1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML3.2 EN">
<HTML>
<HEAD> <link rel="canonical" href="http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/DMGlobalToLocalSolve.html" />
<META NAME="GENERATOR" CONTENT="DOCTEXT">
<TITLE>DMGlobalToLocalSolve</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFFF">
<div id="version" align=right><b>petsc-3.7.5 2017-01-01</b></div>
<div id="bugreport" align=right><a href="mailto:petsc-maint@mcs.anl.gov?subject=Typo or Error in Documentation &body=Please describe the typo or error in the documentation: petsc-3.7.5 v3.7.5 docs/manualpages/KSP/DMGlobalToLocalSolve.html "><small>Report Typos and Errors</small></a></div>
<A NAME="DMGlobalToLocalSolve"><H1>DMGlobalToLocalSolve</H1></A>
Solve for the global vector that is mapped to a given local vector by <A HREF="../DM/DMGlobalToLocalBegin.html#DMGlobalToLocalBegin">DMGlobalToLocalBegin</A>()/<A HREF="../DM/DMGlobalToLocalEnd.html#DMGlobalToLocalEnd">DMGlobalToLocalEnd</A>() with mode = <A HREF="../Sys/INSERT_VALUES.html#INSERT_VALUES">INSERT_VALUES</A>. It is assumed that the sum of all the local vector sizes is greater than or equal to the global vector size, so the solution is a least-squares solution. It is also assumed that <A HREF="../DM/DMLocalToGlobalBegin.html#DMLocalToGlobalBegin">DMLocalToGlobalBegin</A>()/<A HREF="../DM/DMLocalToGlobalEnd.html#DMLocalToGlobalEnd">DMLocalToGlobalEnd</A>() with mode = <A HREF="../Sys/ADD_VALUES.html#ADD_VALUES">ADD_VALUES</A> is the adjoint of the global-to-local map, so that the least-squares solution may be found by the normal equations.
<H3><FONT COLOR="#CC3333">Synopsis</FONT></H3>
<PRE>
#include "petscdm.h"
#include "petscdmplex.h"
#include "petscksp.h"
PetscErrorCode DMGlobalToLocalSolve(DM dm, Vec x, Vec y)
</PRE>
collective
<P>
<H3><FONT COLOR="#CC3333">Input Parameters</FONT></H3>
<TABLE border="0" cellpadding="0" cellspacing="0">
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>dm </B></TD><TD>- The <A HREF="../DM/DM.html#DM">DM</A> object
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>x </B></TD><TD>- The local vector
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>y </B></TD><TD>- The global vector: the input value of globalVec is used as an initial guess
</TD></TR></TABLE>
<P>
<H3><FONT COLOR="#CC3333">Output Parameters</FONT></H3>
<DT><B>y </B> -The least-squares solution
<br>
<P>
<P>
Note: If the <A HREF="../DM/DM.html#DM">DM</A> is of type <A HREF="../DM/DMPLEX.html#DMPLEX">DMPLEX</A>, then y is the solution of L' * D * L * y = L' * D * x, where D is a diagonal mask that is 1 for every point in
the union of the closures of the local cells and 0 otherwise. This difference is only relevant if there are anchor points that are not in the
closure of any local cell (see <A HREF="../DM/DMPlexGetAnchors.html#DMPlexGetAnchors">DMPlexGetAnchors</A>()/<A HREF="../DM/DMPlexSetAnchors.html#DMPlexSetAnchors">DMPlexSetAnchors</A>()).
<P>
<H3><FONT COLOR="#CC3333">See Also</FONT></H3>
<A HREF="../DM/DMGlobalToLocalBegin.html#DMGlobalToLocalBegin">DMGlobalToLocalBegin</A>(), <A HREF="../DM/DMGlobalToLocalEnd.html#DMGlobalToLocalEnd">DMGlobalToLocalEnd</A>(), <A HREF="../DM/DMLocalToGlobalBegin.html#DMLocalToGlobalBegin">DMLocalToGlobalBegin</A>(), <A HREF="../DM/DMLocalToGlobalEnd.html#DMLocalToGlobalEnd">DMLocalToGlobalEnd</A>(), <A HREF="../DM/DMPlexGetAnchors.html#DMPlexGetAnchors">DMPlexGetAnchors</A>(), <A HREF="../DM/DMPlexSetAnchors.html#DMPlexSetAnchors">DMPlexSetAnchors</A>()
<BR><P><B><P><B><FONT COLOR="#CC3333">Level:</FONT></B>advanced
<BR><FONT COLOR="#CC3333">Location:</FONT></B><A HREF="../../../src/ksp/ksp/utils/dmproject.c.html#DMGlobalToLocalSolve">src/ksp/ksp/utils/dmproject.c</A>
<BR><A HREF="./index.html">Index of all KSP routines</A>
<BR><A HREF="../../index.html">Table of Contents for all manual pages</A>
<BR><A HREF="../singleindex.html">Index of all manual pages</A>
</BODY></HTML>
|