1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
'''
Ex23 from PETSc example files implemented for PETSc4py.
https://petsc.org/release/src/ksp/ksp/tutorials/ex23.c.html
By: Miguel Arriaga
Solves a tridiagonal linear system.
Vec x, b, u; approx solution, RHS, exact solution
Mat A; linear system matrix
KSP ksp; linear solver context
PC pc; preconditioner context
PetscReal norm; norm of solution error
'''
import sys
import petsc4py
petsc4py.init(sys.argv)
from petsc4py import PETSc
import numpy as np
comm = PETSc.COMM_WORLD
size = comm.getSize()
rank = comm.getRank()
n = 12 # Size of problem
tol = 1E-11 # Tolerance of Result. tol=1000.*PETSC_MACHINE_EPSILON;
'''
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Compute the matrix and right-hand-side vector that define
the linear system, Ax = b.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Create vectors. Note that we form 1 vector from scratch and
then duplicate as needed. For this simple case let PETSc decide how
many elements of the vector are stored on each processor. The second
argument to VecSetSizes() below causes PETSc to decide.
'''
x = PETSc.Vec().create(comm=comm)
x.setSizes(n)
x.setFromOptions()
b = x.duplicate()
u = x.duplicate()
'''
Identify the starting and ending mesh points on each
processor for the interior part of the mesh. We let PETSc decide
above.
'''
rstart,rend = x.getOwnershipRange()
nlocal = x.getLocalSize()
'''
Create matrix. When using MatCreate(), the matrix format can
be specified at runtime.
Performance tuning note: For problems of substantial size,
preallocation of matrix memory is crucial for attaining good
performance. See the matrix chapter of the users manual for details.
We pass in nlocal as the "local" size of the matrix to force it
to have the same parallel layout as the vector created above.
'''
A = PETSc.Mat().create(comm=comm)
A.setSizes(n,nlocal)
A.setFromOptions()
A.setUp()
'''
Assemble matrix.
The linear system is distributed across the processors by
chunks of contiguous rows, which correspond to contiguous
sections of the mesh on which the problem is discretized.
For matrix assembly, each processor contributes entries for
the part that it owns locally.
'''
col = np.zeros(3,dtype=PETSc.IntType)
value = np.zeros(3,dtype=PETSc.ScalarType)
if not rstart:
rstart = 1
i = 0; col[0] = 0; col[1] = 1; value[0] = 2.0; value[1] = -1.0
A.setValues(i,col[0:2],value[0:2])
if rend == n:
rend = n-1
i = n-1; col[0] = n-2; col[1] = n-1; value[0] = -1.0; value[1] = 2.0
A.setValues(i,col[0:2],value[0:2])
''' Set entries corresponding to the mesh interior '''
value[0] = -1.0; value[1] = 2.0; value[2] = -1.0
for i in range(rstart,rend):
col[0] = i-1; col[1] = i; col[2] = i+1
A.setValues(i,col,value)
''' Assemble the matrix '''
A.assemblyBegin(A.AssemblyType.FINAL)
A.assemblyEnd(A.AssemblyType.FINAL)
''' Set exact solution; then compute right-hand-side vector. '''
u.set(1.0)
b = A(u)
'''
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Create the linear solver and set various options
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - '''
'''
Create linear solver context
'''
ksp = PETSc.KSP().create()
'''
Set operators. Here the matrix that defines the linear system
also serves as the preconditioning matrix.
'''
ksp.setOperators(A,A)
'''
Set linear solver defaults for this problem (optional).
- By extracting the KSP and PC contexts from the KSP context,
we can then directly call any KSP and PC routines to set
various options.
- The following four statements are optional; all of these
parameters could alternatively be specified at runtime via
KSPSetFromOptions();
'''
pc = ksp.getPC()
pc.setType('jacobi')
ksp.setTolerances(rtol=1.e-7)
'''
Set runtime options, e.g.,
-ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
These options will override those specified above as long as
KSPSetFromOptions() is called _after_ any other customization
routines.
'''
ksp.setFromOptions()
'''
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solve the linear system
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - '''
''' Solve linear system '''
ksp.solve(b,x)
'''
View solver info; we could instead use the option -ksp_view to
print this info to the screen at the conclusion of KSPSolve().
'''
# ksp.view()
'''
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Check solution and clean up
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - '''
''' Check the error '''
x = x - u # x.axpy(-1.0,u)
norm = x.norm(PETSc.NormType.NORM_2)
its = ksp.getIterationNumber()
if norm > tol:
PETSc.Sys.Print("Norm of error {}, Iterations {}\n".format(norm,its),comm=comm)
else:
if size==1:
PETSc.Sys.Print("- Serial OK",comm=comm)
else:
PETSc.Sys.Print("- Parallel OK",comm=comm)
|