File: MatSetUnfactored.html

package info (click to toggle)
petsc 3.4.2.dfsg1-8.1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 129,104 kB
  • ctags: 516,422
  • sloc: ansic: 395,939; cpp: 47,201; python: 34,788; makefile: 17,193; fortran: 16,251; f90: 1,592; objc: 954; sh: 822; xml: 621; java: 381; lisp: 293; csh: 241
file content (59 lines) | stat: -rw-r--r-- 2,687 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML3.2 EN">
<HTML>
<HEAD> <link rel="canonical" href="http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/MatSetUnfactored.html" />
<META NAME="GENERATOR" CONTENT="DOCTEXT">
<TITLE>MatSetUnfactored</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFFF">
   <div id="version" align=right><b>petsc-3.4.2 2013-07-02</b></div>
<A NAME="MatSetUnfactored"><H1>MatSetUnfactored</H1></A>
Resets a factored matrix to be treated as unfactored. 
<H3><FONT COLOR="#CC3333">Synopsis</FONT></H3>
<PRE>
#include "petscmat.h" 
PetscErrorCode  MatSetUnfactored(Mat mat)
</PRE>
Logically Collective on <A HREF="../Mat/Mat.html#Mat">Mat</A>
<P>
<H3><FONT COLOR="#CC3333">Input Parameter</FONT></H3>
<DT><B>mat </B> -the factored matrix to be reset
<br>
<P>
<H3><FONT COLOR="#CC3333">Notes</FONT></H3>
This routine should be used only with factored matrices formed by in-place
factorization via ILU(0) (or by in-place LU factorization for the <A HREF="../Mat/MATSEQDENSE.html#MATSEQDENSE">MATSEQDENSE</A>
format).  This option can save memory, for example, when solving nonlinear
systems with a matrix-free Newton-Krylov method and a matrix-based, in-place
ILU(0) preconditioner.
<P>
Note that one can specify in-place ILU(0) factorization by calling
<PRE>
     <A HREF="../PC/PCType.html#PCType">PCType</A>(pc,<A HREF="../PC/PCILU.html#PCILU">PCILU</A>);
     PCFactorSeUseInPlace(pc);
</PRE>

or by using the options -pc_type ilu -pc_factor_in_place
<P>
In-place factorization ILU(0) can also be used as a local
solver for the blocks within the block Jacobi or additive Schwarz
methods (runtime option: -sub_pc_factor_in_place).  See the discussion
of these preconditioners in the &lt;a href="../../docs/manual.pdf#ch_pc"&gt;<A HREF="../PC/PC.html#PC">PC</A> chapter of the users manual&lt;/a&gt; for details on setting
local solver options.
<P>
Most users should employ the simplified <A HREF="../KSP/KSP.html#KSP">KSP</A> interface for linear solvers
instead of working directly with matrix algebra routines such as this.
See, e.g., <A HREF="../KSP/KSPCreate.html#KSPCreate">KSPCreate</A>().
<P>

<P>
<H3><FONT COLOR="#CC3333">See Also</FONT></H3>
 <A HREF="../PC/PCFactorSetUseInPlace.html#PCFactorSetUseInPlace">PCFactorSetUseInPlace</A>()
<BR>
<P>
<P>
<P><B><P><B><FONT COLOR="#CC3333">Level:</FONT></B>developer
<BR><FONT COLOR="#CC3333">Location:</FONT></B><A HREF="../../../src/mat/interface/matrix.c.html#MatSetUnfactored">src/mat/interface/matrix.c</A>
<BR><A HREF="./index.html">Index of all Mat routines</A>
<BR><A HREF="../../index.html">Table of Contents for all manual pages</A>
<BR><A HREF="../singleindex.html">Index of all manual pages</A>
</BODY></HTML>