1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
|
<HTML>
<TITLE>Concepts_File</TITLE>
<!-- Created by helpindex.py -->
<BODY>
<div id="version" align=right><b>petsc-3.7.5 2017-01-01</b></div>
<div id="bugreport" align=right><a href="mailto:petsc-maint@mcs.anl.gov?subject=Typo or Error in Documentation &body=Please describe the typo or error in the documentation: petsc-3.7.5 v3.7.5 docs/manualpages/help.html "><small>Report Typos and Errors</small></a></div>
<H1><center> PETSc Help Index</center></H1>
<A NAME="B"></A>
<H3> <CENTER> | <FONT COLOR="#CC3333">B</FONT> |
<A HREF="help.html#C"> C </A> |
<A HREF="help.html#D"> D </A> |
<A HREF="help.html#E"> E </A> |
<A HREF="help.html#F"> F </A> |
<A HREF="help.html#G"> G </A> |
<A HREF="help.html#H"> H </A> |
<A HREF="help.html#I"> I </A> |
<A HREF="help.html#K"> K </A> |
<A HREF="help.html#L"> L </A> |
<A HREF="help.html#M"> M </A> |
<A HREF="help.html#N"> N </A> |
<A HREF="help.html#O"> O </A> |
<A HREF="help.html#P"> P </A> |
<A HREF="help.html#S"> S </A> |
<A HREF="help.html#T"> T </A> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/bags.html">bags</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/dm/examples/tutorials/ex7.c.html">dm/ex7.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex5.c.html">sys/ex5.c</A></TD></TR>
</TABLE>
<A NAME="C"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<FONT COLOR="#CC3333">C</FONT> |
<A HREF="help.html#D"> D </A> |
<A HREF="help.html#E"> E </A> |
<A HREF="help.html#F"> F </A> |
<A HREF="help.html#G"> G </A> |
<A HREF="help.html#H"> H </A> |
<A HREF="help.html#I"> I </A> |
<A HREF="help.html#K"> K </A> |
<A HREF="help.html#L"> L </A> |
<A HREF="help.html#M"> M </A> |
<A HREF="help.html#N"> N </A> |
<A HREF="help.html#O"> O </A> |
<A HREF="help.html#P"> P </A> |
<A HREF="help.html#S"> S </A> |
<A HREF="help.html#T"> T </A> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/complex_numbers.html">complex numbers</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex11f.F.html">ksp/ksp/ex11f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex11.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<A NAME="D"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<A HREF="help.html#C"> C </A> |
<FONT COLOR="#CC3333">D</FONT> |
<A HREF="help.html#E"> E </A> |
<A HREF="help.html#F"> F </A> |
<A HREF="help.html#G"> G </A> |
<A HREF="help.html#H"> H </A> |
<A HREF="help.html#I"> I </A> |
<A HREF="help.html#K"> K </A> |
<A HREF="help.html#L"> L </A> |
<A HREF="help.html#M"> M </A> |
<A HREF="help.html#N"> N </A> |
<A HREF="help.html#O"> O </A> |
<A HREF="help.html#P"> P </A> |
<A HREF="help.html#S"> S </A> |
<A HREF="help.html#T"> T </A> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/dm.html">DM</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>using distributed arrays</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex20.c.html">Nonlinear Radiative Transport PDE with multigrid in 3d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex46.c.html">Solves a linear system in parallel with KSP and DM</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/dmda.html">DMDA</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>using distributed arrays</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex35.c.html">-Laplacian u = b as a nonlinear problem</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5.c.html">Bratu nonlinear PDE in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex14.c.html">Bratu nonlinear PDE in 3d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex14f.F.html">ksp/ksp/ex14f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex25.c.html">Minimum surface problem in 2D</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex19.c.html">Nonlinear driven cavity with multigrid in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex18.c.html">Nonlinear Radiative Transport PDE with multigrid in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5f.F.html">snes/ex5f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5f90.F.html">snes/ex5f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5f90t.F.html">snes/ex5f90t.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex7.c.html">snes/ex7.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex46.c.html">Surface processes in geophysics</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex26.c.html">Transient nonlinear driven cavity in 2d</A></TD></TR>
</TABLE>
<A NAME="E"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<A HREF="help.html#C"> C </A> |
<A HREF="help.html#D"> D </A> |
<FONT COLOR="#CC3333">E</FONT> |
<A HREF="help.html#F"> F </A> |
<A HREF="help.html#G"> G </A> |
<A HREF="help.html#H"> H </A> |
<A HREF="help.html#I"> I </A> |
<A HREF="help.html#K"> K </A> |
<A HREF="help.html#L"> L </A> |
<A HREF="help.html#M"> M </A> |
<A HREF="help.html#N"> N </A> |
<A HREF="help.html#O"> O </A> |
<A HREF="help.html#P"> P </A> |
<A HREF="help.html#S"> S </A> |
<A HREF="help.html#T"> T </A> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/error_handling.html">error handling</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>using the macro __FUNCT__ to define routine names</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex3.c.html">Newton methods to solve u'' + u^{2} = f in parallel</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Using the macro __FUNCT__ to define routine names</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex15.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<A NAME="F"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<A HREF="help.html#C"> C </A> |
<A HREF="help.html#D"> D </A> |
<A HREF="help.html#E"> E </A> |
<FONT COLOR="#CC3333">F</FONT> |
<A HREF="help.html#G"> G </A> |
<A HREF="help.html#H"> H </A> |
<A HREF="help.html#I"> I </A> |
<A HREF="help.html#K"> K </A> |
<A HREF="help.html#L"> L </A> |
<A HREF="help.html#M"> M </A> |
<A HREF="help.html#N"> N </A> |
<A HREF="help.html#O"> O </A> |
<A HREF="help.html#P"> P </A> |
<A HREF="help.html#S"> S </A> |
<A HREF="help.html#T"> T </A> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/fortran90.html">Fortran90</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>accessing indices in index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex3f90.F.html">vec/is/is/ex3f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>accessing indices of index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex1f90.F.html">vec/is/is/ex1f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>assembling vectors</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex4f90.F.html">vec/vec/ex4f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>using basic vector routines</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex1f90.F.html">vec/vec/ex1f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex20f90.F90.html">vec/vec/ex20f90.F90</A></TD></TR>
</TABLE>
<A NAME="G"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<A HREF="help.html#C"> C </A> |
<A HREF="help.html#D"> D </A> |
<A HREF="help.html#E"> E </A> |
<A HREF="help.html#F"> F </A> |
<FONT COLOR="#CC3333">G</FONT> |
<A HREF="help.html#H"> H </A> |
<A HREF="help.html#I"> I </A> |
<A HREF="help.html#K"> K </A> |
<A HREF="help.html#L"> L </A> |
<A HREF="help.html#M"> M </A> |
<A HREF="help.html#N"> N </A> |
<A HREF="help.html#O"> O </A> |
<A HREF="help.html#P"> P </A> |
<A HREF="help.html#S"> S </A> |
<A HREF="help.html#T"> T </A> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/global_to_local_mappings.html">global to local mappings</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/vec/is/is/examples/tutorials/ex4.c.html">Demonstrates using ISLocalToGlobalMappings</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/is/is/examples/tutorials/ex5.c.html">Demonstrates using ISLocalToGlobalMappings with block size</A></TD></TR>
</TABLE>
<A NAME="H"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<A HREF="help.html#C"> C </A> |
<A HREF="help.html#D"> D </A> |
<A HREF="help.html#E"> E </A> |
<A HREF="help.html#F"> F </A> |
<A HREF="help.html#G"> G </A> |
<FONT COLOR="#CC3333">H</FONT> |
<A HREF="help.html#I"> I </A> |
<A HREF="help.html#K"> K </A> |
<A HREF="help.html#L"> L </A> |
<A HREF="help.html#M"> M </A> |
<A HREF="help.html#N"> N </A> |
<A HREF="help.html#O"> O </A> |
<A HREF="help.html#P"> P </A> |
<A HREF="help.html#S"> S </A> |
<A HREF="help.html#T"> T </A> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/hdf5.html">HDF5</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/dm/examples/tutorials/ex9.c.html">dm/ex9.c</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/helmholtz_equation.html">Helmholtz equation</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex11.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<A NAME="I"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<A HREF="help.html#C"> C </A> |
<A HREF="help.html#D"> D </A> |
<A HREF="help.html#E"> E </A> |
<A HREF="help.html#F"> F </A> |
<A HREF="help.html#G"> G </A> |
<A HREF="help.html#H"> H </A> |
<FONT COLOR="#CC3333">I</FONT> |
<A HREF="help.html#K"> K </A> |
<A HREF="help.html#L"> L </A> |
<A HREF="help.html#M"> M </A> |
<A HREF="help.html#N"> N </A> |
<A HREF="help.html#O"> O </A> |
<A HREF="help.html#P"> P </A> |
<A HREF="help.html#S"> S </A> |
<A HREF="help.html#T"> T </A> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/index_sets.html">index sets</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>accessing indices from Fortran</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex2f.F.html">vec/is/is/ex2f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>creating a block index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex3.c.html">Demonstrates creating a blocked index set</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>creating a stride index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex2.c.html">Demonstrates creating a stride index set</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>creating general</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex1.c.html">Creating a general index set</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>manipulating a block index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex3f90.F.html">vec/is/is/ex3f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>manipulating a general index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex1.c.html">Creating a general index set</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/is/is/examples/tutorials/ex1f.F.html">vec/is/is/ex1f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/is/is/examples/tutorials/ex1f90.F.html">vec/is/is/ex1f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>manipulating a stride index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex2f.F.html">vec/is/is/ex2f.F</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/introduction_to_petsc.html">introduction to PETSc</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex11.c.html">Demonstrates PetscDataTypeFromString()</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex1.c.html">Introductory example that illustrates printing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex4.c.html">Introductory example that illustrates running PETSc on a subset of processes</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex16.c.html">sys/ex16.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex4f.F.html">sys/ex4f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex4f90.F90.html">sys/ex4f90.F90</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Chombo</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex12.cxx.html">Demonstrates call PETSc and Chombo in the same program</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Trilinos</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex13.cxx.html">Demonstrates call PETSc first and then Trilinos in the same program</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex14.cxx.html">Demonstrates calling Trilinos and then PETSc in the same program</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/is.html">IS</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>creating a block index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex3.c.html">Demonstrates creating a blocked index set</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>creating a general index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex1.c.html">Creating a general index set</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>creating a stride index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex2.c.html">Demonstrates creating a stride index set</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/is_coloirng_types.html">IS coloirng types</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex35.c.html">-Laplacian u = b as a nonlinear problem</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5.c.html">Bratu nonlinear PDE in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex46.c.html">Surface processes in geophysics</A></TD></TR>
</TABLE>
<A NAME="K"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<A HREF="help.html#C"> C </A> |
<A HREF="help.html#D"> D </A> |
<A HREF="help.html#E"> E </A> |
<A HREF="help.html#F"> F </A> |
<A HREF="help.html#G"> G </A> |
<A HREF="help.html#H"> H </A> |
<A HREF="help.html#I"> I </A> |
<FONT COLOR="#CC3333">K</FONT> |
<A HREF="help.html#L"> L </A> |
<A HREF="help.html#M"> M </A> |
<A HREF="help.html#N"> N </A> |
<A HREF="help.html#O"> O </A> |
<A HREF="help.html#P"> P </A> |
<A HREF="help.html#S"> S </A> |
<A HREF="help.html#T"> T </A> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/ksp.html">KSP</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Additive Schwarz Method (ASM) with user-defined subdomains</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex8.c.html">Illustrates use of the preconditioner ASM</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Additive Schwarz Method (GASM) with user-defined subdomains</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex62.c.html">Illustrates use of PCGASM</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex64.c.html">Illustrates use of the preconditioner GASM</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>basic parallel example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex3.c.html">Bilinear elements on the unit square for Laplacian</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex15f.F.html">ksp/ksp/ex15f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex21f.F.html">ksp/ksp/ex21f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex2f.F.html">ksp/ksp/ex2f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex18.c.html">Solves a (permuted) linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex15.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex46.c.html">Solves a linear system in parallel with KSP and DM</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex23.c.html">Solves a tridiagonal linear system</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>basic sequential example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex13f90.F.html">ksp/ksp/ex13f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex13.c.html">Solves a variable Poisson problem with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>customizing the block Jacobi preconditioner</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex7.c.html">Block Jacobi preconditioner for solving a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>different matrices for linear system and preconditioner</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex6f.F.html">ksp/ksp/ex6f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Laplacian, 2d</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex13f90.F.html">ksp/ksp/ex13f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex32.c.html">Solves 2D inhomogeneous Laplacian using multigrid</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex18.c.html">Solves a (permuted) linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex12.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex46.c.html">Solves a linear system in parallel with KSP and DM</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex16.c.html">Solves a sequence of linear systems with different right-hand-side vectors</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex13.c.html">Solves a variable Poisson problem with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Laplacian, 3d</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex34.c.html">Solves 3D Laplacian using multigrid</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>repeatedly solving linear systems</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex6f.F.html">ksp/ksp/ex6f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex16.c.html">Solves a sequence of linear systems with different right-hand-side vectors</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex5.c.html">Solves two linear systems in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex9.c.html">The solution of 2 different linear systems with different linear solvers</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>semi-implicit</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex31.c.html">Solves 2D compressible Euler</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>setting a user-defined monitoring routine</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex2f.F.html">ksp/ksp/ex2f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>solving a Helmholtz equation</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex11f.F.html">ksp/ksp/ex11f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex11.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>solving a linear system</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex10.c.html">Reads a PETSc matrix and vector from a file and solves a linear system</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex27.c.html">Reads a PETSc matrix and vector from a file and solves the normal equations</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex41.c.html">Reads a PETSc matrix and vector from a socket connection, solves a linear system and sends the result back</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>solving a system of linear equations</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex1f.F.html">ksp/ksp/ex1f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex54f.F.html">ksp/ksp/ex54f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex31.c.html">Solves 2D compressible Euler</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex32.c.html">Solves 2D inhomogeneous Laplacian using multigrid</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex34.c.html">Solves 3D Laplacian using multigrid</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex12.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex58.c.html">Solves a tridiagonal linear system with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>writing a user-defined nonlinear solver</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex14f.F.html">ksp/ksp/ex14f.F</A></TD></TR>
</TABLE>
<A NAME="L"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<A HREF="help.html#C"> C </A> |
<A HREF="help.html#D"> D </A> |
<A HREF="help.html#E"> E </A> |
<A HREF="help.html#F"> F </A> |
<A HREF="help.html#G"> G </A> |
<A HREF="help.html#H"> H </A> |
<A HREF="help.html#I"> I </A> |
<A HREF="help.html#K"> K </A> |
<FONT COLOR="#CC3333">L</FONT> |
<A HREF="help.html#M"> M </A> |
<A HREF="help.html#N"> N </A> |
<A HREF="help.html#O"> O </A> |
<A HREF="help.html#P"> P </A> |
<A HREF="help.html#S"> S </A> |
<A HREF="help.html#T"> T </A> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/laplacian,_2d.html">Laplacian, 2d</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex13f90.F.html">ksp/ksp/ex13f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex18.c.html">Solves a (permuted) linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex2.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex46.c.html">Solves a linear system in parallel with KSP and DM</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex16.c.html">Solves a sequence of linear systems with different right-hand-side vectors</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex13.c.html">Solves a variable Poisson problem with KSP</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/local_to_global_mappings.html">local to global mappings</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/vec/is/is/examples/tutorials/ex4.c.html">Demonstrates using ISLocalToGlobalMappings</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/is/is/examples/tutorials/ex5.c.html">Demonstrates using ISLocalToGlobalMappings with block size</A></TD></TR>
</TABLE>
<A NAME="M"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<A HREF="help.html#C"> C </A> |
<A HREF="help.html#D"> D </A> |
<A HREF="help.html#E"> E </A> |
<A HREF="help.html#F"> F </A> |
<A HREF="help.html#G"> G </A> |
<A HREF="help.html#H"> H </A> |
<A HREF="help.html#I"> I </A> |
<A HREF="help.html#K"> K </A> |
<A HREF="help.html#L"> L </A> |
<FONT COLOR="#CC3333">M</FONT> |
<A HREF="help.html#N"> N </A> |
<A HREF="help.html#O"> O </A> |
<A HREF="help.html#P"> P </A> |
<A HREF="help.html#S"> S </A> |
<A HREF="help.html#T"> T </A> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/mat.html">Mat</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>composite matrices</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex9.c.html">mat/ex9.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>image segmentation</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex15.c.html">mat/ex15.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/mat/examples/tutorials/ex17.c.html">mat/ex17.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>loading a binary matrix</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex10.c.html">mat/ex10.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>loading a binary matrix and vector</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex12.c.html">mat/ex12.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/mat/examples/tutorials/ex1.c.html">Reads a PETSc matrix and vector from a file and reorders it</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>mat partitioning</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex15.c.html">mat/ex15.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/mat/examples/tutorials/ex17.c.html">mat/ex17.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>mesh partitioning</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex11.c.html">mat/ex11.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>ordering a matrix - loading a binary matrix and vector</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex12.c.html">mat/ex12.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/mat/examples/tutorials/ex1.c.html">Reads a PETSc matrix and vector from a file and reorders it</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/mathematical_functions.html">mathematical functions</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/dm/examples/tutorials/ex4.c.html">Demonstrates various vector routines for DMDA</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/matrices.html">Matrices</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>inserting elements by blocks</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex3.c.html">Bilinear elements on the unit square for Laplacian</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/multicomponent.html">multicomponent</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex19.c.html">Nonlinear driven cavity with multigrid in 2d</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/multigrid.html">multigrid</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex25.c.html">Minimum surface problem in 2D</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex18.c.html">Nonlinear Radiative Transport PDE with multigrid in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex20.c.html">Nonlinear Radiative Transport PDE with multigrid in 3d</A></TD></TR>
</TABLE>
<A NAME="N"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<A HREF="help.html#C"> C </A> |
<A HREF="help.html#D"> D </A> |
<A HREF="help.html#E"> E </A> |
<A HREF="help.html#F"> F </A> |
<A HREF="help.html#G"> G </A> |
<A HREF="help.html#H"> H </A> |
<A HREF="help.html#I"> I </A> |
<A HREF="help.html#K"> K </A> |
<A HREF="help.html#L"> L </A> |
<A HREF="help.html#M"> M </A> |
<FONT COLOR="#CC3333">N</FONT> |
<A HREF="help.html#O"> O </A> |
<A HREF="help.html#P"> P </A> |
<A HREF="help.html#S"> S </A> |
<A HREF="help.html#T"> T </A> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/normal_equations.html">Normal equations</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex27.c.html">Reads a PETSc matrix and vector from a file and solves the normal equations</A></TD></TR>
</TABLE>
<A NAME="O"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<A HREF="help.html#C"> C </A> |
<A HREF="help.html#D"> D </A> |
<A HREF="help.html#E"> E </A> |
<A HREF="help.html#F"> F </A> |
<A HREF="help.html#G"> G </A> |
<A HREF="help.html#H"> H </A> |
<A HREF="help.html#I"> I </A> |
<A HREF="help.html#K"> K </A> |
<A HREF="help.html#L"> L </A> |
<A HREF="help.html#M"> M </A> |
<A HREF="help.html#N"> N </A> |
<FONT COLOR="#CC3333">O</FONT> |
<A HREF="help.html#P"> P </A> |
<A HREF="help.html#S"> S </A> |
<A HREF="help.html#T"> T </A> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/optimization.html">optimization</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>likely</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex6.c.html">Example of using PetscLikely() and PetscUnlikely()</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>unlikely</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex6.c.html">Example of using PetscLikely() and PetscUnlikely()</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/optimization_using_adjoint_sensitivities.html">Optimization using adjoint sensitivities</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex20opt_ic.c.html">Solves a DAE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex16opt_ic.c.html">Solves an ODE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex16opt_p.c.html">Solves an ODE-constrained optimization problem -- finding the optimal stiffness parameter for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/optimization_using_adjoint_sensitivity_analysis.html">Optimization using adjoint sensitivity analysis</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex20opt_p.c.html">Solves the van der Pol equation</A></TD></TR>
</TABLE>
<A NAME="P"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<A HREF="help.html#C"> C </A> |
<A HREF="help.html#D"> D </A> |
<A HREF="help.html#E"> E </A> |
<A HREF="help.html#F"> F </A> |
<A HREF="help.html#G"> G </A> |
<A HREF="help.html#H"> H </A> |
<A HREF="help.html#I"> I </A> |
<A HREF="help.html#K"> K </A> |
<A HREF="help.html#L"> L </A> |
<A HREF="help.html#M"> M </A> |
<A HREF="help.html#N"> N </A> |
<A HREF="help.html#O"> O </A> |
<FONT COLOR="#CC3333">P</FONT> |
<A HREF="help.html#S"> S </A> |
<A HREF="help.html#T"> T </A> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/pc.html">PC</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>registering preconditioners</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex12.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>setting a user-defined shell preconditioner</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex15f.F.html">ksp/ksp/ex15f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex21f.F.html">ksp/ksp/ex21f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex15.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/petsc.html">petsc</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>introduction</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex2.c.html">Synchronized printing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/petsclog.html">PetscLog</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>activating/deactivating events for profiling</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex3.c.html">Augmenting PETSc profiling by add events</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>activating/deactivating events for profiling (basic example)</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex3f.F.html">sys/ex3f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>preloading executable</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex12.c.html">mat/ex12.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/mat/examples/tutorials/ex1.c.html">Reads a PETSc matrix and vector from a file and reorders it</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>profiling multiple stages of code</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex5.c.html">Solves two linear systems in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex9.c.html">The solution of 2 different linear systems with different linear solvers</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>user-defined event profiling</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex3.c.html">Augmenting PETSc profiling by add events</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex9.c.html">The solution of 2 different linear systems with different linear solvers</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>user-defined event profiling (basic example)</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex3f.F.html">sys/ex3f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/printf.html">printf</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>in parallel</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex2.c.html">Synchronized printing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>synchronized</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex2.c.html">Synchronized printing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/printing.html">printing</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>in parallel</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex11.c.html">Demonstrates PetscDataTypeFromString()</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex1.c.html">Introductory example that illustrates printing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex2.c.html">Synchronized printing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex16.c.html">sys/ex16.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>synchronized</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex2.c.html">Synchronized printing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/process.html">process</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>subset set PETSC_COMM_WORLD</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex4.c.html">Introductory example that illustrates running PETSc on a subset of processes</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex4f.F.html">sys/ex4f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex4f90.F90.html">sys/ex4f90.F90</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/profiling.html">profiling</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>activating/deactivating events</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex3.c.html">Augmenting PETSc profiling by add events</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>user-defined event</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex3.c.html">Augmenting PETSc profiling by add events</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/pseudo-timestepping.html">pseudo-timestepping</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex1.c.html">Solves the time independent Bratu problem using pseudo-timestepping</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex1f.F.html">ts/ex1f.F</A></TD></TR>
</TABLE>
<A NAME="S"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<A HREF="help.html#C"> C </A> |
<A HREF="help.html#D"> D </A> |
<A HREF="help.html#E"> E </A> |
<A HREF="help.html#F"> F </A> |
<A HREF="help.html#G"> G </A> |
<A HREF="help.html#H"> H </A> |
<A HREF="help.html#I"> I </A> |
<A HREF="help.html#K"> K </A> |
<A HREF="help.html#L"> L </A> |
<A HREF="help.html#M"> M </A> |
<A HREF="help.html#N"> N </A> |
<A HREF="help.html#O"> O </A> |
<A HREF="help.html#P"> P </A> |
<FONT COLOR="#CC3333">S</FONT> |
<A HREF="help.html#T"> T </A> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/shared_memory.html">shared memory</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5s.c.html">2d Bratu problem in shared memory parallel with SNES</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/snes.html">SNES</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>basic example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex1.c.html">Newton's method for a two-variable system, sequential</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex42.c.html">Newton's method to solve a two-variable system that comes from the Rosenbrock function</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>basic parallel example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex3.c.html">Newton methods to solve u'' + u^{2} = f in parallel</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>basic uniprocessor example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex2.c.html">Newton method to solve u'' + u^{2} = f, sequentially</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex1f.F.html">snes/ex1f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>parallel Bratu example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex35.c.html">-Laplacian u = b as a nonlinear problem</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5s.c.html">2d Bratu problem in shared memory parallel with SNES</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5.c.html">Bratu nonlinear PDE in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex14.c.html">Bratu nonlinear PDE in 3d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5f.F.html">snes/ex5f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5f90.F.html">snes/ex5f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5f90t.F.html">snes/ex5f90t.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>parallel Stokes example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex7.c.html">snes/ex7.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>parallel Surface process example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex46.c.html">Surface processes in geophysics</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>setting a user-defined monitoring routine</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex2.c.html">Newton method to solve u'' + u^{2} = f, sequentially</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex3.c.html">Newton methods to solve u'' + u^{2} = f in parallel</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>solving a system of nonlinear equations</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex25.c.html">Minimum surface problem in 2D</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex18.c.html">Nonlinear Radiative Transport PDE with multigrid in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex20.c.html">Nonlinear Radiative Transport PDE with multigrid in 3d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>solving a system of nonlinear equations (parallel multicomponent example)</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex19.c.html">Nonlinear driven cavity with multigrid in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/stride.html">stride</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>creating a stride index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex2.c.html">Demonstrates creating a stride index set</A></TD></TR>
</TABLE>
<A NAME="T"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<A HREF="help.html#C"> C </A> |
<A HREF="help.html#D"> D </A> |
<A HREF="help.html#E"> E </A> |
<A HREF="help.html#F"> F </A> |
<A HREF="help.html#G"> G </A> |
<A HREF="help.html#H"> H </A> |
<A HREF="help.html#I"> I </A> |
<A HREF="help.html#K"> K </A> |
<A HREF="help.html#L"> L </A> |
<A HREF="help.html#M"> M </A> |
<A HREF="help.html#N"> N </A> |
<A HREF="help.html#O"> O </A> |
<A HREF="help.html#P"> P </A> |
<A HREF="help.html#S"> S </A> |
<FONT COLOR="#CC3333">T</FONT> |
<A HREF="help.html#V"> V </A> |
</CENTER></H3>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/tao.html">TAO</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Solving a bound constrained minimization problem</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/tao/bound/examples/tutorials/jbearing2.c.html">tao/bound/jbearing2.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/bound/examples/tutorials/plate2.c.html">tao/bound/plate2.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/bound/examples/tutorials/plate2f.F.html">tao/bound/plate2f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Solving a complementarity problem</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/tao/complementarity/examples/tutorials/blackscholes.c.html">tao/complementarity/blackscholes.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/complementarity/examples/tutorials/minsurf1.c.html">tao/complementarity/minsurf1.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Solving a system of nonlinear equations, nonlinear least squares</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/tao/leastsquares/examples/tutorials/chwirut1.c.html">tao/leastsquares/chwirut1.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/leastsquares/examples/tutorials/chwirut2.c.html">tao/leastsquares/chwirut2.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/pde_constrained/examples/tutorials/elliptic.c.html">tao/pde_constrained/elliptic.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/pde_constrained/examples/tutorials/hyperbolic.c.html">tao/pde_constrained/hyperbolic.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/pde_constrained/examples/tutorials/parabolic.c.html">tao/pde_constrained/parabolic.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Solving an unconstrained minimization problem</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/tao/constrained/examples/tutorials/maros.c.html">tao/constrained/maros.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/leastsquares/examples/tutorials/chwirut1f.F.html">tao/leastsquares/chwirut1f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/leastsquares/examples/tutorials/chwirut2f.F.html">tao/leastsquares/chwirut2f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/unconstrained/examples/tutorials/eptorsion1.c.html">tao/unconstrained/eptorsion1.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/unconstrained/examples/tutorials/eptorsion2.c.html">tao/unconstrained/eptorsion2.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/unconstrained/examples/tutorials/eptorsion2f.F.html">tao/unconstrained/eptorsion2f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/unconstrained/examples/tutorials/minsurf2.c.html">tao/unconstrained/minsurf2.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/unconstrained/examples/tutorials/rosenbrock1.c.html">tao/unconstrained/rosenbrock1.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/unconstrained/examples/tutorials/rosenbrock1f.F.html">tao/unconstrained/rosenbrock1f.F</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/ts.html">TS</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex31.c.html">Solves the ordinary differential equations (IVPs) using explicit and implicit time-integration methods</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>adjoint sensitivity analysis</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex20adj.c.html">Performs adjoint sensitivity analysis for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>differential-algebraic equation</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex26.c.html">Transient nonlinear driven cavity in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>diffusion equation</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex6.c.html">Solves a simple time-dependent linear PDE (the heat equation)</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>heat equation</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex6.c.html">Solves a simple time-dependent linear PDE (the heat equation)</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>multicomponent</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex26.c.html">Transient nonlinear driven cavity in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>nonlinear problems</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex1.c.html">Solves the time independent Bratu problem using pseudo-timestepping</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex1f.F.html">ts/ex1f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>pseudo-timestepping</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex1.c.html">Solves the time independent Bratu problem using pseudo-timestepping</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex1f.F.html">ts/ex1f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>solving a system of nonlinear equations (parallel multicomponent example)</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex26.c.html">Transient nonlinear driven cavity in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>time-dependent linear problems</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex6.c.html">Solves a simple time-dependent linear PDE (the heat equation)</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>time-dependent nonlinear problems</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex20adj.c.html">Performs adjoint sensitivity analysis for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex20opt_ic.c.html">Solves a DAE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex2.c.html">Solves a time-dependent nonlinear PDE</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex21.c.html">Solves a time-dependent nonlinear PDE with lower and upper bounds on the interior grid points</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex16opt_ic.c.html">Solves an ODE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex16opt_p.c.html">Solves an ODE-constrained optimization problem -- finding the optimal stiffness parameter for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex19.c.html">Solves the van der Pol DAE</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex20opt_p.c.html">Solves the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>van der Pol DAE</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex19.c.html">Solves the van der Pol DAE</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>van der Pol equation</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex16adj.c.html">Performs adjoint sensitivity analysis for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex16opt_ic.c.html">Solves an ODE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex16opt_p.c.html">Solves an ODE-constrained optimization problem -- finding the optimal stiffness parameter for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex16.c.html">Solves the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>van der Pol equation DAE equivalent</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex20adj.c.html">Performs adjoint sensitivity analysis for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex20opt_ic.c.html">Solves a DAE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex20opt_p.c.html">Solves the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Variational inequality nonlinear solver</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex21.c.html">Solves a time-dependent nonlinear PDE with lower and upper bounds on the interior grid points</A></TD></TR>
</TABLE>
<A NAME="V"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> |
<A HREF="help.html#C"> C </A> |
<A HREF="help.html#D"> D </A> |
<A HREF="help.html#E"> E </A> |
<A HREF="help.html#F"> F </A> |
<A HREF="help.html#G"> G </A> |
<A HREF="help.html#H"> H </A> |
<A HREF="help.html#I"> I </A> |
<A HREF="help.html#K"> K </A> |
<A HREF="help.html#L"> L </A> |
<A HREF="help.html#M"> M </A> |
<A HREF="help.html#N"> N </A> |
<A HREF="help.html#O"> O </A> |
<A HREF="help.html#P"> P </A> |
<A HREF="help.html#S"> S </A> |
<A HREF="help.html#T"> T </A> |
<FONT COLOR="#CC3333">V</FONT> |
</CENTER></H3>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/vectors.html">vectors</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>arrays</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex4f90.F.html">vec/vec/ex4f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>arrays of vectors</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex4f.F.html">vec/vec/ex4f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>assembling</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex2f.F.html">vec/vec/ex2f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex4f.F.html">vec/vec/ex4f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>assembling vectors</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex2.c.html">Builds a parallel vector with 1 component on the first processor, 2 on the second, etc</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex18.c.html">Computes the integral of 2*x/(1+x^2) from x=0</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex9.c.html">Demonstrates use of VecCreateGhost()</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex14f.F.html">vec/vec/ex14f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex4f90.F.html">vec/vec/ex4f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex9f.F.html">vec/vec/ex9f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>assembling vectors with local ordering</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex8.c.html">Demonstrates using a local ordering to set values into a parallel vector</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>basic routines</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex1.c.html">Basic vector routines</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex1f.F.html">vec/vec/ex1f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>drawing vectors</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex3.c.html">Parallel vector layout</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex3f.F.html">vec/vec/ex3f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>ghost padding</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex9.c.html">Demonstrates use of VecCreateGhost()</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex14f.F.html">vec/vec/ex14f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex9f.F.html">vec/vec/ex9f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>local access to</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex3.c.html">Parallel vector layout</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>norms of sub-vectors</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex11.c.html">Demonstrates VecStrideNorm()</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex11f.F.html">vec/vec/ex11f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>setting values</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex3.c.html">Parallel vector layout</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>sub-vectors</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex12.c.html">Demonstrates VecStrideScatter() and VecStrideGather()</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex16.c.html">Demonstrates VecStrideScatter() and VecStrideGather() with subvectors that are also strided</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>using basic vector routines</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex1f90.F.html">vec/vec/ex1f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex20f90.F90.html">vec/vec/ex20f90.F90</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>viewing</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex19.c.html">Parallel HDF5 Vec Viewing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/vectors.html">Vectors</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>loading a binary vector</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex12.c.html">mat/ex12.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/mat/examples/tutorials/ex1.c.html">Reads a PETSc matrix and vector from a file and reorders it</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/viewers.html">viewers</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/dm/examples/tutorials/ex7.c.html">dm/ex7.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/dm/examples/tutorials/ex9.c.html">dm/ex9.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex15.c.html">sys/ex15.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>append</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/classes/viewer/examples/tutorials/ex1.c.html">Appends to an ASCII file</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>hdf5</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex19.c.html">Parallel HDF5 Vec Viewing</A></TD></TR>
</TABLE>
</BODY></HTML>
|