1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML3.2 EN">
<HTML>
<HEAD> <link rel="canonical" href="http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Tao/VecSFischer.html" />
<META NAME="GENERATOR" CONTENT="DOCTEXT">
<TITLE>VecSFischer</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFFF">
<div id="version" align=right><b>petsc-3.7.5 2017-01-01</b></div>
<div id="bugreport" align=right><a href="mailto:petsc-maint@mcs.anl.gov?subject=Typo or Error in Documentation &body=Please describe the typo or error in the documentation: petsc-3.7.5 v3.7.5 docs/manualpages/Tao/VecSFischer.html "><small>Report Typos and Errors</small></a></div>
<A NAME="VecSFischer"><H1>VecSFischer</H1></A>
Evaluates the Smoothed Fischer-Burmeister function for complementarity problems.
<H3><FONT COLOR="#CC3333">Synopsis</FONT></H3>
<PRE>
#include "petsctao.h"
PetscErrorCode VecSFischer(Vec X, Vec F, Vec L, Vec U, PetscReal mu, Vec FB)
</PRE>
Logically Collective on vectors
<P>
<H3><FONT COLOR="#CC3333">Input Parameters</FONT></H3>
<TABLE border="0" cellpadding="0" cellspacing="0">
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>X </B></TD><TD>- current point
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>F </B></TD><TD>- function evaluated at x
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>L </B></TD><TD>- lower bounds
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>U </B></TD><TD>- upper bounds
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>mu </B></TD><TD>- smoothing parameter
</TD></TR></TABLE>
<P>
<H3><FONT COLOR="#CC3333">Output Parameters</FONT></H3>
<DT><B>FB </B> -The Smoothed Fischer-Burmeister function vector
<br>
<P>
<H3><FONT COLOR="#CC3333">Notes</FONT></H3>
The Smoothed Fischer-Burmeister function is defined as
<pre>
phi(a,b) := sqrt(a*a + b*b + 2*mu*mu) - a - b
</pre>
and is used reformulate a complementarity problem as a semismooth
system of equations.
<P>
<H3><FONT COLOR="#CC3333">The result of this function is done by cases</FONT></H3>
<TABLE border="0" cellpadding="0" cellspacing="0">
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>l[i] == </B></TD><TD>- infinity, u[i] == infinity -- fb[i] = -f[i] - 2*mu*x[i]
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>l[i] == </B></TD><TD>- infinity, u[i] finite -- fb[i] = phi(u[i]-x[i], -f[i], mu)
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>l[i] finite, u[i] == infinity </B></TD><TD>- - fb[i] = phi(x[i]-l[i], f[i], mu)
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>l[i] finite < u[i] finite </B></TD><TD>- - fb[i] = phi(x[i]-l[i], phi(u[i]-x[i], -f[u], mu), mu)
</TD></TR>
<TR><TD WIDTH=40></TD><TD ALIGN=LEFT VALIGN=TOP><B>otherwise l[i] == u[i] </B></TD><TD>- - fb[i] = l[i] - x[i]
</TD></TR></TABLE>
<P>
<P>
<H3><FONT COLOR="#CC3333">See Also</FONT></H3>
<A HREF="../Tao/VecFischer.html#VecFischer">VecFischer</A>()
<BR><P><B><P><B><FONT COLOR="#CC3333">Level:</FONT></B>developer
<BR><FONT COLOR="#CC3333">Location:</FONT></B><A HREF="../../../src/tao/util/tao_util.c.html#VecSFischer">src/tao/util/tao_util.c</A>
<BR><A HREF="./index.html">Index of all Tao routines</A>
<BR><A HREF="../../index.html">Table of Contents for all manual pages</A>
<BR><A HREF="../singleindex.html">Index of all manual pages</A>
</BODY></HTML>
|