1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML3.2 EN">
<HTML>
<HEAD> <link rel="canonical" href="http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetI2Jacobian.html" />
<META NAME="GENERATOR" CONTENT="DOCTEXT">
<TITLE>TSSetI2Jacobian</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFFF">
<div id="version" align=right><b>petsc-3.7.5 2017-01-01</b></div>
<div id="bugreport" align=right><a href="mailto:petsc-maint@mcs.anl.gov?subject=Typo or Error in Documentation &body=Please describe the typo or error in the documentation: petsc-3.7.5 v3.7.5 docs/manualpages/TS/TSSetI2Jacobian.html "><small>Report Typos and Errors</small></a></div>
<A NAME="TSSetI2Jacobian"><H1>TSSetI2Jacobian</H1></A>
Set the function to compute the matrix dF/dU + v*dF/dU_t + a*dF/dU_tt where F(t,U,U_t,U_tt) is the function you provided with <A HREF="../TS/TSSetI2Function.html#TSSetI2Function">TSSetI2Function</A>().
<H3><FONT COLOR="#CC3333">Synopsis</FONT></H3>
<PRE>
#include "petscts.h"
PetscErrorCode TSSetI2Jacobian(TS ts,Mat J,Mat P,TSI2Jacobian jac,void *ctx)
</PRE>
Logically Collective on <A HREF="../TS/TS.html#TS">TS</A>
<P>
<H3><FONT COLOR="#CC3333">Input Parameters</FONT></H3>
<TABLE border="0" cellpadding="0" cellspacing="0">
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>ts </B></TD><TD>- the <A HREF="../TS/TS.html#TS">TS</A> context obtained from <A HREF="../TS/TSCreate.html#TSCreate">TSCreate</A>()
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>J </B></TD><TD>- Jacobian matrix
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>P </B></TD><TD>- preconditioning matrix for J (may be same as J)
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>jac </B></TD><TD>- the Jacobian evaluation routine
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>ctx </B></TD><TD>- user-defined context for private data for the Jacobian evaluation routine (may be NULL)
</TD></TR></TABLE>
<P>
<H3><FONT COLOR="#CC3333">Calling sequence of jac</FONT></H3>
<pre>
jac(<A HREF="../TS/TS.html#TS">TS</A> ts,<A HREF="../Sys/PetscReal.html#PetscReal">PetscReal</A> t,<A HREF="../Vec/Vec.html#Vec">Vec</A> U,<A HREF="../Vec/Vec.html#Vec">Vec</A> U_t,<A HREF="../Vec/Vec.html#Vec">Vec</A> U_tt,<A HREF="../Sys/PetscReal.html#PetscReal">PetscReal</A> v,<A HREF="../Sys/PetscReal.html#PetscReal">PetscReal</A> a,<A HREF="../Mat/Mat.html#Mat">Mat</A> J,<A HREF="../Mat/Mat.html#Mat">Mat</A> P,void *ctx);
</pre>
<P>
<TABLE border="0" cellpadding="0" cellspacing="0">
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>t </B></TD><TD>- time at step/stage being solved
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>U </B></TD><TD>- state vector
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>U_t </B></TD><TD>- time derivative of state vector
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>U_tt </B></TD><TD>- second time derivative of state vector
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>v </B></TD><TD>- shift for U_t
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>a </B></TD><TD>- shift for U_tt
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>J </B></TD><TD>- Jacobian of G(U) = F(t,U,W+v*U,W'+a*U), equivalent to dF/dU + v*dF/dU_t + a*dF/dU_tt
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>P </B></TD><TD>- preconditioning matrix for J, may be same as J
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>ctx </B></TD><TD>- [optional] user-defined context for matrix evaluation routine
</TD></TR></TABLE>
<P>
<H3><FONT COLOR="#CC3333">Notes</FONT></H3>
The matrices J and P are exactly the matrices that are used by <A HREF="../SNES/SNES.html#SNES">SNES</A> for the nonlinear solve.
<P>
The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U where the positive "shift"
parameters 'v' and 'a' and vectors W, W' depend on the integration method, step size, and past states.
<P>
<P>
<H3><FONT COLOR="#CC3333">Keywords</FONT></H3>
<A HREF="../TS/TS.html#TS">TS</A>, timestep, set, ODE, DAE, Jacobian
<BR>
<P>
<H3><FONT COLOR="#CC3333">See Also</FONT></H3>
<A HREF="../TS/TSSetI2Function.html#TSSetI2Function">TSSetI2Function</A>()
<BR><P><B><P><B><FONT COLOR="#CC3333">Level:</FONT></B>beginner
<BR><FONT COLOR="#CC3333">Location:</FONT></B><A HREF="../../../src/ts/interface/ts.c.html#TSSetI2Jacobian">src/ts/interface/ts.c</A>
<BR><A HREF="./index.html">Index of all TS routines</A>
<BR><A HREF="../../index.html">Table of Contents for all manual pages</A>
<BR><A HREF="../singleindex.html">Index of all manual pages</A>
</BODY></HTML>
|