm, &U));
  PetscCall(DMCreateLocalVector(dm, &Uloc));
  PetscCall(VecDuplicate(U, &V));
  PetscCall(VecDuplicate(Uloc, &Vloc));

  /**/
  PetscCall(VecSet(Uloc, 1.));
  PetscCall(VecZeroEntries(V));
  PetscCall(VecZeroEntries(Vloc));
  PetscCall(VecGetArray(Vloc, &v));
  PetscCall(CeedVectorSetArray(ceeddata.vceed, CEED_MEM_HOST, CEED_USE_POINTER, v));
  PetscCall(CeedVectorSetValue(ceeddata.uceed, 1.0));
  PetscCall(CeedOperatorApply(ceeddata.op_apply, ceeddata.uceed, ceeddata.vceed, CEED_REQUEST_IMMEDIATE));
  PetscCall(CeedVectorTakeArray(ceeddata.vceed, CEED_MEM_HOST, NULL));
  PetscCall(VecRestoreArray(Vloc, &v));
  PetscCall(DMLocalToGlobalBegin(dm, Vloc, ADD_VALUES, V));
  PetscCall(DMLocalToGlobalEnd(dm, Vloc, ADD_VALUES, V));

  PetscCall(VecSum(V, &area));
  if (ctx.areaExact > 0.) {
    PetscReal error = PetscAbsReal(area - ctx.areaExact);
    PetscReal tol   = PETSC_SMALL;

    PetscCall(PetscPrintf(comm, "Exact mesh surface area    : % .*f\n", PetscAbsReal(ctx.areaExact - round(ctx.areaExact)) > 1E-15 ? 14 : 1, (double)ctx.areaExact));
    PetscCall(PetscPrintf(comm, "Computed mesh surface area : % .*f\n", PetscAbsScalar(area - round(area)) > 1E-15 ? 14 : 1, (double)PetscRealPart(area)));
    if (error > tol) {
      PetscCall(PetscPrintf(comm, "Area error                 : % .14g\n", (double)error));
    } else {
      PetscCall(PetscPrintf(comm, "Area verifies!\n"));
    }
  }

  PetscCall(CeedDataDestroy(&ceeddata));
  PetscCall(VecDestroy(&U));
  PetscCall(VecDestroy(&Uloc));
  PetscCall(VecDestroy(&V));
  PetscCall(VecDestroy(&Vloc));
  PetscCall(DMDestroy(&dm));
  return PetscFinalize();
}

/*TEST

  build:
    requires: libceed

  testset:
    args: -dm_plex_simplex 0 -petscspace_degree 3 -dm_view -dm_petscds_view \
          -petscfe_default_quadrature_order 4 -cdm_default_quadrature_order 4
    filter: sed -e "s /cpu/self/xsmm /cpu/self/opt " -e "s /cpu/self/avx /cpu/self/opt "

    test:
      suffix: cube_3
      args: -dm_plex_shape box_surface -dm_refine 2

    test:
      suffix: cube_3_p4
      nsize: 4
      args: -petscpartitioner_type simple -dm_refine_pre 1 -dm_plex_shape box_surface -dm_refine 1

    test:
      suffix: sphere_3
      args: -dm_plex_shape sphere -dm_refine 3

    test:
      suffix: sphere_3_p4
      nsize: 4
      args: -petscpartitioner_type simple -dm_refine_pre 1 -dm_plex_shape sphere -dm_refine 2

TEST*/