File: help.html

package info (click to toggle)
petsc 3.7.5%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 163,864 kB
  • ctags: 618,438
  • sloc: ansic: 515,133; python: 29,793; makefile: 20,458; fortran: 18,998; cpp: 6,515; f90: 3,914; sh: 1,012; xml: 621; objc: 445; csh: 240; java: 13
file content (914 lines) | stat: -rw-r--r-- 67,455 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
<HTML>
<TITLE>Concepts_File</TITLE>
<!-- Created by helpindex.py -->
<BODY>
   <div id="version" align=right><b>petsc-3.7.5 2017-01-01</b></div>
   <div id="bugreport" align=right><a href="mailto:petsc-maint@mcs.anl.gov?subject=Typo or Error in Documentation &body=Please describe the typo or error in the documentation: petsc-3.7.5 v3.7.5 docs/manualpages/help.html "><small>Report Typos and Errors</small></a></div>
<H1><center> PETSc Help Index</center></H1>
<A NAME="B"></A>
<H3> <CENTER> | <FONT COLOR="#CC3333">B</FONT> | 
<A HREF="help.html#C"> C </A> | 
<A HREF="help.html#D"> D </A> | 
<A HREF="help.html#E"> E </A> | 
<A HREF="help.html#F"> F </A> | 
<A HREF="help.html#G"> G </A> | 
<A HREF="help.html#H"> H </A> | 
<A HREF="help.html#I"> I </A> | 
<A HREF="help.html#K"> K </A> | 
<A HREF="help.html#L"> L </A> | 
<A HREF="help.html#M"> M </A> | 
<A HREF="help.html#N"> N </A> | 
<A HREF="help.html#O"> O </A> | 
<A HREF="help.html#P"> P </A> | 
<A HREF="help.html#S"> S </A> | 
<A HREF="help.html#T"> T </A> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/bags.html">bags</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/dm/examples/tutorials/ex7.c.html">dm/ex7.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex5.c.html">sys/ex5.c</A></TD></TR>
</TABLE>
<A NAME="C"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<FONT COLOR="#CC3333">C</FONT> | 
<A HREF="help.html#D"> D </A> | 
<A HREF="help.html#E"> E </A> | 
<A HREF="help.html#F"> F </A> | 
<A HREF="help.html#G"> G </A> | 
<A HREF="help.html#H"> H </A> | 
<A HREF="help.html#I"> I </A> | 
<A HREF="help.html#K"> K </A> | 
<A HREF="help.html#L"> L </A> | 
<A HREF="help.html#M"> M </A> | 
<A HREF="help.html#N"> N </A> | 
<A HREF="help.html#O"> O </A> | 
<A HREF="help.html#P"> P </A> | 
<A HREF="help.html#S"> S </A> | 
<A HREF="help.html#T"> T </A> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/complex_numbers.html">complex numbers</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex11f.F.html">ksp/ksp/ex11f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex11.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<A NAME="D"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<A HREF="help.html#C"> C </A> | 
<FONT COLOR="#CC3333">D</FONT> | 
<A HREF="help.html#E"> E </A> | 
<A HREF="help.html#F"> F </A> | 
<A HREF="help.html#G"> G </A> | 
<A HREF="help.html#H"> H </A> | 
<A HREF="help.html#I"> I </A> | 
<A HREF="help.html#K"> K </A> | 
<A HREF="help.html#L"> L </A> | 
<A HREF="help.html#M"> M </A> | 
<A HREF="help.html#N"> N </A> | 
<A HREF="help.html#O"> O </A> | 
<A HREF="help.html#P"> P </A> | 
<A HREF="help.html#S"> S </A> | 
<A HREF="help.html#T"> T </A> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/dm.html">DM</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>using distributed arrays</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex20.c.html">Nonlinear Radiative Transport PDE with multigrid in 3d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex46.c.html">Solves a linear system in parallel with KSP and DM</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/dmda.html">DMDA</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>using distributed arrays</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex35.c.html">-Laplacian u = b as a nonlinear problem</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5.c.html">Bratu nonlinear PDE in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex14.c.html">Bratu nonlinear PDE in 3d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex14f.F.html">ksp/ksp/ex14f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex25.c.html">Minimum surface problem in 2D</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex19.c.html">Nonlinear driven cavity with multigrid in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex18.c.html">Nonlinear Radiative Transport PDE with multigrid in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5f.F.html">snes/ex5f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5f90.F.html">snes/ex5f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5f90t.F.html">snes/ex5f90t.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex7.c.html">snes/ex7.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex46.c.html">Surface processes in geophysics</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex26.c.html">Transient nonlinear driven cavity in 2d</A></TD></TR>
</TABLE>
<A NAME="E"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<A HREF="help.html#C"> C </A> | 
<A HREF="help.html#D"> D </A> | 
<FONT COLOR="#CC3333">E</FONT> | 
<A HREF="help.html#F"> F </A> | 
<A HREF="help.html#G"> G </A> | 
<A HREF="help.html#H"> H </A> | 
<A HREF="help.html#I"> I </A> | 
<A HREF="help.html#K"> K </A> | 
<A HREF="help.html#L"> L </A> | 
<A HREF="help.html#M"> M </A> | 
<A HREF="help.html#N"> N </A> | 
<A HREF="help.html#O"> O </A> | 
<A HREF="help.html#P"> P </A> | 
<A HREF="help.html#S"> S </A> | 
<A HREF="help.html#T"> T </A> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/error_handling.html">error handling</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>using the macro __FUNCT__ to define routine names</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex3.c.html">Newton methods to solve u'' + u^{2} = f in parallel</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Using the macro __FUNCT__ to define routine names</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex15.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<A NAME="F"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<A HREF="help.html#C"> C </A> | 
<A HREF="help.html#D"> D </A> | 
<A HREF="help.html#E"> E </A> | 
<FONT COLOR="#CC3333">F</FONT> | 
<A HREF="help.html#G"> G </A> | 
<A HREF="help.html#H"> H </A> | 
<A HREF="help.html#I"> I </A> | 
<A HREF="help.html#K"> K </A> | 
<A HREF="help.html#L"> L </A> | 
<A HREF="help.html#M"> M </A> | 
<A HREF="help.html#N"> N </A> | 
<A HREF="help.html#O"> O </A> | 
<A HREF="help.html#P"> P </A> | 
<A HREF="help.html#S"> S </A> | 
<A HREF="help.html#T"> T </A> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/fortran90.html">Fortran90</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>accessing indices in index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex3f90.F.html">vec/is/is/ex3f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>accessing indices of index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex1f90.F.html">vec/is/is/ex1f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>assembling vectors</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex4f90.F.html">vec/vec/ex4f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>using basic vector routines</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex1f90.F.html">vec/vec/ex1f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex20f90.F90.html">vec/vec/ex20f90.F90</A></TD></TR>
</TABLE>
<A NAME="G"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<A HREF="help.html#C"> C </A> | 
<A HREF="help.html#D"> D </A> | 
<A HREF="help.html#E"> E </A> | 
<A HREF="help.html#F"> F </A> | 
<FONT COLOR="#CC3333">G</FONT> | 
<A HREF="help.html#H"> H </A> | 
<A HREF="help.html#I"> I </A> | 
<A HREF="help.html#K"> K </A> | 
<A HREF="help.html#L"> L </A> | 
<A HREF="help.html#M"> M </A> | 
<A HREF="help.html#N"> N </A> | 
<A HREF="help.html#O"> O </A> | 
<A HREF="help.html#P"> P </A> | 
<A HREF="help.html#S"> S </A> | 
<A HREF="help.html#T"> T </A> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/global_to_local_mappings.html">global to local mappings</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/vec/is/is/examples/tutorials/ex4.c.html">Demonstrates using ISLocalToGlobalMappings</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/is/is/examples/tutorials/ex5.c.html">Demonstrates using ISLocalToGlobalMappings with block size</A></TD></TR>
</TABLE>
<A NAME="H"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<A HREF="help.html#C"> C </A> | 
<A HREF="help.html#D"> D </A> | 
<A HREF="help.html#E"> E </A> | 
<A HREF="help.html#F"> F </A> | 
<A HREF="help.html#G"> G </A> | 
<FONT COLOR="#CC3333">H</FONT> | 
<A HREF="help.html#I"> I </A> | 
<A HREF="help.html#K"> K </A> | 
<A HREF="help.html#L"> L </A> | 
<A HREF="help.html#M"> M </A> | 
<A HREF="help.html#N"> N </A> | 
<A HREF="help.html#O"> O </A> | 
<A HREF="help.html#P"> P </A> | 
<A HREF="help.html#S"> S </A> | 
<A HREF="help.html#T"> T </A> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/hdf5.html">HDF5</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/dm/examples/tutorials/ex9.c.html">dm/ex9.c</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/helmholtz_equation.html">Helmholtz equation</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex11.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<A NAME="I"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<A HREF="help.html#C"> C </A> | 
<A HREF="help.html#D"> D </A> | 
<A HREF="help.html#E"> E </A> | 
<A HREF="help.html#F"> F </A> | 
<A HREF="help.html#G"> G </A> | 
<A HREF="help.html#H"> H </A> | 
<FONT COLOR="#CC3333">I</FONT> | 
<A HREF="help.html#K"> K </A> | 
<A HREF="help.html#L"> L </A> | 
<A HREF="help.html#M"> M </A> | 
<A HREF="help.html#N"> N </A> | 
<A HREF="help.html#O"> O </A> | 
<A HREF="help.html#P"> P </A> | 
<A HREF="help.html#S"> S </A> | 
<A HREF="help.html#T"> T </A> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/index_sets.html">index sets</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>accessing indices from Fortran</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex2f.F.html">vec/is/is/ex2f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>creating a block index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex3.c.html">Demonstrates creating a blocked index set</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>creating a stride index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex2.c.html">Demonstrates creating a stride index set</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>creating general</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex1.c.html">Creating a general index set</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>manipulating a block index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex3f90.F.html">vec/is/is/ex3f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>manipulating a general index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex1.c.html">Creating a general index set</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/is/is/examples/tutorials/ex1f.F.html">vec/is/is/ex1f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/is/is/examples/tutorials/ex1f90.F.html">vec/is/is/ex1f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>manipulating a stride index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex2f.F.html">vec/is/is/ex2f.F</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/introduction_to_petsc.html">introduction to PETSc</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex11.c.html">Demonstrates PetscDataTypeFromString()</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex1.c.html">Introductory example that illustrates printing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex4.c.html">Introductory example that illustrates running PETSc on a subset of processes</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex16.c.html">sys/ex16.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex4f.F.html">sys/ex4f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex4f90.F90.html">sys/ex4f90.F90</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Chombo</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex12.cxx.html">Demonstrates call PETSc and Chombo in the same program</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Trilinos</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex13.cxx.html">Demonstrates call PETSc first and then Trilinos in the same program</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex14.cxx.html">Demonstrates calling Trilinos and then PETSc in the same program</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/is.html">IS</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>creating a block index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex3.c.html">Demonstrates creating a blocked index set</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>creating a general index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex1.c.html">Creating a general index set</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>creating a stride index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex2.c.html">Demonstrates creating a stride index set</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/is_coloirng_types.html">IS coloirng types</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex35.c.html">-Laplacian u = b as a nonlinear problem</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5.c.html">Bratu nonlinear PDE in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex46.c.html">Surface processes in geophysics</A></TD></TR>
</TABLE>
<A NAME="K"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<A HREF="help.html#C"> C </A> | 
<A HREF="help.html#D"> D </A> | 
<A HREF="help.html#E"> E </A> | 
<A HREF="help.html#F"> F </A> | 
<A HREF="help.html#G"> G </A> | 
<A HREF="help.html#H"> H </A> | 
<A HREF="help.html#I"> I </A> | 
<FONT COLOR="#CC3333">K</FONT> | 
<A HREF="help.html#L"> L </A> | 
<A HREF="help.html#M"> M </A> | 
<A HREF="help.html#N"> N </A> | 
<A HREF="help.html#O"> O </A> | 
<A HREF="help.html#P"> P </A> | 
<A HREF="help.html#S"> S </A> | 
<A HREF="help.html#T"> T </A> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/ksp.html">KSP</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Additive Schwarz Method (ASM) with user-defined subdomains</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex8.c.html">Illustrates use of the preconditioner ASM</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Additive Schwarz Method (GASM) with user-defined subdomains</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex62.c.html">Illustrates use of PCGASM</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex64.c.html">Illustrates use of the preconditioner GASM</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>basic parallel example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex3.c.html">Bilinear elements on the unit square for Laplacian</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex15f.F.html">ksp/ksp/ex15f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex21f.F.html">ksp/ksp/ex21f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex2f.F.html">ksp/ksp/ex2f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex18.c.html">Solves a (permuted) linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex15.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex46.c.html">Solves a linear system in parallel with KSP and DM</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex23.c.html">Solves a tridiagonal linear system</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>basic sequential example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex13f90.F.html">ksp/ksp/ex13f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex13.c.html">Solves a variable Poisson problem with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>customizing the block Jacobi preconditioner</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex7.c.html">Block Jacobi preconditioner for solving a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>different matrices for linear system and preconditioner</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex6f.F.html">ksp/ksp/ex6f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Laplacian, 2d</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex13f90.F.html">ksp/ksp/ex13f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex32.c.html">Solves 2D inhomogeneous Laplacian using multigrid</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex18.c.html">Solves a (permuted) linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex12.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex46.c.html">Solves a linear system in parallel with KSP and DM</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex16.c.html">Solves a sequence of linear systems with different right-hand-side vectors</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex13.c.html">Solves a variable Poisson problem with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Laplacian, 3d</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex34.c.html">Solves 3D Laplacian using multigrid</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>repeatedly solving linear systems</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex6f.F.html">ksp/ksp/ex6f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex16.c.html">Solves a sequence of linear systems with different right-hand-side vectors</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex5.c.html">Solves two linear systems in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex9.c.html">The solution of 2 different linear systems with different linear solvers</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>semi-implicit</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex31.c.html">Solves 2D compressible Euler</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>setting a user-defined monitoring routine</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex2f.F.html">ksp/ksp/ex2f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>solving a Helmholtz equation</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex11f.F.html">ksp/ksp/ex11f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex11.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>solving a linear system</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex10.c.html">Reads a PETSc matrix and vector from a file and solves a linear system</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex27.c.html">Reads a PETSc matrix and vector from a file and solves the normal equations</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex41.c.html">Reads a PETSc matrix and vector from a socket connection,  solves a linear system and sends the result back</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>solving a system of linear equations</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex1f.F.html">ksp/ksp/ex1f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex54f.F.html">ksp/ksp/ex54f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex31.c.html">Solves 2D compressible Euler</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex32.c.html">Solves 2D inhomogeneous Laplacian using multigrid</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex34.c.html">Solves 3D Laplacian using multigrid</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex12.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex58.c.html">Solves a tridiagonal linear system with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>writing a user-defined nonlinear solver</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex14f.F.html">ksp/ksp/ex14f.F</A></TD></TR>
</TABLE>
<A NAME="L"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<A HREF="help.html#C"> C </A> | 
<A HREF="help.html#D"> D </A> | 
<A HREF="help.html#E"> E </A> | 
<A HREF="help.html#F"> F </A> | 
<A HREF="help.html#G"> G </A> | 
<A HREF="help.html#H"> H </A> | 
<A HREF="help.html#I"> I </A> | 
<A HREF="help.html#K"> K </A> | 
<FONT COLOR="#CC3333">L</FONT> | 
<A HREF="help.html#M"> M </A> | 
<A HREF="help.html#N"> N </A> | 
<A HREF="help.html#O"> O </A> | 
<A HREF="help.html#P"> P </A> | 
<A HREF="help.html#S"> S </A> | 
<A HREF="help.html#T"> T </A> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/laplacian,_2d.html">Laplacian, 2d</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex13f90.F.html">ksp/ksp/ex13f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex18.c.html">Solves a (permuted) linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex2.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex46.c.html">Solves a linear system in parallel with KSP and DM</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex16.c.html">Solves a sequence of linear systems with different right-hand-side vectors</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex13.c.html">Solves a variable Poisson problem with KSP</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/local_to_global_mappings.html">local to global mappings</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/vec/is/is/examples/tutorials/ex4.c.html">Demonstrates using ISLocalToGlobalMappings</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/is/is/examples/tutorials/ex5.c.html">Demonstrates using ISLocalToGlobalMappings with block size</A></TD></TR>
</TABLE>
<A NAME="M"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<A HREF="help.html#C"> C </A> | 
<A HREF="help.html#D"> D </A> | 
<A HREF="help.html#E"> E </A> | 
<A HREF="help.html#F"> F </A> | 
<A HREF="help.html#G"> G </A> | 
<A HREF="help.html#H"> H </A> | 
<A HREF="help.html#I"> I </A> | 
<A HREF="help.html#K"> K </A> | 
<A HREF="help.html#L"> L </A> | 
<FONT COLOR="#CC3333">M</FONT> | 
<A HREF="help.html#N"> N </A> | 
<A HREF="help.html#O"> O </A> | 
<A HREF="help.html#P"> P </A> | 
<A HREF="help.html#S"> S </A> | 
<A HREF="help.html#T"> T </A> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/mat.html">Mat</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>composite matrices</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex9.c.html">mat/ex9.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>image segmentation</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex15.c.html">mat/ex15.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/mat/examples/tutorials/ex17.c.html">mat/ex17.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>loading a binary matrix</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex10.c.html">mat/ex10.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>loading a binary matrix and vector</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex12.c.html">mat/ex12.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/mat/examples/tutorials/ex1.c.html">Reads a PETSc matrix and vector from a file and reorders it</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>mat partitioning</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex15.c.html">mat/ex15.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/mat/examples/tutorials/ex17.c.html">mat/ex17.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>mesh partitioning</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex11.c.html">mat/ex11.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>ordering a matrix - loading a binary matrix and vector</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex12.c.html">mat/ex12.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/mat/examples/tutorials/ex1.c.html">Reads a PETSc matrix and vector from a file and reorders it</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/mathematical_functions.html">mathematical functions</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/dm/examples/tutorials/ex4.c.html">Demonstrates various vector routines for DMDA</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/matrices.html">Matrices</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>inserting elements by blocks</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex3.c.html">Bilinear elements on the unit square for Laplacian</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/multicomponent.html">multicomponent</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex19.c.html">Nonlinear driven cavity with multigrid in 2d</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/multigrid.html">multigrid</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex25.c.html">Minimum surface problem in 2D</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex18.c.html">Nonlinear Radiative Transport PDE with multigrid in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex20.c.html">Nonlinear Radiative Transport PDE with multigrid in 3d</A></TD></TR>
</TABLE>
<A NAME="N"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<A HREF="help.html#C"> C </A> | 
<A HREF="help.html#D"> D </A> | 
<A HREF="help.html#E"> E </A> | 
<A HREF="help.html#F"> F </A> | 
<A HREF="help.html#G"> G </A> | 
<A HREF="help.html#H"> H </A> | 
<A HREF="help.html#I"> I </A> | 
<A HREF="help.html#K"> K </A> | 
<A HREF="help.html#L"> L </A> | 
<A HREF="help.html#M"> M </A> | 
<FONT COLOR="#CC3333">N</FONT> | 
<A HREF="help.html#O"> O </A> | 
<A HREF="help.html#P"> P </A> | 
<A HREF="help.html#S"> S </A> | 
<A HREF="help.html#T"> T </A> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/normal_equations.html">Normal equations</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex27.c.html">Reads a PETSc matrix and vector from a file and solves the normal equations</A></TD></TR>
</TABLE>
<A NAME="O"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<A HREF="help.html#C"> C </A> | 
<A HREF="help.html#D"> D </A> | 
<A HREF="help.html#E"> E </A> | 
<A HREF="help.html#F"> F </A> | 
<A HREF="help.html#G"> G </A> | 
<A HREF="help.html#H"> H </A> | 
<A HREF="help.html#I"> I </A> | 
<A HREF="help.html#K"> K </A> | 
<A HREF="help.html#L"> L </A> | 
<A HREF="help.html#M"> M </A> | 
<A HREF="help.html#N"> N </A> | 
<FONT COLOR="#CC3333">O</FONT> | 
<A HREF="help.html#P"> P </A> | 
<A HREF="help.html#S"> S </A> | 
<A HREF="help.html#T"> T </A> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/optimization.html">optimization</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>likely</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex6.c.html">Example of using PetscLikely() and PetscUnlikely()</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>unlikely</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex6.c.html">Example of using PetscLikely() and PetscUnlikely()</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/optimization_using_adjoint_sensitivities.html">Optimization using adjoint sensitivities</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex20opt_ic.c.html">Solves a DAE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex16opt_ic.c.html">Solves an ODE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex16opt_p.c.html">Solves an ODE-constrained optimization problem -- finding the optimal stiffness parameter for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/optimization_using_adjoint_sensitivity_analysis.html">Optimization using adjoint sensitivity analysis</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex20opt_p.c.html">Solves the van der Pol equation</A></TD></TR>
</TABLE>
<A NAME="P"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<A HREF="help.html#C"> C </A> | 
<A HREF="help.html#D"> D </A> | 
<A HREF="help.html#E"> E </A> | 
<A HREF="help.html#F"> F </A> | 
<A HREF="help.html#G"> G </A> | 
<A HREF="help.html#H"> H </A> | 
<A HREF="help.html#I"> I </A> | 
<A HREF="help.html#K"> K </A> | 
<A HREF="help.html#L"> L </A> | 
<A HREF="help.html#M"> M </A> | 
<A HREF="help.html#N"> N </A> | 
<A HREF="help.html#O"> O </A> | 
<FONT COLOR="#CC3333">P</FONT> | 
<A HREF="help.html#S"> S </A> | 
<A HREF="help.html#T"> T </A> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/pc.html">PC</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>registering preconditioners</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex12.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>setting a user-defined shell preconditioner</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex15f.F.html">ksp/ksp/ex15f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex21f.F.html">ksp/ksp/ex21f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex15.c.html">Solves a linear system in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/petsc.html">petsc</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>introduction</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex2.c.html">Synchronized printing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/petsclog.html">PetscLog</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>activating/deactivating events for profiling</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex3.c.html">Augmenting PETSc profiling by add events</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>activating/deactivating events for profiling (basic example)</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex3f.F.html">sys/ex3f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>preloading executable</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex12.c.html">mat/ex12.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/mat/examples/tutorials/ex1.c.html">Reads a PETSc matrix and vector from a file and reorders it</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>profiling multiple stages of code</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ksp/ksp/examples/tutorials/ex5.c.html">Solves two linear systems in parallel with KSP</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex9.c.html">The solution of 2 different linear systems with different linear solvers</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>user-defined event profiling</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex3.c.html">Augmenting PETSc profiling by add events</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ksp/ksp/examples/tutorials/ex9.c.html">The solution of 2 different linear systems with different linear solvers</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>user-defined event profiling (basic example)</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex3f.F.html">sys/ex3f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/printf.html">printf</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>in parallel</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex2.c.html">Synchronized printing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>synchronized</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex2.c.html">Synchronized printing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/printing.html">printing</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>in parallel</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex11.c.html">Demonstrates PetscDataTypeFromString()</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex1.c.html">Introductory example that illustrates printing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex2.c.html">Synchronized printing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex16.c.html">sys/ex16.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>synchronized</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex2.c.html">Synchronized printing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/process.html">process</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>subset set PETSC_COMM_WORLD</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex4.c.html">Introductory example that illustrates running PETSc on a subset of processes</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex4f.F.html">sys/ex4f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex4f90.F90.html">sys/ex4f90.F90</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/profiling.html">profiling</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>activating/deactivating events</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex3.c.html">Augmenting PETSc profiling by add events</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>user-defined event</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/examples/tutorials/ex3.c.html">Augmenting PETSc profiling by add events</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/pseudo-timestepping.html">pseudo-timestepping</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex1.c.html">Solves the time independent Bratu problem using pseudo-timestepping</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex1f.F.html">ts/ex1f.F</A></TD></TR>
</TABLE>
<A NAME="S"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<A HREF="help.html#C"> C </A> | 
<A HREF="help.html#D"> D </A> | 
<A HREF="help.html#E"> E </A> | 
<A HREF="help.html#F"> F </A> | 
<A HREF="help.html#G"> G </A> | 
<A HREF="help.html#H"> H </A> | 
<A HREF="help.html#I"> I </A> | 
<A HREF="help.html#K"> K </A> | 
<A HREF="help.html#L"> L </A> | 
<A HREF="help.html#M"> M </A> | 
<A HREF="help.html#N"> N </A> | 
<A HREF="help.html#O"> O </A> | 
<A HREF="help.html#P"> P </A> | 
<FONT COLOR="#CC3333">S</FONT> | 
<A HREF="help.html#T"> T </A> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/shared_memory.html">shared memory</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5s.c.html">2d Bratu problem in shared memory parallel with SNES</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/snes.html">SNES</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>basic example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex1.c.html">Newton's method for a two-variable system, sequential</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex42.c.html">Newton's method to solve a two-variable system that comes from the Rosenbrock function</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>basic parallel example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex3.c.html">Newton methods to solve u'' + u^{2} = f in parallel</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>basic uniprocessor example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex2.c.html">Newton method to solve u'' + u^{2} = f, sequentially</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex1f.F.html">snes/ex1f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>parallel Bratu example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex35.c.html">-Laplacian u = b as a nonlinear problem</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5s.c.html">2d Bratu problem in shared memory parallel with SNES</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5.c.html">Bratu nonlinear PDE in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex14.c.html">Bratu nonlinear PDE in 3d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5f.F.html">snes/ex5f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5f90.F.html">snes/ex5f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex5f90t.F.html">snes/ex5f90t.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>parallel Stokes example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex7.c.html">snes/ex7.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>parallel Surface process example</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex46.c.html">Surface processes in geophysics</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>setting a user-defined monitoring routine</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex2.c.html">Newton method to solve u'' + u^{2} = f, sequentially</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex3.c.html">Newton methods to solve u'' + u^{2} = f in parallel</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>solving a system of nonlinear equations</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex25.c.html">Minimum surface problem in 2D</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex18.c.html">Nonlinear Radiative Transport PDE with multigrid in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/snes/examples/tutorials/ex20.c.html">Nonlinear Radiative Transport PDE with multigrid in 3d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>solving a system of nonlinear equations (parallel multicomponent example)</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/snes/examples/tutorials/ex19.c.html">Nonlinear driven cavity with multigrid in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/stride.html">stride</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>creating a stride index set</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/is/is/examples/tutorials/ex2.c.html">Demonstrates creating a stride index set</A></TD></TR>
</TABLE>
<A NAME="T"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<A HREF="help.html#C"> C </A> | 
<A HREF="help.html#D"> D </A> | 
<A HREF="help.html#E"> E </A> | 
<A HREF="help.html#F"> F </A> | 
<A HREF="help.html#G"> G </A> | 
<A HREF="help.html#H"> H </A> | 
<A HREF="help.html#I"> I </A> | 
<A HREF="help.html#K"> K </A> | 
<A HREF="help.html#L"> L </A> | 
<A HREF="help.html#M"> M </A> | 
<A HREF="help.html#N"> N </A> | 
<A HREF="help.html#O"> O </A> | 
<A HREF="help.html#P"> P </A> | 
<A HREF="help.html#S"> S </A> | 
<FONT COLOR="#CC3333">T</FONT> | 
<A HREF="help.html#V"> V </A> | 
</CENTER></H3> 
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/tao.html">TAO</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Solving a bound constrained minimization problem</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/tao/bound/examples/tutorials/jbearing2.c.html">tao/bound/jbearing2.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/bound/examples/tutorials/plate2.c.html">tao/bound/plate2.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/bound/examples/tutorials/plate2f.F.html">tao/bound/plate2f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Solving a complementarity problem</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/tao/complementarity/examples/tutorials/blackscholes.c.html">tao/complementarity/blackscholes.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/complementarity/examples/tutorials/minsurf1.c.html">tao/complementarity/minsurf1.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Solving a system of nonlinear equations, nonlinear least squares</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/tao/leastsquares/examples/tutorials/chwirut1.c.html">tao/leastsquares/chwirut1.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/leastsquares/examples/tutorials/chwirut2.c.html">tao/leastsquares/chwirut2.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/pde_constrained/examples/tutorials/elliptic.c.html">tao/pde_constrained/elliptic.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/pde_constrained/examples/tutorials/hyperbolic.c.html">tao/pde_constrained/hyperbolic.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/pde_constrained/examples/tutorials/parabolic.c.html">tao/pde_constrained/parabolic.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Solving an unconstrained minimization problem</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/tao/constrained/examples/tutorials/maros.c.html">tao/constrained/maros.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/leastsquares/examples/tutorials/chwirut1f.F.html">tao/leastsquares/chwirut1f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/leastsquares/examples/tutorials/chwirut2f.F.html">tao/leastsquares/chwirut2f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/unconstrained/examples/tutorials/eptorsion1.c.html">tao/unconstrained/eptorsion1.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/unconstrained/examples/tutorials/eptorsion2.c.html">tao/unconstrained/eptorsion2.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/unconstrained/examples/tutorials/eptorsion2f.F.html">tao/unconstrained/eptorsion2f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/unconstrained/examples/tutorials/minsurf2.c.html">tao/unconstrained/minsurf2.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/unconstrained/examples/tutorials/rosenbrock1.c.html">tao/unconstrained/rosenbrock1.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/tao/unconstrained/examples/tutorials/rosenbrock1f.F.html">tao/unconstrained/rosenbrock1f.F</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/ts.html">TS</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex31.c.html">Solves the ordinary differential equations (IVPs) using explicit and implicit time-integration methods</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>adjoint sensitivity analysis</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex20adj.c.html">Performs adjoint sensitivity analysis for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>differential-algebraic equation</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex26.c.html">Transient nonlinear driven cavity in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>diffusion equation</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex6.c.html">Solves a simple time-dependent linear PDE (the heat equation)</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>heat equation</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex6.c.html">Solves a simple time-dependent linear PDE (the heat equation)</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>multicomponent</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex26.c.html">Transient nonlinear driven cavity in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>nonlinear problems</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex1.c.html">Solves the time independent Bratu problem using pseudo-timestepping</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex1f.F.html">ts/ex1f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>pseudo-timestepping</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex1.c.html">Solves the time independent Bratu problem using pseudo-timestepping</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex1f.F.html">ts/ex1f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>solving a system of nonlinear equations (parallel multicomponent example)</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex26.c.html">Transient nonlinear driven cavity in 2d</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>time-dependent linear problems</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex6.c.html">Solves a simple time-dependent linear PDE (the heat equation)</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>time-dependent nonlinear problems</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex20adj.c.html">Performs adjoint sensitivity analysis for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex20opt_ic.c.html">Solves a DAE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex2.c.html">Solves a time-dependent nonlinear PDE</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex21.c.html">Solves a time-dependent nonlinear PDE with lower and upper bounds on the interior grid points</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex16opt_ic.c.html">Solves an ODE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex16opt_p.c.html">Solves an ODE-constrained optimization problem -- finding the optimal stiffness parameter for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex19.c.html">Solves the van der Pol DAE</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex20opt_p.c.html">Solves the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>van der Pol DAE</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex19.c.html">Solves the van der Pol DAE</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>van der Pol equation</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex16adj.c.html">Performs adjoint sensitivity analysis for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex16opt_ic.c.html">Solves an ODE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex16opt_p.c.html">Solves an ODE-constrained optimization problem -- finding the optimal stiffness parameter for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex16.c.html">Solves the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>van der Pol equation DAE equivalent</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex20adj.c.html">Performs adjoint sensitivity analysis for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex20opt_ic.c.html">Solves a DAE-constrained optimization problem -- finding the optimal initial conditions for the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/ts/examples/tutorials/ex20opt_p.c.html">Solves the van der Pol equation</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>Variational inequality nonlinear solver</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/ts/examples/tutorials/ex21.c.html">Solves a time-dependent nonlinear PDE with lower and upper bounds on the interior grid points</A></TD></TR>
</TABLE>
<A NAME="V"></A>
<H3> <CENTER> | <A HREF="help.html#B"> B </A> | 
<A HREF="help.html#C"> C </A> | 
<A HREF="help.html#D"> D </A> | 
<A HREF="help.html#E"> E </A> | 
<A HREF="help.html#F"> F </A> | 
<A HREF="help.html#G"> G </A> | 
<A HREF="help.html#H"> H </A> | 
<A HREF="help.html#I"> I </A> | 
<A HREF="help.html#K"> K </A> | 
<A HREF="help.html#L"> L </A> | 
<A HREF="help.html#M"> M </A> | 
<A HREF="help.html#N"> N </A> | 
<A HREF="help.html#O"> O </A> | 
<A HREF="help.html#P"> P </A> | 
<A HREF="help.html#S"> S </A> | 
<A HREF="help.html#T"> T </A> | 
<FONT COLOR="#CC3333">V</FONT> | 
</CENTER></H3> 
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/vectors.html">vectors</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>arrays</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex4f90.F.html">vec/vec/ex4f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>arrays of vectors</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex4f.F.html">vec/vec/ex4f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>assembling</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex2f.F.html">vec/vec/ex2f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex4f.F.html">vec/vec/ex4f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>assembling vectors</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex2.c.html">Builds a parallel vector with 1 component on the first processor, 2 on the second, etc</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex18.c.html">Computes the integral of 2*x/(1+x^2) from x=0</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex9.c.html">Demonstrates use of VecCreateGhost()</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex14f.F.html">vec/vec/ex14f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex4f90.F.html">vec/vec/ex4f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex9f.F.html">vec/vec/ex9f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>assembling vectors with local ordering</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex8.c.html">Demonstrates using a local ordering to set values into a parallel vector</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>basic routines</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex1.c.html">Basic vector routines</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex1f.F.html">vec/vec/ex1f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>drawing vectors</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex3.c.html">Parallel vector layout</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex3f.F.html">vec/vec/ex3f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>ghost padding</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex9.c.html">Demonstrates use of VecCreateGhost()</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex14f.F.html">vec/vec/ex14f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex9f.F.html">vec/vec/ex9f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>local access to</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex3.c.html">Parallel vector layout</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>norms of sub-vectors</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex11.c.html">Demonstrates VecStrideNorm()</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex11f.F.html">vec/vec/ex11f.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>setting values</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex3.c.html">Parallel vector layout</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>sub-vectors</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex12.c.html">Demonstrates VecStrideScatter() and VecStrideGather()</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex16.c.html">Demonstrates VecStrideScatter() and VecStrideGather() with subvectors that are also strided</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>using basic vector routines</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex1f90.F.html">vec/vec/ex1f90.F</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/vec/vec/examples/tutorials/ex20f90.F90.html">vec/vec/ex20f90.F90</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>viewing</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex19.c.html">Parallel HDF5 Vec Viewing</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=4 ><BR></TD><TD WIDTH=300 ><B><FONT SIZE=4><A HREF="concepts/vectors.html">Vectors</A></FONT></B></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>loading a binary vector</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/mat/examples/tutorials/ex12.c.html">mat/ex12.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/mat/examples/tutorials/ex1.c.html">Reads a PETSc matrix and vector from a file and reorders it</A></TD></TR>
</TABLE>
<TABLE>
<TD WIDTH=4 ><BR></TD><TD WIDTH=260 ><B><FONT SIZE=4><A HREF="concepts/viewers.html">viewers</A></FONT></B></TD><TD WIDTH=500><A HREF="../../src/dm/examples/tutorials/ex7.c.html">dm/ex7.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/dm/examples/tutorials/ex9.c.html">dm/ex9.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=270><BR></TD><TD WIDTH=500><A HREF="../../src/sys/examples/tutorials/ex15.c.html">sys/ex15.c</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>append</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/sys/classes/viewer/examples/tutorials/ex1.c.html">Appends to an ASCII file</A></TD></TR>
</TABLE>
<TABLE><TD WIDTH=60 ><BR></TD><TD WIDTH=205><FONT COLOR="#CC3333"><B>hdf5</B></FONT></TD><TD WIDTH=500 ><A HREF="../../src/vec/vec/examples/tutorials/ex19.c.html">Parallel HDF5 Vec Viewing</A></TD></TR>
</TABLE>
</BODY></HTML>