1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML3.2 EN">
<HTML>
<HEAD> <link rel="canonical" href="http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPQCGGetQuadratic.html" />
<META NAME="GENERATOR" CONTENT="DOCTEXT">
<TITLE>KSPQCGGetQuadratic</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFFF">
<div id="version" align=right><b>petsc-3.7.5 2017-01-01</b></div>
<div id="bugreport" align=right><a href="mailto:petsc-maint@mcs.anl.gov?subject=Typo or Error in Documentation &body=Please describe the typo or error in the documentation: petsc-3.7.5 v3.7.5 docs/manualpages/KSP/KSPQCGGetQuadratic.html "><small>Report Typos and Errors</small></a></div>
<A NAME="KSPQCGGetQuadratic"><H1>KSPQCGGetQuadratic</H1></A>
Gets the value of the quadratic function, evaluated at the new iterate:
<H3><FONT COLOR="#CC3333">Synopsis</FONT></H3>
<PRE>
#include "petscksp.h"
PetscErrorCode KSPQCGGetQuadratic(KSP ksp,PetscReal *quadratic)
</PRE>
q(s) = g^T * s + 0.5 * s^T * H * s
<P>
which satisfies the Euclidian Norm trust region constraint
<P>
|| D * s || <= delta,
<P>
where
<P>
delta is the trust region radius,
g is the gradient vector, and
H is Hessian matrix,
D is a scaling matrix.
<P>
Collective on <A HREF="../KSP/KSP.html#KSP">KSP</A>
<P>
<H3><FONT COLOR="#CC3333">Input Parameter</FONT></H3>
<DT><B>ksp </B> -the iterative context
<br>
<P>
<H3><FONT COLOR="#CC3333">Output Parameter</FONT></H3>
<DT><B>quadratic </B> -the quadratic function evaluated at the new iterate
<br>
<P>
<P><B><P><B><FONT COLOR="#CC3333">Level:</FONT></B>advanced
<BR><FONT COLOR="#CC3333">Location:</FONT></B><A HREF="../../../src/ksp/ksp/impls/qcg/qcg.c.html#KSPQCGGetQuadratic">src/ksp/ksp/impls/qcg/qcg.c</A>
<BR><A HREF="./index.html">Index of all KSP routines</A>
<BR><A HREF="../../index.html">Table of Contents for all manual pages</A>
<BR><A HREF="../singleindex.html">Index of all manual pages</A>
</BODY></HTML>
|