File: bratu3d.py

package info (click to toggle)
petsc4py 3.23.1-1exp2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 3,448 kB
  • sloc: python: 12,503; ansic: 1,697; makefile: 343; f90: 313; sh: 14
file content (204 lines) | stat: -rw-r--r-- 6,874 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# ------------------------------------------------------------------------
#
#  Solid Fuel Ignition (SFI) problem.  This problem is modeled by the
#  partial differential equation
#
#          -Laplacian(u) - lambda * exp(u) = 0,  0 < x,y,z < 1,
#
#  with boundary conditions
#
#           u = 0  for  x = 0, x = 1, y = 0, y = 1, z = 0, z = 1
#
#  A finite difference approximation with the usual 7-point stencil
#  is used to discretize the boundary value problem to obtain a
#  nonlinear system of equations. The problem is solved in a 3D
#  rectangular domain, using distributed arrays (DAs) to partition
#  the parallel grid.
#
# ------------------------------------------------------------------------

try: range = xrange
except: pass

import sys, petsc4py
petsc4py.init(sys.argv)

from numpy import exp, sqrt
from petsc4py import PETSc

class Bratu3D(object):

    def __init__(self, da, lambda_):
        assert da.getDim() == 3
        self.da = da
        self.lambda_ = lambda_
        self.localX  = da.createLocalVec()

    def formInitGuess(self, snes, X):
        #
        x = self.da.getVecArray(X)
        #
        mx, my, mz = self.da.getSizes()
        hx, hy, hz = [1.0/(m-1) for m in [mx, my, mz]]
        lambda_ = self.lambda_
        scale = lambda_/(lambda_ + 1.0)
        #
        (xs, xe), (ys, ye), (zs, ze) = self.da.getRanges()
        for k in range(zs, ze):
            min_k = min(k,mz-k-1)*hz
            for j in range(ys, ye):
                min_j = min(j,my-j-1)*hy
                for i in range(xs, xe):
                    min_i = min(i,mx-i-1)*hx
                    if (i==0    or j==0    or k==0 or
                        i==mx-1 or j==my-1 or k==mz-1):
                        # boundary points
                        x[i, j, k] = 0.0
                    else:
                        # interior points
                        min_kij = min(min_i,min_j,min_k)
                        x[i, j, k] = scale*sqrt(min_kij)

    def formFunction(self, snes, X, F):
        #
        self.da.globalToLocal(X, self.localX)
        x = self.da.getVecArray(self.localX)
        f = self.da.getVecArray(F)
        #
        mx, my, mz = self.da.getSizes()
        hx, hy, hz = [1.0/m for m in [mx, my, mz]]
        hxhyhz  = hx*hy*hz
        hxhzdhy = hx*hz/hy;
        hyhzdhx = hy*hz/hx;
        hxhydhz = hx*hy/hz;
        lambda_ = self.lambda_
        #
        (xs, xe), (ys, ye), (zs, ze) = self.da.getRanges()
        for k in range(zs, ze):
            for j in range(ys, ye):
                for i in range(xs, xe):
                    if (i==0    or j==0    or k==0 or
                        i==mx-1 or j==my-1 or k==mz-1):
                        f[i, j, k] = x[i, j, k] - 0
                    else:
                        u   = x[ i  ,  j  ,  k ] # center
                        u_e = x[i+1 ,  j  ,  k ] # east
                        u_w = x[i-1 ,  j  ,  k ] # west
                        u_n = x[ i  , j+1 ,  k ] # north
                        u_s = x[ i  , j-1 ,  k ] # south
                        u_u = x[ i  ,  j  , k+1] # up
                        u_d = x[ i  ,  j  , k-1] # down
                        u_xx = (-u_e + 2*u - u_w)*hyhzdhx
                        u_yy = (-u_n + 2*u - u_s)*hxhzdhy
                        u_zz = (-u_u + 2*u - u_d)*hxhydhz
                        f[i, j, k] = u_xx + u_yy + u_zz \
                                     - lambda_*exp(u)*hxhyhz

    def formJacobian(self, snes, X, J, P):
        #
        self.da.globalToLocal(X, self.localX)
        x = self.da.getVecArray(self.localX)
        #
        mx, my, mz = self.da.getSizes()
        hx, hy, hz = [1.0/m for m in [mx, my, mz]]
        hxhyhz  = hx*hy*hz
        hxhzdhy = hx*hz/hy;
        hyhzdhx = hy*hz/hx;
        hxhydhz = hx*hy/hz;
        lambda_ = self.lambda_
        #
        P.zeroEntries()
        row = PETSc.Mat.Stencil()
        col = PETSc.Mat.Stencil()
        #
        (xs, xe), (ys, ye), (zs, ze) = self.da.getRanges()
        for k in range(zs, ze):
            for j in range(ys, ye):
                for i in range(xs, xe):
                    row.index = (i,j,k)
                    row.field = 0
                    if (i==0    or j==0    or k==0 or
                        i==mx-1 or j==my-1 or k==mz-1):
                        P.setValueStencil(row, row, 1.0)
                    else:
                        u = x[i,j,k]
                        diag = (2*(hyhzdhx+hxhzdhy+hxhydhz)
                                - lambda_*exp(u)*hxhyhz)
                        for index, value in [
                            ((i,j,k-1), -hxhydhz),
                            ((i,j-1,k), -hxhzdhy),
                            ((i-1,j,k), -hyhzdhx),
                            ((i, j, k), diag),
                            ((i+1,j,k), -hyhzdhx),
                            ((i,j+1,k), -hxhzdhy),
                            ((i,j,k+1), -hxhydhz),
                            ]:
                            col.index = index
                            col.field = 0
                            P.setValueStencil(row, col, value)
        P.assemble()
        if J != P: J.assemble() # matrix-free operator
        return PETSc.Mat.Structure.SAME_NONZERO_PATTERN

OptDB = PETSc.Options()

n  = OptDB.getInt('n', 16)
nx = OptDB.getInt('nx', n)
ny = OptDB.getInt('ny', n)
nz = OptDB.getInt('nz', n)
lambda_ = OptDB.getReal('lambda', 6.0)

da = PETSc.DMDA().create([nx, ny, nz], stencil_width=1)
pde = Bratu3D(da, lambda_)

snes = PETSc.SNES().create()
F = da.createGlobalVec()
snes.setFunction(pde.formFunction, F)

fd = OptDB.getBool('fd', False)
mf = OptDB.getBool('mf', False)
if mf:
    J = None
    snes.setUseMF()
else:
    J = da.createMat()
    snes.setJacobian(pde.formJacobian, J)
    if fd:
        snes.setUseFD()

snes.getKSP().setType('cg')
snes.setFromOptions()

X = da.createGlobalVec()
pde.formInitGuess(snes, X)
snes.solve(None, X)

U = da.createNaturalVec()
da.globalToNatural(X, U)

if OptDB.getBool('plot_mpl', False):

    def plot_mpl(da, U):
        comm = da.getComm()
        rank = comm.getRank()
        scatter, U0 = PETSc.Scatter.toZero(U)
        scatter.scatter(U, U0, False, PETSc.Scatter.Mode.FORWARD)
        if rank == 0:
            try:
                from matplotlib import pylab
            except ImportError:
                PETSc.Sys.Print("matplotlib not available")
            else:
                from numpy import mgrid
                nx, ny, nz = da.sizes
                solution = U0[...].reshape(da.sizes, order='f')
                xx, yy =  mgrid[0:1:1j*nx,0:1:1j*ny]
                pylab.contourf(xx, yy, solution[:, :, nz//2])
                pylab.axis('equal')
                pylab.xlabel('X')
                pylab.ylabel('Y')
                pylab.title('Z/2')
                pylab.show()
        comm.barrier()

    plot_mpl(da, U)