File: TSSetI2Jacobian.html

package info (click to toggle)
petsc 3.7.5%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 163,864 kB
  • ctags: 618,438
  • sloc: ansic: 515,133; python: 29,793; makefile: 20,458; fortran: 18,998; cpp: 6,515; f90: 3,914; sh: 1,012; xml: 621; objc: 445; csh: 240; java: 13
file content (78 lines) | stat: -rw-r--r-- 4,808 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML3.2 EN">
<HTML>
<HEAD> <link rel="canonical" href="http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetI2Jacobian.html" />
<META NAME="GENERATOR" CONTENT="DOCTEXT">
<TITLE>TSSetI2Jacobian</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFFF">
   <div id="version" align=right><b>petsc-3.7.5 2017-01-01</b></div>
   <div id="bugreport" align=right><a href="mailto:petsc-maint@mcs.anl.gov?subject=Typo or Error in Documentation &body=Please describe the typo or error in the documentation: petsc-3.7.5 v3.7.5 docs/manualpages/TS/TSSetI2Jacobian.html "><small>Report Typos and Errors</small></a></div>
<A NAME="TSSetI2Jacobian"><H1>TSSetI2Jacobian</H1></A>
Set the function to compute the matrix dF/dU + v*dF/dU_t  + a*dF/dU_tt where F(t,U,U_t,U_tt) is the function you provided with <A HREF="../TS/TSSetI2Function.html#TSSetI2Function">TSSetI2Function</A>(). 
<H3><FONT COLOR="#CC3333">Synopsis</FONT></H3>
<PRE>
#include "petscts.h"  
PetscErrorCode TSSetI2Jacobian(TS ts,Mat J,Mat P,TSI2Jacobian jac,void *ctx)
</PRE>
Logically Collective on <A HREF="../TS/TS.html#TS">TS</A>
<P>
<H3><FONT COLOR="#CC3333">Input Parameters</FONT></H3>
<TABLE border="0" cellpadding="0" cellspacing="0">
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>ts  </B></TD><TD>- the <A HREF="../TS/TS.html#TS">TS</A> context obtained from <A HREF="../TS/TSCreate.html#TSCreate">TSCreate</A>()
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>J   </B></TD><TD>- Jacobian matrix
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>P   </B></TD><TD>- preconditioning matrix for J (may be same as J)
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>jac </B></TD><TD>- the Jacobian evaluation routine
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>ctx </B></TD><TD>- user-defined context for private data for the Jacobian evaluation routine (may be NULL)
</TD></TR></TABLE>
<P>
<H3><FONT COLOR="#CC3333">Calling sequence of jac</FONT></H3>
<pre>
 jac(<A HREF="../TS/TS.html#TS">TS</A> ts,<A HREF="../Sys/PetscReal.html#PetscReal">PetscReal</A> t,<A HREF="../Vec/Vec.html#Vec">Vec</A> U,<A HREF="../Vec/Vec.html#Vec">Vec</A> U_t,<A HREF="../Vec/Vec.html#Vec">Vec</A> U_tt,<A HREF="../Sys/PetscReal.html#PetscReal">PetscReal</A> v,<A HREF="../Sys/PetscReal.html#PetscReal">PetscReal</A> a,<A HREF="../Mat/Mat.html#Mat">Mat</A> J,<A HREF="../Mat/Mat.html#Mat">Mat</A> P,void *ctx);
</pre>
<P>
<TABLE border="0" cellpadding="0" cellspacing="0">
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>t    </B></TD><TD>- time at step/stage being solved
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>U    </B></TD><TD>- state vector
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>U_t  </B></TD><TD>- time derivative of state vector
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>U_tt </B></TD><TD>- second time derivative of state vector
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>v    </B></TD><TD>- shift for U_t
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>a    </B></TD><TD>- shift for U_tt
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>J    </B></TD><TD>- Jacobian of G(U) = F(t,U,W+v*U,W'+a*U), equivalent to dF/dU + v*dF/dU_t  + a*dF/dU_tt
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>P    </B></TD><TD>- preconditioning matrix for J, may be same as J
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>ctx  </B></TD><TD>- [optional] user-defined context for matrix evaluation routine
</TD></TR></TABLE>
<P>
<H3><FONT COLOR="#CC3333">Notes</FONT></H3>
The matrices J and P are exactly the matrices that are used by <A HREF="../SNES/SNES.html#SNES">SNES</A> for the nonlinear solve.
<P>
The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U  where the positive "shift"
parameters 'v' and 'a' and vectors W, W' depend on the integration method, step size, and past states.
<P>

<P>
<H3><FONT COLOR="#CC3333">Keywords</FONT></H3>
 <A HREF="../TS/TS.html#TS">TS</A>, timestep, set, ODE, DAE, Jacobian
<BR>
<P>
<H3><FONT COLOR="#CC3333">See Also</FONT></H3>
 <A HREF="../TS/TSSetI2Function.html#TSSetI2Function">TSSetI2Function</A>()
<BR><P><B><P><B><FONT COLOR="#CC3333">Level:</FONT></B>beginner
<BR><FONT COLOR="#CC3333">Location:</FONT></B><A HREF="../../../src/ts/interface/ts.c.html#TSSetI2Jacobian">src/ts/interface/ts.c</A>
<BR><A HREF="./index.html">Index of all TS routines</A>
<BR><A HREF="../../index.html">Table of Contents for all manual pages</A>
<BR><A HREF="../singleindex.html">Index of all manual pages</A>
</BODY></HTML>