File: Bratu3Dimpl.c

package info (click to toggle)
petsc4py 3.23.1-1exp2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 3,448 kB
  • sloc: python: 12,503; ansic: 1,697; makefile: 343; f90: 313; sh: 14
file content (259 lines) | stat: -rw-r--r-- 8,461 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/* ------------------------------------------------------------------------

    Solid Fuel Ignition (SFI) problem.  This problem is modeled by the
    partial differential equation

            -Laplacian(u) - lambda * exp(u) = 0,  0 < x,y,z < 1,

    with boundary conditions

             u = 0  for  x = 0, x = 1, y = 0, y = 1, z = 0, z = 1

    A finite difference approximation with the usual 7-point stencil
    is used to discretize the boundary value problem to obtain a
    nonlinear system of equations. The problem is solved in a 3D
    rectangular domain, using distributed arrays (DAs) to partition
    the parallel grid.

  ------------------------------------------------------------------------- */

#include "Bratu3Dimpl.h"

PetscErrorCode FormInitGuess(DM da, Vec X, Params *p)
{
  PetscInt       i,j,k,Mx,My,Mz,xs,ys,zs,xm,ym,zm;
  PetscReal      lambda,temp1,hx,hy,hz,tempk,tempj;
  PetscScalar    ***x;

  PetscFunctionBegin;
  PetscCall(DMDAGetInfo(da,PETSC_IGNORE,&Mx,&My,&Mz,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE));

  lambda = p->lambda_;
  hx     = 1.0/(PetscReal)(Mx-1);
  hy     = 1.0/(PetscReal)(My-1);
  hz     = 1.0/(PetscReal)(Mz-1);
  temp1  = lambda/(lambda + 1.0);

  /*
    Get a pointer to vector data.

    - For default PETSc vectors, VecGetArray() returns a pointer to
      the data array.  Otherwise, the routine is implementation
      dependent.

    - You MUST call VecRestoreArray() when you no longer need access
      to the array.
  */
  PetscCall(DMDAVecGetArray(da,X,&x));

  /*
    Get local grid boundaries (for 3-dimensional DMDA):

    - xs, ys, zs: starting grid indices (no ghost points)

    - xm, ym, zm: widths of local grid (no ghost points)
  */
  PetscCall(DMDAGetCorners(da,&xs,&ys,&zs,&xm,&ym,&zm));

  /*
    Compute initial guess over the locally owned part of the grid
  */
  for (k=zs; k<zs+zm; k++) {
    tempk = (PetscReal)(PetscMin(k,Mz-k-1))*hz;
    for (j=ys; j<ys+ym; j++) {
      tempj = PetscMin((PetscReal)(PetscMin(j,My-j-1))*hy,tempk);
      for (i=xs; i<xs+xm; i++) {
        if (i == 0 || j == 0 || k == 0 || i == Mx-1 || j == My-1 || k == Mz-1) {
          /* boundary conditions are all zero Dirichlet */
          x[k][j][i] = 0.0;
        } else {
          x[k][j][i] = temp1*sqrt(PetscMin((PetscReal)(PetscMin(i,Mx-i-1))*hx,tempj));
        }
      }
    }
  }

  /*
    Restore vector
  */
  PetscCall(DMDAVecRestoreArray(da,X,&x));
  PetscFunctionReturn(PETSC_SUCCESS);
}

PetscErrorCode FormFunction(DM da, Vec X, Vec F, Params *p)
{
  PetscInt       i,j,k,Mx,My,Mz,xs,ys,zs,xm,ym,zm;
  PetscReal      two = 2.0,lambda,hx,hy,hz,hxhzdhy,hyhzdhx,hxhydhz,sc;
  PetscScalar    u_north,u_south,u_east,u_west,u_up,u_down,u,u_xx,u_yy,u_zz,***x,***f;
  Vec            localX;

  PetscFunctionBegin;
  PetscCall(DMDAGetInfo(da,PETSC_IGNORE,&Mx,&My,&Mz,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE));
  lambda = p->lambda_;
  hx     = 1.0/(PetscReal)(Mx-1);
  hy     = 1.0/(PetscReal)(My-1);
  hz     = 1.0/(PetscReal)(Mz-1);
  sc     = hx*hy*hz*lambda;
  hxhzdhy = hx*hz/hy;
  hyhzdhx = hy*hz/hx;
  hxhydhz = hx*hy/hz;

  /*

   */
  PetscCall(DMGetLocalVector(da,&localX));

  /*
    Scatter ghost points to local vector,using the 2-step process
    DMGlobalToLocalBegin(),DMGlobalToLocalEnd().  By placing code
    between these two statements, computations can be done while
    messages are in transition.
  */
  PetscCall(DMGlobalToLocalBegin(da,X,INSERT_VALUES,localX));
  PetscCall(DMGlobalToLocalEnd(da,X,INSERT_VALUES,localX));

  /*
    Get pointers to vector data.
  */
  PetscCall(DMDAVecGetArray(da,localX,&x));
  PetscCall(DMDAVecGetArray(da,F,&f));

  /*
    Get local grid boundaries.
  */
  PetscCall(DMDAGetCorners(da,&xs,&ys,&zs,&xm,&ym,&zm));

  /*
    Compute function over the locally owned part of the grid.
  */
  for (k=zs; k<zs+zm; k++) {
    for (j=ys; j<ys+ym; j++) {
      for (i=xs; i<xs+xm; i++) {
        if (i == 0 || j == 0 || k == 0 || i == Mx-1 || j == My-1 || k == Mz-1) {
          /* boundary points */
          f[k][j][i] = x[k][j][i] - 0.0;
        } else {
          /* interior grid points */
          u           = x[k][j][i];
          u_east      = x[k][j][i+1];
          u_west      = x[k][j][i-1];
          u_north     = x[k][j+1][i];
          u_south     = x[k][j-1][i];
          u_up        = x[k+1][j][i];
          u_down      = x[k-1][j][i];
          u_xx        = (-u_east + two*u - u_west)*hyhzdhx;
          u_yy        = (-u_north + two*u - u_south)*hxhzdhy;
          u_zz        = (-u_up + two*u - u_down)*hxhydhz;
          f[k][j][i]  = u_xx + u_yy + u_zz - sc*PetscExpScalar(u);
        }
      }
    }
  }

  /*
    Restore vectors.
  */
  PetscCall(DMDAVecRestoreArray(da,F,&f));
  PetscCall(DMDAVecRestoreArray(da,localX,&x));
  PetscCall(DMRestoreLocalVector(da,&localX));
  PetscCall(PetscLogFlops(11.0*ym*xm));
  PetscFunctionReturn(PETSC_SUCCESS);
}

PetscErrorCode FormJacobian(DM da, Vec X, Mat J, Params *p)
{
  PetscInt       i,j,k,Mx,My,Mz,xs,ys,zs,xm,ym,zm;
  PetscReal      lambda,hx,hy,hz,hxhzdhy,hyhzdhx,hxhydhz,sc;
  PetscScalar    v[7],***x;
  MatStencil     col[7],row;
  Vec            localX;

  PetscFunctionBegin;
  PetscCall(DMDAGetInfo(da,PETSC_IGNORE,&Mx,&My,&Mz,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE));
  lambda = p->lambda_;
  hx     = 1.0/(PetscReal)(Mx-1);
  hy     = 1.0/(PetscReal)(My-1);
  hz     = 1.0/(PetscReal)(Mz-1);
  sc     = hx*hy*hz*lambda;
  hxhzdhy = hx*hz/hy;
  hyhzdhx = hy*hz/hx;
  hxhydhz = hx*hy/hz;

  /*

   */
  PetscCall(DMGetLocalVector(da,&localX));

  /*
    Scatter ghost points to local vector, using the 2-step process
    DMGlobalToLocalBegin(), DMGlobalToLocalEnd().  By placing code
    between these two statements, computations can be done while
    messages are in transition.
  */
  PetscCall(DMGlobalToLocalBegin(da,X,INSERT_VALUES,localX));
  PetscCall(DMGlobalToLocalEnd(da,X,INSERT_VALUES,localX));

  /*
    Get pointer to vector data.
  */
  PetscCall(DMDAVecGetArray(da,localX,&x));

  /*
    Get local grid boundaries.
  */
  PetscCall(DMDAGetCorners(da,&xs,&ys,&zs,&xm,&ym,&zm));

  /*
    Compute entries for the locally owned part of the Jacobian.

    - Currently, all PETSc parallel matrix formats are partitioned by
      contiguous chunks of rows across the processors.

    - Each processor needs to insert only elements that it owns
      locally (but any non-local elements will be sent to the
      appropriate processor during matrix assembly).

    - Here, we set all entries for a particular row at once.

    - We can set matrix entries either using either
      MatSetValuesLocal() or MatSetValues(), as discussed above.
  */
  for (k=zs; k<zs+zm; k++) {
    for (j=ys; j<ys+ym; j++) {
      for (i=xs; i<xs+xm; i++) {
        row.k = k; row.j = j; row.i = i;
        /* boundary points */
        if (i == 0 || j == 0 || k == 0|| i == Mx-1 || j == My-1 || k == Mz-1) {
          v[0] = 1.0;
          PetscCall(MatSetValuesStencil(J,1,&row,1,&row,v,INSERT_VALUES));
        } else {
        /* interior grid points */
          v[0] = -hxhydhz; col[0].k=k-1;col[0].j=j;  col[0].i = i;
          v[1] = -hxhzdhy; col[1].k=k;  col[1].j=j-1;col[1].i = i;
          v[2] = -hyhzdhx; col[2].k=k;  col[2].j=j;  col[2].i = i-1;
          v[3] = 2.0*(hyhzdhx+hxhzdhy+hxhydhz)-sc*PetscExpScalar(x[k][j][i]);col[3].k=row.k;col[3].j=row.j;col[3].i = row.i;
          v[4] = -hyhzdhx; col[4].k=k;  col[4].j=j;  col[4].i = i+1;
          v[5] = -hxhzdhy; col[5].k=k;  col[5].j=j+1;col[5].i = i;
          v[6] = -hxhydhz; col[6].k=k+1;col[6].j=j;  col[6].i = i;
          PetscCall(MatSetValuesStencil(J,1,&row,7,col,v,INSERT_VALUES));
        }
      }
    }
  }
  PetscCall(DMDAVecRestoreArray(da,localX,&x));
  PetscCall(DMRestoreLocalVector(da,&localX));

  /*
    Assemble matrix, using the 2-step process: MatAssemblyBegin(),
    MatAssemblyEnd().
  */
  PetscCall(MatAssemblyBegin(J,MAT_FINAL_ASSEMBLY));
  PetscCall(MatAssemblyEnd(J,MAT_FINAL_ASSEMBLY));

  /*
    Tell the matrix we will never add a new nonzero location to the
    matrix. If we do, it will generate an error.
  */
  PetscCall(MatSetOption(J,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_TRUE));
  PetscFunctionReturn(PETSC_SUCCESS);
}