1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
<html>
<title>TS</title><body bgcolor="FFFFFF">
<div id="version" align=right><b>petsc-3.7.5 2017-01-01</b></div>
<div id="bugreport" align=right><a href="mailto:petsc-maint@mcs.anl.gov?subject=Typo or Error in Documentation &body=Please describe the typo or error in the documentation: petsc-3.7.5 v3.7.5 docs/manualpages/concepts/ts.html "><small>Report Typos and Errors</small></a></div>
<h2>TS</h2>
<menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex1.c.html"><CONCEPT>pseudo-timestepping</CONCEPT></A>
<menu>
Solves the time independent Bratu problem using pseudo-timestepping.</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex1f.F.html"><CONCEPT>pseudo-timestepping</CONCEPT></A>
<menu>
<BR>
Solves the time dependent Bratu problem using pseudo-timestepping<BR>
<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex1.c.html"><CONCEPT>nonlinear problems</CONCEPT></A>
<menu>
Solves the time independent Bratu problem using pseudo-timestepping.</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex1f.F.html"><CONCEPT>nonlinear problems</CONCEPT></A>
<menu>
<BR>
Solves the time dependent Bratu problem using pseudo-timestepping<BR>
<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves the van der Pol equation.<BR>Input parameters include:<BR>
-mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16adj.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Performs adjoint sensitivity analysis for the van der Pol equation.<BR>Input parameters include:<BR>
-mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16opt_ic.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves an ODE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation.<BR>Input parameters include:<BR>
-mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16opt_p.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves an ODE-constrained optimization problem -- finding the optimal stiffness parameter for the van der Pol equation.<BR>Input parameters include:<BR>
-mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex19.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves the van der Pol DAE.<BR>Input parameters include:<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex2.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves a time-dependent nonlinear PDE. Uses implicit<BR>timestepping. Runtime options include:<BR>
-M <xg>, where <xg> = number of grid points<BR>
-debug : Activate debugging printouts<BR>
-nox : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves the van der Pol equation.<BR>Input parameters include:<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20adj.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Performs adjoint sensitivity analysis for the van der Pol equation.<BR></menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20opt_ic.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves a DAE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation.<BR></menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20opt_p.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves the van der Pol equation.<BR>Input parameters include:<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex21.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves a time-dependent nonlinear PDE with lower and upper bounds on the interior grid points. Uses implicit<BR>timestepping. Runtime options include:<BR>
-M <xg>, where <xg> = number of grid points<BR>
-debug : Activate debugging printouts<BR>
-nox : Deactivate x-window graphics<BR>
-ul : lower bound<BR>
-uh : upper bound<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex3.c.html"><CONCEPT>time-dependent linear problems</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
-m <points>, where <points> = number of grid points<BR>
-time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
-debug : Activate debugging printouts<BR>
-nox : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex4.c.html"><CONCEPT>time-dependent linear problems</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
-m <points>, where <points> = number of grid points<BR>
-time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
-debug : Activate debugging printouts<BR>
-nox : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex5.c.html"><CONCEPT>time-dependent linear problems</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
-m <points>, where <points> = number of grid points<BR>
-time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
-debug : Activate debugging printouts<BR>
-nox : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex6.c.html"><CONCEPT>time-dependent linear problems</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
-m <points>, where <points> = number of grid points<BR>
-time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
-debug : Activate debugging printouts<BR>
-nox : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex3.c.html"><CONCEPT>heat equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
-m <points>, where <points> = number of grid points<BR>
-time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
-debug : Activate debugging printouts<BR>
-nox : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex4.c.html"><CONCEPT>heat equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
-m <points>, where <points> = number of grid points<BR>
-time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
-debug : Activate debugging printouts<BR>
-nox : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex5.c.html"><CONCEPT>heat equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
-m <points>, where <points> = number of grid points<BR>
-time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
-debug : Activate debugging printouts<BR>
-nox : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex6.c.html"><CONCEPT>heat equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
-m <points>, where <points> = number of grid points<BR>
-time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
-debug : Activate debugging printouts<BR>
-nox : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex3.c.html"><CONCEPT>diffusion equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
-m <points>, where <points> = number of grid points<BR>
-time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
-debug : Activate debugging printouts<BR>
-nox : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex4.c.html"><CONCEPT>diffusion equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
-m <points>, where <points> = number of grid points<BR>
-time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
-debug : Activate debugging printouts<BR>
-nox : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex5.c.html"><CONCEPT>diffusion equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
-m <points>, where <points> = number of grid points<BR>
-time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
-debug : Activate debugging printouts<BR>
-nox : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex6.c.html"><CONCEPT>diffusion equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
-m <points>, where <points> = number of grid points<BR>
-time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
-debug : Activate debugging printouts<BR>
-nox : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16.c.html"><CONCEPT>van der Pol equation</CONCEPT></A>
<menu>
Solves the van der Pol equation.<BR>Input parameters include:<BR>
-mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16adj.c.html"><CONCEPT>van der Pol equation</CONCEPT></A>
<menu>
Performs adjoint sensitivity analysis for the van der Pol equation.<BR>Input parameters include:<BR>
-mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16opt_ic.c.html"><CONCEPT>van der Pol equation</CONCEPT></A>
<menu>
Solves an ODE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation.<BR>Input parameters include:<BR>
-mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16opt_p.c.html"><CONCEPT>van der Pol equation</CONCEPT></A>
<menu>
Solves an ODE-constrained optimization problem -- finding the optimal stiffness parameter for the van der Pol equation.<BR>Input parameters include:<BR>
-mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex19.c.html"><CONCEPT>van der Pol DAE</CONCEPT></A>
<menu>
Solves the van der Pol DAE.<BR>Input parameters include:<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20.c.html"><CONCEPT>van der Pol equation DAE equivalent</CONCEPT></A>
<menu>
Solves the van der Pol equation.<BR>Input parameters include:<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20adj.c.html"><CONCEPT>van der Pol equation DAE equivalent</CONCEPT></A>
<menu>
Performs adjoint sensitivity analysis for the van der Pol equation.<BR></menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20opt_ic.c.html"><CONCEPT>van der Pol equation DAE equivalent</CONCEPT></A>
<menu>
Solves a DAE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation.<BR></menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20opt_p.c.html"><CONCEPT>van der Pol equation DAE equivalent</CONCEPT></A>
<menu>
Solves the van der Pol equation.<BR>Input parameters include:<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex21.c.html"><CONCEPT>Variational inequality nonlinear solver</CONCEPT></A>
<menu>
Solves a time-dependent nonlinear PDE with lower and upper bounds on the interior grid points. Uses implicit<BR>timestepping. Runtime options include:<BR>
-M <xg>, where <xg> = number of grid points<BR>
-debug : Activate debugging printouts<BR>
-nox : Deactivate x-window graphics<BR>
-ul : lower bound<BR>
-uh : upper bound<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex26.c.html"><CONCEPT>solving a system of nonlinear equations (parallel multicomponent example);</CONCEPT></A>
<menu>
Transient nonlinear driven cavity in 2d.<BR> <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
-lidvelocity <lid>, where <lid> = dimensionless velocity of lid<BR>
-grashof <gr>, where <gr> = dimensionless temperature gradent<BR>
-prandtl <pr>, where <pr> = dimensionless thermal/momentum diffusity ratio<BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex26.c.html"><CONCEPT>multicomponent</CONCEPT></A>
<menu>
Transient nonlinear driven cavity in 2d.<BR> <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
-lidvelocity <lid>, where <lid> = dimensionless velocity of lid<BR>
-grashof <gr>, where <gr> = dimensionless temperature gradent<BR>
-prandtl <pr>, where <pr> = dimensionless thermal/momentum diffusity ratio<BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex26.c.html"><CONCEPT>differential-algebraic equation</CONCEPT></A>
<menu>
Transient nonlinear driven cavity in 2d.<BR> <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
-lidvelocity <lid>, where <lid> = dimensionless velocity of lid<BR>
-grashof <gr>, where <gr> = dimensionless temperature gradent<BR>
-prandtl <pr>, where <pr> = dimensionless thermal/momentum diffusity ratio<BR>
-contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex31.c.html"><CONCEPT>ex31.c</CONCEPT></A>
<menu>
Solves the ordinary differential equations (IVPs) using explicit and implicit time-integration methods.<BR></menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16adj.c.html"><CONCEPT>adjoint sensitivity analysis</CONCEPT></A>
<menu>
Performs adjoint sensitivity analysis for the van der Pol equation.<BR>Input parameters include:<BR>
-mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20adj.c.html"><CONCEPT>adjoint sensitivity analysis</CONCEPT></A>
<menu>
Performs adjoint sensitivity analysis for the van der Pol equation.<BR></menu>
</menu>
</body>
</html>
|