File: ts.html

package info (click to toggle)
petsc 3.7.5%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 163,864 kB
  • ctags: 618,438
  • sloc: ansic: 515,133; python: 29,793; makefile: 20,458; fortran: 18,998; cpp: 6,515; f90: 3,914; sh: 1,012; xml: 621; objc: 445; csh: 240; java: 13
file content (265 lines) | stat: -rw-r--r-- 15,437 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
<html>
<title>TS</title><body bgcolor="FFFFFF">
   <div id="version" align=right><b>petsc-3.7.5 2017-01-01</b></div>
   <div id="bugreport" align=right><a href="mailto:petsc-maint@mcs.anl.gov?subject=Typo or Error in Documentation &body=Please describe the typo or error in the documentation: petsc-3.7.5 v3.7.5 docs/manualpages/concepts/ts.html "><small>Report Typos and Errors</small></a></div>
<h2>TS</h2>
<menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex1.c.html"><CONCEPT>pseudo-timestepping</CONCEPT></A>
<menu>
Solves the time independent Bratu problem using pseudo-timestepping.</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex1f.F.html"><CONCEPT>pseudo-timestepping</CONCEPT></A>
<menu>
<BR>
   Solves the time dependent Bratu problem using pseudo-timestepping<BR>
<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex1.c.html"><CONCEPT>nonlinear problems</CONCEPT></A>
<menu>
Solves the time independent Bratu problem using pseudo-timestepping.</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex1f.F.html"><CONCEPT>nonlinear problems</CONCEPT></A>
<menu>
<BR>
   Solves the time dependent Bratu problem using pseudo-timestepping<BR>
<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves the van der Pol equation.<BR>Input parameters include:<BR>
      -mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16adj.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Performs adjoint sensitivity analysis for the van der Pol equation.<BR>Input parameters include:<BR>
      -mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16opt_ic.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves an ODE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation.<BR>Input parameters include:<BR>
      -mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16opt_p.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves an ODE-constrained optimization problem -- finding the optimal stiffness parameter for the van der Pol equation.<BR>Input parameters include:<BR>
      -mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex19.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves the van der Pol DAE.<BR>Input parameters include:<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex2.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves a time-dependent nonlinear PDE. Uses implicit<BR>timestepping.  Runtime options include:<BR>
  -M &lt;xg&gt;, where &lt;xg&gt; = number of grid points<BR>
  -debug : Activate debugging printouts<BR>
  -nox   : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves the van der Pol equation.<BR>Input parameters include:<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20adj.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Performs adjoint sensitivity analysis for the van der Pol equation.<BR></menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20opt_ic.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves a DAE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation.<BR></menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20opt_p.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves the van der Pol equation.<BR>Input parameters include:<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex21.c.html"><CONCEPT>time-dependent nonlinear problems</CONCEPT></A>
<menu>
Solves a time-dependent nonlinear PDE with lower and upper bounds on the interior grid points. Uses implicit<BR>timestepping.  Runtime options include:<BR>
  -M &lt;xg&gt;, where &lt;xg&gt; = number of grid points<BR>
  -debug : Activate debugging printouts<BR>
  -nox   : Deactivate x-window graphics<BR>
  -ul   : lower bound<BR>
  -uh  : upper bound<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex3.c.html"><CONCEPT>time-dependent linear problems</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
  -m &lt;points&gt;, where &lt;points&gt; = number of grid points<BR>
  -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
  -debug              : Activate debugging printouts<BR>
  -nox                : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex4.c.html"><CONCEPT>time-dependent linear problems</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
  -m &lt;points&gt;, where &lt;points&gt; = number of grid points<BR>
  -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
  -debug              : Activate debugging printouts<BR>
  -nox                : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex5.c.html"><CONCEPT>time-dependent linear problems</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
  -m &lt;points&gt;, where &lt;points&gt; = number of grid points<BR>
  -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
  -debug              : Activate debugging printouts<BR>
  -nox                : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex6.c.html"><CONCEPT>time-dependent linear problems</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
  -m &lt;points&gt;, where &lt;points&gt; = number of grid points<BR>
  -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
  -debug              : Activate debugging printouts<BR>
  -nox                : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex3.c.html"><CONCEPT>heat equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
  -m &lt;points&gt;, where &lt;points&gt; = number of grid points<BR>
  -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
  -debug              : Activate debugging printouts<BR>
  -nox                : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex4.c.html"><CONCEPT>heat equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
  -m &lt;points&gt;, where &lt;points&gt; = number of grid points<BR>
  -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
  -debug              : Activate debugging printouts<BR>
  -nox                : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex5.c.html"><CONCEPT>heat equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
  -m &lt;points&gt;, where &lt;points&gt; = number of grid points<BR>
  -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
  -debug              : Activate debugging printouts<BR>
  -nox                : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex6.c.html"><CONCEPT>heat equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
  -m &lt;points&gt;, where &lt;points&gt; = number of grid points<BR>
  -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
  -debug              : Activate debugging printouts<BR>
  -nox                : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex3.c.html"><CONCEPT>diffusion equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
  -m &lt;points&gt;, where &lt;points&gt; = number of grid points<BR>
  -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
  -debug              : Activate debugging printouts<BR>
  -nox                : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex4.c.html"><CONCEPT>diffusion equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
  -m &lt;points&gt;, where &lt;points&gt; = number of grid points<BR>
  -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
  -debug              : Activate debugging printouts<BR>
  -nox                : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex5.c.html"><CONCEPT>diffusion equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
  -m &lt;points&gt;, where &lt;points&gt; = number of grid points<BR>
  -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
  -debug              : Activate debugging printouts<BR>
  -nox                : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex6.c.html"><CONCEPT>diffusion equation</CONCEPT></A>
<menu>
Solves a simple time-dependent linear PDE (the heat equation).<BR>Input parameters include:<BR>
  -m &lt;points&gt;, where &lt;points&gt; = number of grid points<BR>
  -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side<BR>
  -debug              : Activate debugging printouts<BR>
  -nox                : Deactivate x-window graphics<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16.c.html"><CONCEPT>van der Pol equation</CONCEPT></A>
<menu>
Solves the van der Pol equation.<BR>Input parameters include:<BR>
      -mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16adj.c.html"><CONCEPT>van der Pol equation</CONCEPT></A>
<menu>
Performs adjoint sensitivity analysis for the van der Pol equation.<BR>Input parameters include:<BR>
      -mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16opt_ic.c.html"><CONCEPT>van der Pol equation</CONCEPT></A>
<menu>
Solves an ODE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation.<BR>Input parameters include:<BR>
      -mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16opt_p.c.html"><CONCEPT>van der Pol equation</CONCEPT></A>
<menu>
Solves an ODE-constrained optimization problem -- finding the optimal stiffness parameter for the van der Pol equation.<BR>Input parameters include:<BR>
      -mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex19.c.html"><CONCEPT>van der Pol DAE</CONCEPT></A>
<menu>
Solves the van der Pol DAE.<BR>Input parameters include:<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20.c.html"><CONCEPT>van der Pol equation DAE equivalent</CONCEPT></A>
<menu>
Solves the van der Pol equation.<BR>Input parameters include:<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20adj.c.html"><CONCEPT>van der Pol equation DAE equivalent</CONCEPT></A>
<menu>
Performs adjoint sensitivity analysis for the van der Pol equation.<BR></menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20opt_ic.c.html"><CONCEPT>van der Pol equation DAE equivalent</CONCEPT></A>
<menu>
Solves a DAE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation.<BR></menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20opt_p.c.html"><CONCEPT>van der Pol equation DAE equivalent</CONCEPT></A>
<menu>
Solves the van der Pol equation.<BR>Input parameters include:<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex21.c.html"><CONCEPT>Variational inequality nonlinear solver</CONCEPT></A>
<menu>
Solves a time-dependent nonlinear PDE with lower and upper bounds on the interior grid points. Uses implicit<BR>timestepping.  Runtime options include:<BR>
  -M &lt;xg&gt;, where &lt;xg&gt; = number of grid points<BR>
  -debug : Activate debugging printouts<BR>
  -nox   : Deactivate x-window graphics<BR>
  -ul   : lower bound<BR>
  -uh  : upper bound<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex26.c.html"><CONCEPT>solving a system of nonlinear equations (parallel multicomponent example);</CONCEPT></A>
<menu>
Transient nonlinear driven cavity in 2d.<BR>  <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
  -lidvelocity &lt;lid&gt;, where &lt;lid&gt; = dimensionless velocity of lid<BR>
  -grashof &lt;gr&gt;, where &lt;gr&gt; = dimensionless temperature gradent<BR>
  -prandtl &lt;pr&gt;, where &lt;pr&gt; = dimensionless thermal/momentum diffusity ratio<BR>
  -contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex26.c.html"><CONCEPT>multicomponent</CONCEPT></A>
<menu>
Transient nonlinear driven cavity in 2d.<BR>  <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
  -lidvelocity &lt;lid&gt;, where &lt;lid&gt; = dimensionless velocity of lid<BR>
  -grashof &lt;gr&gt;, where &lt;gr&gt; = dimensionless temperature gradent<BR>
  -prandtl &lt;pr&gt;, where &lt;pr&gt; = dimensionless thermal/momentum diffusity ratio<BR>
  -contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex26.c.html"><CONCEPT>differential-algebraic equation</CONCEPT></A>
<menu>
Transient nonlinear driven cavity in 2d.<BR>  <BR>
The 2D driven cavity problem is solved in a velocity-vorticity formulation.<BR>
The flow can be driven with the lid or with bouyancy or both:<BR>
  -lidvelocity &lt;lid&gt;, where &lt;lid&gt; = dimensionless velocity of lid<BR>
  -grashof &lt;gr&gt;, where &lt;gr&gt; = dimensionless temperature gradent<BR>
  -prandtl &lt;pr&gt;, where &lt;pr&gt; = dimensionless thermal/momentum diffusity ratio<BR>
  -contours : draw contour plots of solution<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex31.c.html"><CONCEPT>ex31.c</CONCEPT></A>
<menu>
Solves the ordinary differential equations (IVPs) using explicit and implicit time-integration methods.<BR></menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex16adj.c.html"><CONCEPT>adjoint sensitivity analysis</CONCEPT></A>
<menu>
Performs adjoint sensitivity analysis for the van der Pol equation.<BR>Input parameters include:<BR>
      -mu : stiffness parameter<BR>
</menu>
<LI><A HREF="../../../src/ts/examples/tutorials/ex20adj.c.html"><CONCEPT>adjoint sensitivity analysis</CONCEPT></A>
<menu>
Performs adjoint sensitivity analysis for the van der Pol equation.<BR></menu>
</menu>
</body>
</html>