1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
|
\documentclass[a4paper,10pt,twoside]{scrartcl}
% \usepackage[pdflatex, tightpage]{preview}
\usepackage[svgnames]{xcolor}
\usepackage{tikz}
\usepackage{amsmath,amsfonts}
% \usepackage{graphicx}
\usepackage[left=2cm, right=2cm, top=1.8cm]{geometry}
\usepackage{rotating}
\usepackage{fancyhdr}
\usepackage[texcoord]{eso-pic}
\usepackage[algosection]{algorithm2e}
\usepackage[pdftitle={PfTools},pdfauthor={Thierry Schuepbach},pdfsubject={PfTools},baseurl={www.sib.swiss}]{hyperref}
\usetikzlibrary{decorations.markings}
\usetikzlibrary{shapes.geometric}
\usepackage[framemethod=default]{mdframed}
\usepackage{enumerate}
\global\mdfdefinestyle{exampledefault}{%
linecolor=lightgray,linewidth=1pt,%
leftmargin=1cm,rightmargin=1cm,
}
\newenvironment{notes}{%
\vspace{0.5em}
\mdfsetup{%
frametitle={\tikz\node[fill=white,rectangle,inner sep=0pt,outer sep=0pt]{Notes};},
frametitleaboveskip=-0.5\ht\strutbox,
frametitlealignment=\raggedright
}%
\begin{mdframed}[style=exampledefault]
}{\end{mdframed}}
\pgfdeclarelayer{edgelayer}
\pgfdeclarelayer{nodelayer}
\pgfsetlayers{edgelayer,nodelayer,main}
\tikzstyle{none}=[inner sep=0pt]
\tikzstyle{rn}=[circle,fill=Red,draw=Black,line width=0.8 pt]
\tikzstyle{gn}=[circle,fill=Lime,draw=Black,line width=0.8 pt]
\tikzstyle{yn}=[circle,fill=Yellow,draw=Black,line width=0.8 pt]
\tikzstyle{newstyle}=[circle,fill=White,draw=Black,minimum width=3pt,inner sep=0pt]
\tikzstyle{simple}=[-,draw=Black,line width=2.000]
\tikzstyle{arrow}=[-,draw=Black,postaction={decorate},decoration={markings,mark=at position .5 with {\arrow{>}}},line width=2.000]
\tikzstyle{tick}=[-,draw=Black,postaction={decorate},decoration={markings,mark=at position .5 with {\draw (0,-0.1) -- (0,0.1);}},line width=2.000]
%\setlength\PreviewBorder{2mm} % use to add a border around the image
% ----------------------------------------------------------------
\vfuzz2pt % Don't report over-full v-boxes if over-edge is small
\hfuzz2pt % Don't report over-full h-boxes if over-edge is small
% MATH -----------------------------------------------------------
\newcommand{\norm}[1]{\left\Vert#1\right\Vert}
\newcommand{\abs}[1]{\left\vert#1\right\vert}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\Real}{\mathbb R}
\newcommand{\eps}{\varepsilon}
\newcommand{\To}{\longrightarrow}
\newcommand{\BX}{\mathbf{B}(X)}
\newcommand{\A}{\mathcal{A}}
\renewcommand{\vec}[1]{\mathbf{#1}}
\newenvironment{alg}{\begin{algorithm} \dontprintsemicolon \SetLine
}{\end{algorithm}}
\setlength{\algomargin}{1cm}
%opening
\title{PfTools Software Suite}
\author{P. Bucher, L. Cerutti, M. Pagni, T. Schuepbach}
% Philipp Bucher
% Biocomputing Group
% Swiss Institute for Experimental Cancer Research
% 1066 Epalinges s/Lausanne
% Switzerland
%
% Telephone: (+41 21) 692 58 92
% Electronic mail address: pbucher@isrec-sun1.unil.ch
% \Version{Version 1.3, May 1997}
\pagestyle{fancy}
\begin{document}
% Draft watermark symbol
\AddToShipoutPicture{%
\AtTextLowerLeft{
\includegraphics{draft2.eps}
}
}
\renewcommand{\headheight}{30.0pt}
\fancyhead{} % clear all fields
% \fancyhead[CO,CE]{SIB Swiss Institute of Bioinformatics \& Vital-IT Group}
\fancyhead[LE,RO]{\includegraphics[height=.9cm]{small_logo_sib.eps}}
\fancyfoot[LE,RO]{\thepage}
\fancyfoot[CO,CE]{\begin{footnotesize}\textcopyright \, 2013 SIB Swiss Institute of Bioinformatics
\end{footnotesize}}
\renewcommand{\headrulewidth}{0.4pt}
\renewcommand{\footrulewidth}{0.4pt}
\maketitle
\begin{abstract}
The present document gathers pieces of informations for the use of the PfTools software suite. It supersedes and extends
\emph{A generalized profile syntax for protein and nucleic acid sequence motifs} from Philip Bucher distributed in version earlier than 3.0.
This document may be copied and redistributed freely, without advance permission, provided that this statement is reproduced with any copy.
\tableofcontents
\end{abstract}
\newpage
\section*{Introduction}
\addcontentsline{toc}{section}{Introduction}
This document describes a general syntax to express a quantitative, primary structure-based protein or nucleic acid sequence motif. The designation
\emph{quantitative} means that a motif description assigns a degree of similarity to a potential match rather than a binary status of true or
false. The restriction \emph{primary structure-based} implies that the probability of finding a specific residue at one position is independent of any
residue occurring at another position.
The generalised profile syntax has been designed for and will be used in future releases of the PROSITE data bank. In addition, it will be used in
a similar data bank of nucleic acid sequence motifs currently under development by the author. Other researchers working on sequence motifs
are encouraged to use the same format for their own motif collections, and may include this document in a public distribution release.
The term \emph{generalised profile syntax} is meant to indicate that the proposed data structure represents a generalisation of the profile type
described by Gribskov et al. \cite{Gribskov90}. However, similar motif descriptors have been introduced by others under different names, e.g. weight matrices \cite{Staden90}
or flexible patterns \cite{Barton90}.\\
The following terminology is adopted in this document:
\begin{itemize}
\item The term \emph{profile} refers to a quantitative motif description based on the generalised profile syntax.
\item The term \emph{pattern} refers to a qualitative motif description based on a regular expression-like syntax such as the one currently used in
PROSITE entries marked as \textbf{PATTERN}.
\item The term \emph{motif} refers to the biological object one attempts to approximate by a pattern or a profile.
\end{itemize}
Note that the PROSITE data bank reserves the token \textbf{MATRIX} to identify entries containing profiles.
The design of the new profile structure has been guided by various biological and technical considerations. High priority has been given to the
following principles:
\begin{enumerate}[(A)]
\item Syntactic versatility
The syntax should be versatile enough to cover a large variety of biologically relevant motifs. In particular, it should be be possible to accu-
rately represent the following objects:
\begin{itemize}
\item Signatures for various types and levels of protein taxons.
\item Highly degenerate protein structural and functional domains such as the immunoglobulin domains, or the SH2 and SH3 domains.
\item Consensus sequences of interspersed repetitive DNA elements (SINEs and LINEs).
\item Basic gene expression signals, e.g. promoter elements, RNA processing signals, translational initiation sites.
\item Recognition motifs of a large variety of sequence-specific DNA-binding proteins.
\item Protein and nucleic acid compositional domains, e.g. glutamine-rich activation domains, CpG islands.
\end{itemize}
\item Determinative search instructions
The profile syntax should have the capacity to encode precise and complete instructions for a motif search. Ideally, the result of a motif search
should be determined by the profile and a sequence alone, i.e. not depend on parameters of the search method. In practice, this goal may only be
approximately achieved due to ambiguities arising with multiple locally optimal profile-sequence alignments (see Section \ref{Profile accessories}).
\begin{notes}
\begin{itemize}
\item In other implementations of similar methods, e.g. GCG profiles or HMMER
Hidden Markov models software, different search methods are available as options and parameters of the search programs rather than as syntactic
features of the motif description itself. For the profiles in PROSITE, inclusion of determinative search instructions is a necessity because
otherwise the information given on the \textbf{NR} lines (statistics of true and false positives/negatives) would have no meaning.
\item The notion of determinative search instructions is not meant to imply a specific search algorithm. There is space for different technical
solutions to achieve the same result.
\end{itemize}
\end{notes}
\item Openness to different interpretations
A profile syntax is situated at the interface between a motif definition and a motif search method. As such it can serve as a melting pot for
integrating complementary efforts. While a rigid meaning vis-a-vis a search method is desirable, flexibility with regard to motif definition
methods is equally important. In order to achieve such flexibility, it is essential that the profile parameters remain open to a variety of different
theoretical interpretations implicit in different methodologies.
Relevant motif definition techniques may include both comparative structural and wet biochemical approaches. It is thus conceivable that the
same type of numeric profile parameter may reflect log-probabilities in
one case, and binding energies in another. A profile syntax must be neutral in this respect in order to be generally acceptable to a heterogeneous
research community relying on different rationales for motif definition.
\item Compatibility with existing search methods
As a profile is required to encode determinative directives for a motif search, the underlying syntax should have the capacity to emulate most of
the commonly used motif search techniques, such as:
\begin{itemize}
\item Search for PROSITE patterns.
\item Search for fixed-length weight matrices without gaps \cite{Staden90}.
\item Search for complex motifs defined by multiple weight matrices and variable-length linkers \cite{Mulligan84}.
\item Gribskov's profile alignment algorithm \cite{Gribskov90}.
\item Barton's alignment algorithm for flexible patterns \cite{Barton90}.
\item Viterbi algorithm for the hidden Markov model architecture described in \cite{Krogh94}.
\item The domain and fragment search algorithms implemented in the HMMER programs hmmls and hmmfs, respectively \cite{Eddy96}.
\end{itemize}
This requirement stems from two beliefs: \textit{(i)} that the bewildering variety of motif search methods described in the literature can be understood and
reformulated as special cases of a more general method; \textit{(ii)} that such an exercise will facilitate communication between different groups and will
lead to new theoretical insights.
\begin{notes}
With the exception of Barton's algorithm for flexible patterns, the capacity of the generalised profile syntax to emulate the search techniques listed above
has been verified by experiment.
\end{notes}
\end{enumerate}
The remaining part of this document is organised as follows:
\begin{itemize}
\item Section \ref{Basic profile structure and function} explains the basic components of a profile which are likely to remain stable for several years.
\item Section \ref{Profile accessories} presents accessory features necessary to encode complete instructions for a motif search. This part of the syntax may be gradually
expanded in the future.
\item Section \ref{A machine-readable text file format} describes a specific machine-readable format which will be used in PROSITE and a similar data bank of nucleic acid sequence motifs.
\item Section \ref{Examples} shows two illustrative examples, one from the nucleic acid and one from the protein world.
\end{itemize}
\section{Basic profile structure and function} \label{Basic profile structure and function}
In abstract terms, a generalised profile can be described as an alternating sequence of \emph{match} and \emph{insert} positions.
Match and insert positions contain complementary sets of numeric parameters called profile scores. The values assigned to these parameters may be
different at each position. In reality, a profile resembles a two-dimensional table of numbers.
From an other perspective, a profile may also be viewed as a degenerate molecular sequence. The match positions correspond to residues which typically
occur in such a sequence. The insert positions represent places where additional residues can optionally be inserted.
The function of a profile is to align itself to a real sequence and to assign a number to such an alignment. This number is called similarity
score or alignment score and serves to evaluate the significance of a potential motif occurrence.
The notion of a profile match cannot be separated from that of an alignment. The alignment is not only a prerequisite for computing a similarity
score, it also expresses a specific interpration of the sequence match.
For instance, if the profile involved represent a protein domain where certain positions are associated with specific functions, e.g. metal
ion-binding capacities or catalytic roles, then the alignment will map these functions onto individual residues of the sequence.
The basic components of a profile are those which are necessary for computing a similarity score. To prevent possible misunderstandings, it has
to be stressed that a profile defines a score for any alignment, not just for an optimal alignment. The concept of an optimal alignment relates to
motif search strategies and is totally irrelevant in this Section.
\subsection{Definition of a profile-sequence alignment}
It is useful to introduce a profile-sequence alignment with the aid of the path matrix representation. The following diagram defines an alignment
between a sequence and a profile.
\begin{center}
\begin{tikzpicture}
\begin{pgfonlayer}{nodelayer}
\node [style=newstyle] (0) at (-9, 3.5) {};
\node [style=newstyle] (1) at (-8, 3.5) {};
\node [style=newstyle] (2) at (-7, 3.5) {};
\node [style=newstyle] (3) at (-6, 3.5) {};
\node [style=newstyle] (4) at (-5, 3.5) {};
\node [style=newstyle] (5) at (-4, 3.5) {};
\node [style=newstyle] (6) at (-3, 3.5) {};
\node [style=newstyle] (7) at (-3, 2.5) {};
\node [style=newstyle] (8) at (-7, 2.5) {};
\node [style=newstyle] (9) at (-6, 2.5) {};
\node [style=newstyle] (10) at (-4, 2.5) {};
\node [style=newstyle] (11) at (-5, 2.5) {};
\node [style=newstyle] (12) at (-4, 1.5) {};
\node [style=newstyle] (13) at (-3, 1.5) {};
\node [style=newstyle] (14) at (-9, 2.5) {};
\node [style=newstyle] (15) at (-5, 1.5) {};
\node [style=newstyle] (16) at (-4, 0.5) {};
\node [style=newstyle] (17) at (-3, 0.5) {};
\node [style=newstyle] (18) at (-9, 0.5) {};
\node [style=newstyle] (19) at (-7, 1.5) {};
\node [style=newstyle] (20) at (-8, 0.5) {};
\node [style=newstyle] (21) at (-8, 2.5) {};
\node [style=newstyle] (22) at (-3, -1.5) {};
\node [style=newstyle] (23) at (-5, 0.5) {};
\node [style=newstyle] (24) at (-6, 1.5) {};
\node [style=newstyle] (25) at (-9, -1.5) {};
\node [style=newstyle] (26) at (-8, -2.5) {};
\node [style=newstyle] (27) at (-7, -0.5) {};
\node [style=newstyle] (28) at (-8, -1.5) {};
\node [style=newstyle] (29) at (-4, -2.5) {};
\node [style=newstyle] (30) at (-10, -2.5) {};
\node [style=newstyle] (31) at (-7, -2.5) {};
\node [style=newstyle] (32) at (-10, -1.5) {};
\node [style=newstyle] (33) at (-9, -2.5) {};
\node [style=newstyle] (34) at (-5, -0.5) {};
\node [style=newstyle] (35) at (-3, -2.5) {};
\node [style=newstyle] (36) at (-8, -0.5) {};
\node [style=newstyle] (37) at (-4, -1.5) {};
\node [style=newstyle] (38) at (-10, -0.5) {};
\node [style=newstyle] (39) at (-6, -2.5) {};
\node [style=rn] (40) at (-10.5, 4.5) {S};
\node [style=rn] (41) at (-9.5, 4.5) {E};
\node [style=rn] (42) at (-8.5, 4.5) {Q};
\node [style=rn] (43) at (-7.5, 4.5) {U};
\node [style=rn] (44) at (-6.5, 4.5) {E};
\node [style=rn] (45) at (-5.5, 4.5) {N};
\node [style=rn] (46) at (-4.5, 4.5) {C};
\node [style=rn] (47) at (-3.5, 4.5) {E};
\node [style=gn] (48) at (-12, 3) {p};
\node [style=gn] (49) at (-12, 2) {r};
\node [style=gn] (50) at (-12, 1) {o};
\node [style=gn] (51) at (-12, -0) {f};
\node [style=gn] (52) at (-12, -1) {i};
\node [style=gn] (53) at (-12, -2) {l};
\node [style=gn] (54) at (-12, -3) {e};
\node [style=yn] (55) at (-11, 2.5) {};
\node [style=yn] (56) at (-10, 1.5) {};
\node [style=yn] (57) at (-9, 1.5) {};
\node [style=yn] (58) at (-8, 1.5) {};
\node [style=yn] (59) at (-7, 0.5) {};
\node [style=yn] (60) at (-6, -0.5) {};
\node [style=yn] (61) at (-6, -1.5) {};
\node [style=none] (62) at (-11.5, 4) {};
\node [style=none] (63) at (-11.5, -3.75) {};
\node [style=none] (64) at (-3, 4) {};
\node [style=newstyle] (65) at (-5, -1.5) {};
\node [style=newstyle] (66) at (-11, 0.5) {};
\node [style=newstyle] (67) at (-10, 2.5) {};
\node [style=newstyle] (68) at (-11, 1.5) {};
\node [style=newstyle] (69) at (-11, 3.5) {};
\node [style=newstyle] (70) at (-11, -1.5) {};
\node [style=newstyle] (71) at (-11, -2.5) {};
\node [style=newstyle] (72) at (-11, -0.5) {};
\node [style=newstyle] (73) at (-7, -3.5) {};
\node [style=newstyle] (74) at (-11, -3.5) {};
\node [style=newstyle] (75) at (-8, -3.5) {};
\node [style=newstyle] (76) at (-10, -3.5) {};
\node [style=newstyle] (77) at (-6, -3.5) {};
\node [style=newstyle] (78) at (-9, -3.5) {};
\node [style=newstyle] (79) at (-4, -3.5) {};
\node [style=newstyle] (80) at (-3, -3.5) {};
\node [style=yn] (81) at (-5, -2.5) {};
\node [style=newstyle] (82) at (-10, 3.5) {};
\node [style=newstyle] (83) at (-10, 0.5) {};
\node [style=newstyle] (84) at (-4, -0.5) {};
\node [style=newstyle] (85) at (-3, -0.5) {};
\node [style=newstyle] (86) at (-9, -0.5) {};
\node [style=newstyle] (87) at (-5, -3.5) {};
\node [style=newstyle] (88) at (-6, 0.5) {};
\node [style=newstyle] (89) at (-7, -1.5) {};
\end{pgfonlayer}
\begin{pgfonlayer}{edgelayer}
\draw [style=arrow] (55) to (56);
\draw [style=arrow] (56) to (57);
\draw [style=arrow] (57) to (58);
\draw [style=arrow] (58) to (59);
\draw [style=arrow] (59) to (60);
\draw [style=arrow] (60) to (61);
\draw [style=simple] (62.center) to (63.center);
\draw [style=simple] (62.center) to (64.center);
\draw [style=arrow] (61) to (81);
\end{pgfonlayer}
\end{tikzpicture}
\end{center}
The capital letters represent sequence residues, the lower-case letters represent profile match positions. Profile insert positions are not
marked by symbols. They occur at the beginning, at the end, and between any pair of consecutive match positions of the profile.\\
The path marked by horizontal, vertical, and diagonal bars defines the following alignment:
\begin{center}
\begin{verbatim}
S E Q U E - N
r - - o f i l
\end{verbatim}
\end{center}
Such an alignment can also be defined by a sequence of path matrix coordinates. By convention, the upper left corner of the matrix is assigned
co-ordinates (0,0). Note that path matrix co-ordinates correspond to profile insert positions rather than match positions. Likewise, they fall
between consecutive residues of the sequence. The above alignment is defined by the following coordinate sequence.
\begin{equation*}
(1,0) ,\, (2,1) ,\, (2,2) ,\, (2,3) ,\, (3,4) ,\, (4,5) ,\, (5,5) ,\, (6,6)
\end{equation*}
In general, a coordinate sequence $(i_0,j_0),\, (i_1,j_1) \ldots (i_L, j_L)$ defines a valid sequence alignment between a profile of length $N$
and a sequence of length $M$ if and only if $i_k \in [0 ,\, N ]$, $j_k \in [0,\, M]$, $\forall k=0\ldots L$ and
\begin{equation*}
\left \{
\begin{array}{ccc}
i_k + 1 = i_{k+1} &,& j_k + 1 = j_{k+1} \\
i_k = i_{k+1} &,& j_k + 1 = j_{k+1} \\
i_k + 1 = i_{k+1} &,& j_k = j_{k+1}
\end{array}
\right.
\end{equation*}
$\forall k \in \left [0,\, L-1 \right ]$.
\begin{notes}
\begin{itemize}
\item The above definition encompasses both global and local types of alignments. In the following, it is not necessary to distinguish between
these two alternatives. A global alignment may simply be viewed as a limit case of a local alignment.
\item The alignment definition underlying generalised profiles is equivalent
to the path definition of hidden Markon models in the following sense:
\begin{enumerate}
\item for a sequence and a profile of given lengths $M$, $N$, the number of possible alignments is exactly identical to the number of paths through
which an HMM of length $N$ can generate sequences of length $M$,
\item there is an obvious one-to-one mapping between profile-sequence alignments and paths through HMMs; see also \cite{Bucher96}.
\end{enumerate}
\end{itemize}
\end{notes}
\subsection{Definition of the similarity score}
The similarity score of a profile sequence-alignment is the sum of the scores assigned to its scorable components. The scorable components of an
alignment are:
\begin{it}
\begin{enumerate}[i)]
\item the beginning
\item each extension step
\item each state transition
\item the end
\end{enumerate}
\end{it}
Some of these terms need further explanation.
An extension step occurs between any pair of consecutive path matrix coordinates. There are three different types of extension steps: \emph{match},
\emph{insert}, and \emph{deletion} steps. In the above diagram, diagonal bars correspond to match extension steps, horizontal bars correspond to insert
extension steps, and vertical bars correspond to deletion extension steps. The number of extension steps defines the length of the alignment.
The type of an extension step is also called a state. Each extension step is thus associated with a match, insert, or deletion state. At the beginning,
an alignment is in \emph{initiation} state. At the end, it is in \emph{termination} state. Initiation, match, insert, deletion, and termination
states will be symbolised by the letters \textbf{B}, \textbf{M}, \textbf{I}, \textbf{D}, and \textbf{E} , respectively.
A state transition occurs between any two consecutive alignment components associated with a state. Thus, there is one state transition for each coordinate
pair of the alignment, including the first and the last. Note that this definition implies that state transitions also occur between identical states.\\
In summary, an alignment of length $L$ has:\\
\begin{center}
\begin{tabular}{cl}
$1$ & beginning \\
$L$ & extensions steps \\
$L+1$ & state transitions \\
$1$ & termination \\
\hline \\
$2L+3$ & scorable components in total.
\end{tabular}
\end{center}
All component scores are provided by the profile in a position-specific manner. Therefore, the similarity score does not depend on any parameter
of an alignment method. The types and functions of profile scores are now explained.
The scores assigned to the beginning and end of the alignment are called \emph{initiation} and \emph{termination} scores. These scores are distinct from
those assigned to the first and last state transition though they correspond to the same path matrix co-ordinates. There are two types of
scores for each class. The \emph{external} initiation score applies to coordinates at the beginning of the sequence. The \emph{internal} initiation
score applies to all other co-ordinates. External and internal termination scores are defined analogously. The function of these scores is to
flexibly encode local or global alignment scoring modes. In addition, they may serve to anchor a motif at the beginning or at the end of a sequence.
The scores for extension steps comprise three classes: match extension scores, insert extension scores, and deletion extension scores. Match and
insert extension scores are residue-specific because the corresponding alignment steps span one sequence residue. By contrast, there is only one
deletion extension score per profile position because deletion steps do not involve sequence residues.
There are 16 different types of state transition scores for all possible transitions from an element of \{ \textbf{B}, \textbf{M}, \textbf{I}, \textbf{D} \}
to an element of \{ \textbf{M}, \textbf{I}, \textbf{D}, \textbf{E} \}. State transition scores serve similar functions as gap opening penalties in a
sequence-sequence alignment.
\subsection{Basic profile structure}
The basic profile structure follows almost conclusively from the forgoing definitions of a profile-sequence alignment and its similarity score.
What remains to be clarified are a few details.
A profile is based on a particular alphabet. The alphabet is considered a basic constituent of the profile because it determines the exact number of
parameters per insert and match position. \\
The two standard character sets for biomolecular patterns are:
\begin{center}
\begin{tabular}{ll}
$\{ A,C,G,T \} $ & for nucleic acid motifs. \\
$\{A,B,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y,Z\}$ & for protein motifs.
\end{tabular}
\end{center}
Other alphabets, e.g. alphabets including ambiguous codes for nucleotides, may be useful in particular circumstances.
There is one insert and one match extension score for each character of the alphabet. In practice, it is useful to define one additional insert
and match extension score to deal with unexpected characters appearing in real sequences.
Some of the previously introduced profile scores are associated with insert positions, others with match positions. A look at the path matrix
diagram makes clear which type of score is associated with which type of profile position.
An insert position of a profile based on a $K$-letter alphabet contains the following parameters:
\begin{center}
\begin{tabular}{ll}
$1$ & external initiation score\\
$1$ & internal initiation score\\
$16$ & state transition scores for all transitions between elements of \{ \textbf{B}, \textbf{M}, \textbf{I}, \textbf{D} \} and \{ \textbf{M}, \textbf{I}, \textbf{D}, \textbf{E} \} \\
$K$ & insert extension scores for each character of the alphabet\\
$1$ & insert extension score for an unexpected character\\
$1$ & internal termination score\\
$1$ & external termination score\\
\hline\\
$K+21$ & insert position scores in total
\end{tabular}
\end{center}
A match position of a profile based on a K-letter alphabet contains the following parameters.
\begin{center}
\begin{tabular}{ll}
$K$ & match extension scores for each letter of the alphabet\\
$1$ & match extension score for an unexpected character\\
$1$ & deletion extension score\\
\hline \\
$K+2$ & match position scores in total
\end{tabular}
\end{center}
Admissible values for profile scores are any integer or real number plus a special value representing a forbidden alignment step. This value will be
called \emph{low-value} and behaves like minus infinity in mathematical operations.
A profile has also a defined topology, either linear or circular. Most profiles will be linear. Circular profiles may represent motifs which
consist of a variable number of tandemly repeated units. Note that a linear profile begins and ends with an insert position.
\begin{notes}
\begin{itemize}
\item The above list of position-specific profile scores represents the maximum number of supported features. Real profiles derived with an
existing method will rarely use all of them. Concise representation of a profile can be achieved through specification of appropriate defaults;
see examples in Section \ref{Examples}.
\item There is some redundancy in the implemented parameter set allowing for alternative representations of functionally equivalent profiles. This
freedom could be used for scaling profile scores in units related to a particular mathematical or physical interpretation, e.g. probabilities
of a hidden Markov model or thermodynamic quantities.
\item The above definition of a sequence alignment assumes linear topology
for both the profile and the sequence. Generalisation to circular topology is straightforward. An alignment between a circular profile and
a linear sequence, or between a linear profile and a circular sequence, corresponds to a path on a cylindrical surface. An alignment between a
circular profile and a circular sequence corresponds to a path on a torus.
\end{itemize}
\end{notes}
\section{Profile accessories} \label{Profile accessories}
The primary purpose of a profile is to identify as reliably as possible biologically relevant motif occurrences in new sequences.
The basic profile structure described in the previous Section is not sufficient to define a rational search strategy to this end. The accessory profile
features presented here fill this gap. Appropriately interpreted, they complement the position-specific profile scores to provide determinative
instruction for a motif search. In addition, they guide the interpration of potential matches.
\subsection{Cut-off value}
For a profile and a sequence of typical lengths, there is a very large number of possible alignments. At most a few of them will be biologically
relevant. The function of a cut-off value is to a priori exclude a large number of alignments from further consideration by a profile search algorithm.
The fate of the remaining alignments with similarity scores greater than or equal to the cut-off value depends on a specific disjointness definition
applied; see below.
An important aspect of a cut-off value is that it gives a qualitative meaning to a profile. This is a prerequisite for statistics on false positives
and false negatives obtained in a database search, as currently provided by PROSITE.
In certain situations, it is useful to supply more than one cut-off value, partitioning the range of alignment scores into multiple areas. The areas
may correspond to different degrees of certainty, ranges of evolutionary distance, or levels of physiological activity.
\subsection{Score normalisation instructions}
The profile-alignment scores defined in the previous Section are called raw scores. In most cases, they will not lend themselves to meaningful
biological interpretations and will therefore not be very helpful in the interpretation of a potential match. In practice, one is interested in
questions like: What is the probability of finding a match of a certain score in a random sequence? How does the similarity score relate to a
measurable property of the biological object? The purpose of normalisation instructions is to convert the raw score into directly interpretable units.
There may be multiple normalisation modes for the same profile, each one associated with a different mathematical, physical, or biological interpretation;
see examples in Section \ref{Examples}.
Normalisation functions are required to preserve the ranking of scores pertaining to alternative alignments between the same profile and the same
sequence. However, since normalisation functions may depend on sequence parameters such as length and residue composition, they will generally not
preserve the order of scores pertaining to matches from different sequences arising in a database search.
\begin{notes}
\begin{itemize}
\item Cut-off values may be defined in raw score units or normalised score units.
\item Programs may rely on normalised rather than raw scores for various operation, e.g. sorting of accepted matches in a database search.
\item An expanding list of normalisation functions is presented in Appendix \ref{Normalization functions}.
\end{itemize}
\end{notes}
\subsection{Disjointness definitions}
There are situations where only a single best alignment and its similarity score are of interest. This arises for instance with a profile serving
exclusively as a signature for a protein family. More frequently, the same motif may occur more than once in a given sequence, and each occurrence will be of interest.
In the first case, the motif search problem is simple and can be solved by a standard optimal alignment algorithm such as described in \cite{Gribskov90}. In the
second case, the task is more difficult and needs to be explained in more detail.
At first glance, the problem seems to be to find all profile-sequence alignments with similarity scores greater than or equal to the cut-off
value. However, such an approach would not yield useful results because a high scoring alignment typically belongs to a large group of very similar
alignments with comparable scores. Two members of such a group may differ only by an additional extension step at one end of one alignment. In
sequence-sequence comparisons, a cluster of related alignments is represented by a single highest scoring member. This seems a reasonable
procedure for profiles too.
As a second approximation, one could therefore define the task of finding multiple profile matches in the same sequence as one of finding as many as
possible, locally optimal, but mutually disjoint alignments with scores greater than or equal to the cut-off value. What is still missing in such
a statement of the problem is a precise definition of disjointness and a tie-braking rule to choose between equally high-scoring alignments. The
former is of fundamental importance and needs to be addressed here. The latter may be considered a property of a specific algorithm and thus is
beyond the scope of this document.
There are many possible ways to define disjointness of two alignments. The algorithms described for finding multiple locally optimal alignments
between pairs of sequences consider two alignments disjoint if they have no extension step in common \cite{Waterman87, Huang91}. The two alignments specified in the
path matrix diagram below illustrate this notion of disjointness.
\begin{center}
\begin{tikzpicture}
\begin{pgfonlayer}{nodelayer}
\node [style=newstyle] (0) at (-9, 3.5) {};
\node [style=newstyle] (1) at (-8, 3.5) {};
\node [style=newstyle] (2) at (-7, 3.5) {};
\node [style=newstyle] (3) at (-6, 3.5) {};
\node [style=newstyle] (4) at (-5, 3.5) {};
\node [style=newstyle] (5) at (-4, 3.5) {};
\node [style=newstyle] (6) at (-3, 3.5) {};
\node [style=newstyle] (7) at (-3, 2.5) {};
\node [style=newstyle] (8) at (-7, 2.5) {};
\node [style=newstyle] (9) at (-6, 2.5) {};
\node [style=newstyle] (10) at (-4, 2.5) {};
\node [style=newstyle] (11) at (-5, 2.5) {};
\node [style=newstyle] (12) at (-4, 1.5) {};
\node [style=newstyle] (13) at (-3, 1.5) {};
\node [style=newstyle] (14) at (-9, 1.5) {};
\node [style=newstyle] (15) at (-5, 1.5) {};
\node [style=newstyle] (16) at (-4, 0.5) {};
\node [style=newstyle] (17) at (-3, 0.5) {};
\node [style=newstyle] (18) at (-9, 0.5) {};
\node [style=newstyle] (19) at (-7, 0.5) {};
\node [style=newstyle] (20) at (-8, 0.5) {};
\node [style=newstyle] (21) at (-8, 1.5) {};
\node [style=newstyle] (22) at (-3, -1.5) {};
\node [style=newstyle] (23) at (-5, 0.5) {};
\node [style=newstyle] (24) at (-6, 1.5) {};
\node [style=newstyle] (25) at (-9, -1.5) {};
\node [style=newstyle] (26) at (-8, -2.5) {};
\node [style=newstyle] (27) at (-7, -0.5) {};
\node [style=newstyle] (28) at (-8, -1.5) {};
\node [style=newstyle] (29) at (-4, -2.5) {};
\node [style=newstyle] (30) at (-10, -2.5) {};
\node [style=newstyle] (31) at (-7, -2.5) {};
\node [style=newstyle] (32) at (-10, -1.5) {};
\node [style=newstyle] (33) at (-9, -2.5) {};
\node [style=newstyle] (34) at (-6, -1.5) {};
\node [style=newstyle] (35) at (-3, -2.5) {};
\node [style=newstyle] (36) at (-6, -0.5) {};
\node [style=newstyle] (37) at (-4, -1.5) {};
\node [style=newstyle] (38) at (-10, -0.5) {};
\node [style=newstyle] (39) at (-5, -2.5) {};
\node [style=rn] (40) at (-10.5, 4.5) {S};
\node [style=rn] (41) at (-9.5, 4.5) {E};
\node [style=rn] (42) at (-8.5, 4.5) {Q};
\node [style=rn] (43) at (-7.5, 4.5) {U};
\node [style=rn] (44) at (-6.5, 4.5) {E};
\node [style=rn] (45) at (-5.5, 4.5) {N};
\node [style=rn] (46) at (-4.5, 4.5) {C};
\node [style=rn] (47) at (-3.5, 4.5) {E};
\node [style=gn] (48) at (-12, 3) {p};
\node [style=gn] (49) at (-12, 2) {r};
\node [style=gn] (50) at (-12, 1) {o};
\node [style=gn] (51) at (-12, -0) {f};
\node [style=gn] (52) at (-12, -1) {i};
\node [style=gn] (53) at (-12, -2) {l};
\node [style=gn] (54) at (-12, -3) {e};
\node [style=yn] (55) at (-11, 2.5) {};
\node [style=yn] (56) at (-10, 1.5) {};
\node [style=yn] (57) at (-10, 0.5) {};
\node [style=yn] (58) at (-9, -0.5) {};
\node [style=yn] (59) at (-8, -0.5) {};
\node [style=yn] (60) at (-7, -1.5) {};
\node [style=yn] (61) at (-6, -2.5) {};
\node [style=none] (62) at (-11.5, 4) {};
\node [style=none] (63) at (-11.5, -3.75) {};
\node [style=none] (64) at (-3, 4) {};
\node [style=newstyle] (65) at (-5, -1.5) {};
\node [style=yn] (66) at (-10, 3.5) {};
\node [style=yn] (67) at (-9, 2.5) {};
\node [style=yn] (68) at (-8, 2.5) {};
\node [style=yn] (69) at (-7, 1.5) {};
\node [style=yn] (70) at (-6, 0.5) {};
\node [style=yn] (71) at (-5, -0.5) {};
\node [style=yn] (72) at (-4, -0.5) {};
\node [style=newstyle] (73) at (-11, 0.5) {};
\node [style=newstyle] (74) at (-10, 2.5) {};
\node [style=newstyle] (75) at (-11, 1.5) {};
\node [style=newstyle] (76) at (-11, 3.5) {};
\node [style=newstyle] (77) at (-11, -1.5) {};
\node [style=newstyle] (78) at (-11, -2.5) {};
\node [style=newstyle] (79) at (-11, -0.5) {};
\node [style=newstyle] (80) at (-7, -3.5) {};
\node [style=newstyle] (81) at (-11, -3.5) {};
\node [style=newstyle] (82) at (-8, -3.5) {};
\node [style=newstyle] (83) at (-10, -3.5) {};
\node [style=newstyle] (84) at (-6, -3.5) {};
\node [style=newstyle] (85) at (-9, -3.5) {};
\node [style=newstyle] (86) at (-4, -3.5) {};
\node [style=newstyle] (87) at (-3, -3.5) {};
\node [style=yn] (88) at (-5, -3.5) {};
\node [style=yn] (89) at (-3, -0.5) {};
\end{pgfonlayer}
\begin{pgfonlayer}{edgelayer}
\draw [style=arrow] (55) to (56);
\draw [style=arrow] (56) to (57);
\draw [style=arrow] (57) to (58);
\draw [style=arrow] (58) to (59);
\draw [style=arrow] (59) to (60);
\draw [style=arrow] (60) to (61);
\draw [style=simple] (62.center) to (63.center);
\draw [style=simple] (62.center) to (64.center);
\draw [style=arrow] (66) to (67);
\draw [style=arrow] (67) to (68);
\draw [style=arrow] (68) to (69);
\draw [style=arrow] (69) to (70);
\draw [style=arrow] (70) to (71);
\draw [style=arrow] (71) to (72);
\draw [style=arrow] (61) to (88);
\draw [style=arrow] (72) to (89);
\end{pgfonlayer}
\end{tikzpicture}
\end{center}
However, such a definition will not be adequate for many motif search application because it allows the same sequence residue to be matched with
different profile positions. Imagine the case of a protein structural domain. There, it is inconceivable that the same residue simultaneously
participates in the formation of two physically distinct domains, occupying different places within these domains.
There may be no single disjointness definition adequate for all kinds of biological sequence motifs which can be characterised by a profile. For
this and other reasons, a specific notion of disjointness is viewed and implemented as a profile-inherent property rather than a variable of the
alignment method. In some cases, a particular definition may even be derived from a measurable property of the biological object.
The concluding example illustrates this point.
The DNA recognition site of mammalian transcription factor Sp1 is about $14$ bp long and can be fairly accurately represented by a conventional weight
matrix. Experiments have shown that the minimal center-to-center distance for two sites to be simultaneously occupied by two proteins is 10 bp. For
a profile representing an Sp1 binding site, an appropriate criterion for disjointness would require that the sequence segments aligned with the
central 10 bp region of the recognition motif do not overlap.
\begin{notes}
\begin{itemize}
\item The problems related to disjoint alignments are not specific to profiles. They also occur with qualitative variable-length patterns based
on a regular expression-like syntax.
\item An expanding list of alternative disjointness definitions is presented in Appendix \ref{Disjointness definitions}.
\item The algorithms for multiple pairwise sequence alignments described in \cite{Waterman87, Huang91} can easily be adjusted to the disjointness definitions proposed
in Appendix \ref{Disjointness definitions}.
\item Another principle for parsing multiple matches between an HMM and a sequence is implemented in the HMMER programs hmmls and hmmfs \cite{Eddy96}.
\end{itemize}
\end{notes}
\section{A machine-readable text file format} \label{A machine-readable text file format}
This Section describes the format conventions used in the PROSITE data bank for representation of profiles
\subsection{General format of the MA line}
The current PROSITE database reserves the MA line code for information specific to matrix entries.
A profile typically extends over many MA lines. The general format of a block of consecutive MA lines is as follows:
\begin{verbatim}
MA /KEYWORD: parameter=value; parameter=value; ... ; /KEYWORD:
MA parameter=value; parameter=value; ... ; /KEYWORD: ...
\end{verbatim}
The text is substructured into so-called data blocks, each one beginning with a keyword followed by a list of parameter specifications. Keywords
identify different types of data blocks with characteristic parameter subsets. The keywords at the beginning of each data block are enclosed by
slash on the left side and by colon on the right side. Individual parameter specifications are delimited by semicolon. There is also a semicolon
at the end of each data block containing at least one parameter specification.
A single word, quoted string, or number must be contained within one line. Otherwise, there are no rules guiding the placement of text units onto
physical lines. Within one block, the parameter specifications can appear in any order.
The following keywords define valid data block types:
\begin{center}
\begin{tabular}{rl}
/GENERAL\_SPEC: & General specifications.\\
/DISJOINT: & Disjointness definition for multiple matches.\\
/NORMALIZATION: & Score normalisation instructions.\\
/CUT\_OFF: & Recommended cut-off value(s).\\
/DEFAULT: & Defaults for position specific profile parameters.\\
/I: & Profile insert position.\\
/M: & Profile match position.
\end{tabular}
\end{center}
\subsection{The formats of different data block types}
\subsubsection{The GENERAL\_SPEC data block}
The GENERAL\_SPEC data block provides general information about the profile. It has the following format:
\begin{verbatim}
/GENERAL_SPEC: ALPHABET=string;
[ LENGTH=length; TOPOLOGY=topology; BEGIN=begin; END=end ]
[ LOG\_BASE=log\_base; P0=p0; P=random\_model ]
\end{verbatim}
where:
\begin{description}
\item[string] is a quoted character string defining the character set for which, and the order in which, position-specific match and insert
extension scores are provided in subsequent M and I data blocks.
\item[length] is the length of the profile defined as the total number of match positions.
\item[topology] is one of the alternative words LINEAR or CIRCULAR.
\item[begin] is an integer indicating the match position withing the profile where the described biological object begins (implying that positions
before \emph{begin} characterise contextual constraints). This together with the END feature may be useful for profiles characterising biological objects
such as transmembrane helices in proteins, or exons in gene sequences. As an instruction to software, this parameter means that sequence residues matching
profile positions before the \emph{begin} position should not be reported as being part of the biological object.
\item[end] is an integer indicating the match position within the profile where the biological object ends; see also remarks on previous parameter.
\item[log\_base] is the logarithmic base that should be used when translating the generalised profile (back) into an HMM, see \cite{Bucher96}. Popular logarithmic
bases for the representation of HMMs, null-models, substitution matrices, etc. are tabulated in Appendix \ref{Frequently used logarithmic bases}.
\item[p0] is a real number between $0$ and $1$ defining the insert-to-insert state transition probability of the null-model that should be used for
translating the generalised profile (back) into an HMM; see \cite{Bucher96}. This parameter defines a geometric length distribution over the sequence space.
\item[random-model] is a real number, or comma separated list of real numbers, defining the residue emission probabilities of the null-model
that should be used for translating the generalised profile (back) into an HMM; see \cite{Bucher96}. These numbers are not required to sum to $1$ and thus
should be renormalised by programs on input. In PROSITE, the random model is usually given as percent amino acid frequencies.
\end{description}
The GENERAL\_SPEC data block is mandatory and precedes any DEFAULT, M or I data block.
Implicit defaults:
\begin{itemize}
\item TOPOLOGY=LINEAR;
\end{itemize}
Example:
MA /GENERAL\_SPEC: ALPHABET='ACGT';
\begin{notes}
The optional LENGTH parameter is purely informative and redundant. The actual length of the profile is given by the sequence of subsequent I
and M data blocks.
\end{notes}
\subsubsection{The DISJOINT data block}
The DISJOINT data block provides a definition of disjointness for multiple profile-sequence alignments, or indicates that only one globally optimal
alignment is of interest. It has the following format:
\begin{verbatim}
/DISJOINT: DEFINITION=name; parameters;
\end{verbatim}
where:
\begin{description}
\item[name] is a word from a controlled vocabulary identifying one of the supported disjoint definitions listed in Appendix \ref{Disjointness definitions}.
\item[parameters] is a list of parameter specifications for the corresponding disjointness definition. Note that different disjointness
definitions depend on different parameter sets; see Appendix \ref{Disjointness definitions}.
\end{description}
The DISJOINT data block is mandatory.
Example:
MA /DISJOINT: DEFINITION=PROTECT; N1=12; N2=40;
\begin{notes}
\begin{itemize}
\item Some disjointness definitions are parameter-free. In this case, the list of parameter specifications is empty.
\item The list of supported disjoint definitions constitutes a dynamic feature of the format. New functions may be added in the future.
Suggestions are welcome.
\end{itemize}
\end{notes}
\subsubsection{The NORMALIZATION data block}
A NORMALIZATION data block describes a specific normalisation mode for alignment scores. It has the following format:
\begin{verbatim}
/NORMALIZATION: FUNCTION=name; parameters;
[ MODE=mode-nr; PRIORITY=rank; TEXT=string; ]
\end{verbatim}
where:
\begin{description}
\item[name] is a word form a controlled vocabulary identifying one of the supported normalisation functions listed in Appendix \ref{Normalization functions}.
\item[parameters] is a list of parameter specifications providing values for all parameters of the corresponding normalisation function listed in
Appendix \ref{Normalization functions}.
\item[mode-nr] is an integer by which the normalisation mode can be referred to in CUT\_OFF data blocks.
\item[rank] is an integer assigning a relative priority to the normalisation mode with regard to various pattern search operations.
\item[string] is a quoted string describing a score normalised according to this mode.
\end{description}
NORMALIZATION data blocks are optional. There may be several NORMALIZATION data blocks per profile.
The optional MODE parameter either appears in all or in none of the NORMALIZATION data blocks. If specified, the mode numbers form a contiguous
integer range starting with 1. If not specified, mode numbers are implied by the order in which the NORMALIZATION data blocks appear in the profile.
The optional PRIORITY parameter either appears in all or none of the NORMALIZATION data blocks. If not specified, priorities are equal to the mode
numbers. The lower the priority number, the higher the priority of the normalisation mode, and vice-versa.
Example:
MA /NORMALIZATION: MODE=1; FUNCTION=LINEAR; TEXT='Homology Score';
MA R1=-90.558; R2=0.57225;
\begin{notes}
\begin{itemize}
\item Normalisation functions may, in addition to the parameters listed in Appendix\ref{Normalization functions}, depend on characteristics of the sequence such as length
and residue composition.
\end{itemize}
\end{notes}
\subsubsection{The CUT\_OFF data block}
A CUT\_OFF data block defines a cut-off level. It has the following format:
\begin{verbatim}
/CUT_OFF: SCORE=rscore;
[ LEVEL=level; TEXT=string; N\_SCORE=nscore; MODE=mode-nr ]
\end{verbatim}
where:
\begin{description}
\item[rscore] is an integer defining the cut-off value in raw score units.
\item[level] is an integer identifying a cut-off level.
\item[string] is a quoted character string characterising profile matches with scores greater than or equal to the corresponding cut-off value
(but lower than any higher cut-off value specified).
\item[nscore] is a real number, or a comma separated list of real numbers, defining the cut-off value(s) in normalised score units calculated
according to the mode(s) identified by mode-nr.
\item[mode-nr] is an integer, or a comma separated list of integers, referring to one or several normalisation modes defined in NORMALIZATION
data blocks.
\end{description}
The CUT\_OFF data block for level 0 is mandatory. There may be multiple CUT\_OFF data blocks, one for each level.
The LEVEL parameter is optional for level 0. All other levels are specified explicitly. The levels assigned to alternative cut-off values, including
level $0$, form a contiguous integer range.
The N\_SCORE and MODE parameters are either both present or both absent. If present, they contain the same number of elements.
Example:
MA /CUT\_OFF: LEVEL=0; SCORE=237; N\_SCORE=7.5; MODE=1;
\begin{notes}
\begin{itemize}
\item Cut-off values in raw score units may be used by programs which do not support a given normalisation mode.
\item The list of supported normalisation functions constitutes a dynamic feature of the format. New functions may be added in the future.
Suggestions are welcome.
\end{itemize}
\end{notes}
\subsubsection{The DEFAULT data block}
The DEFAULT data block redefines defaults for position-specific profile parameters and has the following format:
\begin{verbatim}
/DEFAULT: [ SY_I=char1; SY_M=char2; parameters; ]
\end{verbatim}
where:
\begin{description}
\item[char1] is a quoted character representing a profile insert position in a profile-sequence alignment.
\item[char2] is a quoted character representing a profile match position in a profile-sequence alignment.
\item[parameters] is a list of parameter specifications defining default values for one or several of the profile scores listed in the tables at
the end of this Section.
\end{description}
DEFAULT data blocks are optional. There may be multiple DEFAULT data
blocks per profile.
Implicit defaults:
- SY\_I='-'; SY\_M='X';
Example:
MA /DEFAULT: B0= *; B1= *; E0= *; E1= *;
\begin{notes}
\begin{itemize}
\item The first DEFAULT data block redefines the implicit defaults given in the tables at the end of this Section. Subsequent DEFAULT data blocks
consecutively redefine each other.
\item Asterisk represents low-value in the example; see next Subsection.
\end{itemize}
\end{notes}
\subsubsection{The I and M data blocks}
The I and M data blocks contain position-specific profile scores for insert and match positions. They have the following formats:
\begin{verbatim}
/I: [ SY=char1; parameters; ]
/M: [ SY=char2; parameters; ]
\end{verbatim}
where:
\begin{description}
\item[char1] is a quoted character representing the corresponding profile insert position in a profile-sequence alignment.
\item[char2] is a quoted character representing the corresponding profile match position in a profile-sequence alignment.
\item[parameters] is a list of parameter specifications assigning values to one or several of the position-specific profile scores listed in the
tables at the end of this Section.
\end{description}
The profile scores specified in I and M data blocks overwrite the current default values set by a preceding DEFAULT data block or initialised as
shown in the tables at the end of this Section.
The values assigned to profile scores may be integers, reals, or low-value represented by an asterisk. Most profile scores are assigned one value.
The exceptions are the residue-specific insert and match extension scores. These scores can either be assigned one value or a comma separated list of
values, one for each character of the alphabet. The correspondence between scores and characters is defined by the order in which the alphabet is
presented in the GENERAL\_SPEC data block. A single value is equivalent to a list of identical values.
Each I data block characterises one insert position of the profile. Each M data block characterises one match position of the profile. The physical order
of the M and I data blocks defines the logical order of the corresponding profile positions. Default match and insert positions are
not always specified explicitly. This requires further explanation. Remember that a profile consists of an alternating sequence of insert and
match positions, and that a linear profile starts and ends with an insert position. Default I or M data block are implied wherever the physical
order of I and M data blocks does not conform to these rules.
Example:
\begin{verbatim}
MA /I: B0= 0; B1= 0; /M: M= 11, 3, 3, 4;
\end{verbatim}
In case the above line describes a complete linear profile, a default insert position is implied at the end. In case it describes a circular profile,
no additional profile position is implied.
\begin{notes}
\begin{itemize}
\item There has been some debate (and no decision so far) whether profile scores should be required to be integers. In PROSITE, all profile scores are represented
as integers and existing software supporting this format actually requires integer representation. Integer representation has thus become a \emph{de facto} standard.
\item A linear normalisation function implicitly defines an integer to real conversion of profile scores; see protein example in Section \ref{Examples}.
\end{itemize}
\end{notes}
Profile scores of insert positions and implicit defaults:
\begin{center}
\begin{tabular}{rcl}
Name & Default & Parameter description \\
\hline \\
B0 &B0= 0 &External initiation score\\
B1 &B1= 0 &Internal initiation score\\
E0 &E0= 0 &External termination score\\
E1 &E1= 0 &Internal termination score\\
\\
BM &BM= 0 &State transition score from state B to M\\
BI &BI= * &State transition score form state B to I\\
BD &BD= * &State transition score from state B to D\\
BE &BE= * &State transition score from state B to E\\
MM &MM= 0 &State transition score from state M to M\\
MI &MI= * &State transition score from state M to I\\
MD &MD= * &State transition score from state M to D\\
ME &ME= 0 &State transition score from state M to E\\
IM &IM= * &State transition score from state I to M\\
II &II= 0 &State transition score from state I to I\\
ID &ID= * &State transition score from state I to D\\
IE &IE= * &State transition score from state I to E\\
DM &DM= * &State transition score from state D to M\\
DI &DI= * &State transition score from state D to I\\
DD &DD= 0 &State transition score from state D to D\\
DE &DE= * &State transition score from state D to E\\
\\
I &I = 0 &Insert extension score(s) for characters included in the alphabet\\
I0 &I0= 0 &Insert extension score for a character not included in the alphabet\\
\hline
\end{tabular}
\end{center}
Profile parameters of match positions and implicit defaults:
\begin{center}
\begin{tabular}{rcl}
Name & Default & Parameter description \\
\hline \\
M &M = 0 &Match extension score(s) for characters included in the alphabet\\
M0 &M0= 0 &Match extension score for a character not included in the alphabet\\
D &D = 0 &Deletion extension score\\
\hline
\end{tabular}
\end{center}
\section{Examples} \label{Examples}
\subsection{E. coli promoters}
The profile shown below describes the major class of E. coli promoters
recognised by RNA polymerase-sigma factor 70. It is based on work published in \cite{Mulligan84} and emulates the functionality of the promoter search program TARGSEARCH.
\begin{verbatim}
MA /GENERAL_SPEC: ALPHABET='ACGT';
MA /DISJOINT: DEFINITION=PROTECT; N1=37; N2=42;
MA /NORMALIZATION: MODE=1; FUNCTION=LINEAR; R1=-90.558; R2=0.57225;
MA TEXT='Homology Score';
MA /NORMALIZATION: MODE=2; FUNCTION=LINEAR; R1=-10.198; R2=0.06215;
MA TEXT='Log KBk2';
MA /CUT_OFF: LEVEL=0; SCORE=237; N_SCORE=45.0; MODE=1;
MA /DEFAULT: B0=*; B1=*; E0=*; E1=*;
MA /I: B0= 0; B1= 0;
MA /M: M= 11, 3, 3, 4;
MA /M: M= 8, 4, 2, 7;
MA /M: M= 8, 2, 4, 7;
MA /M: M= 7, 4, 2, 8;
MA /M: M= 8, 4, 4, 5;
MA /M: M= 7, 3, 5, 6;
MA /M: M= 3, 5, 5, 8;
MA /M: M= 5, 2, 5, 9;
MA /M: M= 5, 8, 5, 3;
MA /M: M= 0, 1, 2,17; SY='T';
MA /M: M= 1, 1, 1,18; SY='T';
MA /M: M= 0, 2,17, 2; SY='G';
MA /M: M= 14, 3, 1, 4; SY='A';
MA /M: M= 5,11, 2, 5; SY='C';
MA /M: M= 9, 2, 3, 7; SY='A';
MA /M: M= 5, 5, 3, 9;
MA /M:/M:/M:/M:/M:/M:/M:/M:/M:
MA /I: MD=0; MM=1;/I: DM=1;/I: DM=1;/I: DM=6;/I: DM=14;/I: DM=6;/I: DM=1;
MA /M: M= 4, 5, 2,10;
MA /M: M= 5, 4, 5, 6;
MA /M: M= 3, 5, 5, 8;
MA /M: M= 4, 4, 8, 5;
MA /M: M= 4, 5, 7, 6;
MA /M: M= 0, 2, 2,17; SY='T';
MA /M: M= 20, 0, 0, 1; SY='A';
MA /M: M= 5, 3, 3, 9; SY='T';
MA /M: M= 12, 3, 3, 3; SY='A';
MA /M: M= 11, 4, 3, 4; SY='A';
MA /M: M= 0, 1, 0,20; SY='T';
MA /M: M= 7, 2, 6, 6;
MA /M: M= 4, 7, 5, 5;
MA /M: M= 6, 6, 6, 4;
MA /I: E0=0; E1= 0;
\end{verbatim}
The profile is substructured into four operationally distinct modules totaling 45 match positions.
\begin{center}
\begin{tabular}{cp{15cm}}
Position & Module \\
\hline \\
1-16 & Weight matrix for the -35 region including the core hexamer box TTGACA at pos. 10-15.\\
17-25 & Fixed length linker module encoded by 9 dummy match positions. This module is defined on the first of the two indented MA lines.\\
26-31 & Variable length linker scoring module encoded by 7 consecutive insert positions. This module is defined on the second of two
indented MA lines. \\
32 -45 & Weight matrix for the -10 region including the core hexamer box TATAAT at pos. 37-42.\\
\hline \\
\end{tabular}
\end{center}
The variable length linker scoring module defines the following scoring
scheme.
\begin{center}
\begin{tabular}{cc}
\# of bp between core hexamers boxes & score \\
\hline \\
$15$ & $1$\\
$16$ & $6$\\
$17$ & $14$\\
$18$ & $6$\\
$19$ & $1$\\
$20$ & $1$\\
$21$ & $1$
\end{tabular}
\end{center}
These scores are achieved as follows. Format-proprietary default values for state transition scores (not over-written by local defaults) make sure
that deletions and insertions can only occur at positions where corresponding scores are explicitly specified. Insertion gaps are thus
generally forbidden. A deletion gap can only be opened at the beginning of the linker length scoring module and must be closed within or at the
end of this module. A promoter with the maximal linker length of 21 can be aligned without gap to the profile. In this case, the linker length score
is provided by MM=1 at insert position 25. Promoters with linker lengths 15 to 20 require a deletion gap in their alignment to the profile. The
corresponding scores are provided by DM=1, 1, 6, 14, 6, 1 at insert positions 26, 27, 28, 29, 30, 31, respectively.
\begin{notes}
\begin{itemize}
\item The default low-values assigned to parameters B0, B1, E0, E1, together
with the exceptions B0, B1 = 0 at the beginning and E0, E1 = 0 at the
end of the profile, define a global alignment algorithm with endgap
weighting in the profile but not in the sequence.
\item Two normalisation modes are defined in this profile. The names of the
corresponding scores, \emph{Homology score} and \emph{log KBk2}, are taken from
the original publication. The parameters of the second normalisation
function were derived by a linear regression analysis between homology
scores and enzyme selectivities (defined as log KBk2) of 31 transcriptionally assayed promoters.
\item The cut-off homology score of 45 has been proposed by the authors as
lower limit for effective promoters.
\item The disjointness definition protecting only the TATAAT box region from
sequence overlap, is motivated by a known promoter example where two
adjacent TATAAT boxes direct transcription from two distinct initiation
sites six bp apart from each other.
\item This profile is not supposed to represent the most accurate E. coli
promoter prediction method available today. It primarily serves to illustrate that the proposed syntax is flexible enough to express the
functionality of a specialised search algorithm developed for a particular object.
\end{itemize}
\end{notes}
\subsection{Src homology domain SH3}
The profile shown on the next page describes the Src homology domain SH3
as defined by sequence similarity. It has been constructed by a recently
described extension of Gribskov's method incorporating several improvements \cite{Luethy94}.
The SH3 profile consists of three homology blocks separated by two gap regions. Within the homology blocks, small insertions and deletions are not
totally forbidden but strongly impeded by high gap costs defined in the
DEFAULT data block: MI=-26, I=-3, MD=-26, D=-3. These numbers are overwritten by more permissive values in the two gap regions.
\begin{notes}
\begin{itemize}
\item The SH3 profile uses only features which are compatible with Gribskov's
methodology. As a consequence, it can be automatically reformatted for
use with the existing profile alignment programs implemented in the GCG
package.
\item The second normalisation mode defines a real number conversion of the
integer profile scores.
\end{itemize}
\end{notes}
\begin{verbatim}
MA /GENERAL_SPEC: ALPHABET='ACDEFGHIKLMNPQRSTVWY';
MA /DISJOINT: DEFINITION=PROTECT; N1=1; N2=53;
MA /NORMALIZATION: MODE=1; FUNCTION=GLE_ZSCORE; R1=44.55; R2=-0.0035;
MA R3=0.7386; R4=1.001; R5=0.208; TEXT='ZScore';
MA /NORMALIZATION: MODE=2; FUNCTION=LINEAR; R1=0.0; R2=0.1;
MA TEXT='OrigScore';
MA /CUT_OFF: LEVEL=0; SCORE=90; N_SCORE=7.0; MODE=1;
MA /DEFAULT: MI=-26; I=-3; IM=0; MD=-26; D=-3; DM=0;
MA /M: SY='F';M=-2,-3,-3,-4,2,-3,-2,1,-2,0,-1,-2,-3,-3,-4,-2,-1,0,-5,2;
MA /M: SY='I';M=-1,-5,-2,-3,-2,-3,0,1,1,-1,1,-1,-2,-1,1,-1,0,1,-4,-4;
MA /M: SY='A';M=2,-3,1,0,-5,2,-2,-1,-1,-3,-2,1,1,0,-2,2,2,0,-8,-5;
MA /M: SY='L';M=-3,-8,-5,-4,2,-6,-2,2,-4,6,4,-3,-3,-2,-3,-3,-2,1,-3,0;
MA /M: SY='Y';M=-4,-2,-6,-6,9,-7,0,-1,-5,-1,-3,-3,-6,-5,-6,-4,-4,-4,-1,11;
MA /M: SY='D';M=1,-6,3,3,-7,0,0,-2,-1,-4,-3,2,0,1,-2,0,0,-2,-9,-6;
MA /M: SY='Y';M=-5,-3,-6,-6,10,-7,-1,-1,-2,-1,-2,-3,-6,-5,-5,-4,-4,-4,-1,11;
MA /M: SY='K';M=-1,-6,1,1,-4,-2,0,-2,2,-3,-1,1,-1,1,1,0,0,-3,-7,-6;
MA /M: SY='A';M=1,-4,1,0,-5,1,-1,-1,0,-3,-1,1,0,0,0,1,1,-1,-7,-6;
MA /M: SY='R';M=0,-5,0,0,-5,-1,0,-1,1,-3,-1,1,0,1,1,0,0,-2,-5,-5;
MA /M: SY='R';M=0,-5,1,1,-6,0,1,-2,1,-4,-2,1,0,1,2,1,0,-2,-5,-5;
MA /M: SY='E';M=1,-6,2,2,-6,0,0,-2,-1,-4,-2,1,1,1,-1,0,0,-3,-8,-6;
MA /M: SY='D';M=0,-6,2,2,-6,0,1,-3,0,-5,-3,2,-1,2,-1,0,0,-4,-7,-4;
MA /M: SY='D';M=0,-8,4,3,-6,0,0,-2,-1,-3,-2,2,-2,2,-2,0,-1,-3,-9,-6;
MA /M: SY='L';M=-2,-8,-5,-5,2,-5,-3,3,-4,7,5,-4,-3,-3,-4,-3,-2,3,-4,-2;
MA /M: SY='S';M=1,-4,1,1,-5,1,0,-2,1,-4,-2,1,0,0,0,1,1,-2,-6,-5;
MA /M: SY='F';M=-3,-7,-6,-6,6,-5,-3,3,-2,5,3,-4,-5,-4,-5,-4,-3,1,-3,3;
MA /M: SY='Q';M=-1,-6,0,0,-3,-2,1,-1,1,-2,0,0,-1,1,1,-1,0,-1,-6,-4;
MA /M: SY='K';M=-1,-8,0,1,-3,-2,0,-2,3,-3,0,1,0,2,2,0,0,-3,-6,-6;
MA /M: SY='G';M=2,-5,1,0,-7,7,-3,-4,-2,-6,-4,1,-1,-2,-4,2,0,-2,-10,-8;
MA /M: SY='D';M=1,-7,5,4,-8,1,1,-3,0,-5,-3,2,-1,2,-2,0,0,-4,-10,-6;
MA /M: SY='I';M=0,-5,-1,-2,-2,-2,-1,2,0,0,1,-1,-2,0,0,-1,0,1,-6,-5;
MA /M: SY='L';M=-2,-6,-5,-5,3,-5,-3,4,-3,6,4,-4,-4,-3,-4,-3,-2,3,-5,0;
MA /M: SY='Q';M=-1,-5,-1,-1,-3,-2,0,0,0,-2,-1,0,-1,0,0,-1,0,-1,-6,-3;
MA /M: SY='V';M=0,-4,-3,-4,-1,-3,-3,5,-3,3,3,-2,-2,-2,-3,-2,0,5,-8,-4;
MA /M: SY='L';M=-1,-6,-3,-3,-1,-3,-2,2,-3,3,2,-2,-2,-2,-3,-2,-1,2,-5,-3;
MA /M: SY='D';M=0,-6,3,3,-6,0,1,-3,2,-5,-2,2,-1,2,1,0,0,-4,-7,-5;
MA /M: SY='K';M=-1,-6,0,0,-2,-1,0,-3,3,-4,-1,1,-1,0,1,0,0,-3,-6,-4;
MA /M: SY='N';M=1,-4,1,1,-5,0,0,-2,0,-3,-2,1,1,0,-1,1,1,-1,-7,-5;
MA /I: MI=0; I=-1; MD=0; /M: SY='X'; M=0; D=-1;
MA /M: SY='G';M=1,-5,0,0,-5,1,-2,-1,-2,-3,-2,0,0,-1,-2,0,0,-1,-8,-6;
MA /M: SY='G';M=1,-6,3,3,-7,3,0,-4,-1,-5,-4,2,-1,1,-2,1,0,-3,-10,-6;
MA /M: SY='W';M=-9,-12,-9,-11,1,-11,-4,-8,-5,-3,-6,-6,-8,-7,3,-4,-8,-9,26,0;
MA /M: SY='W';M=-7,-9,-9,-9,0,-9,-4,-5,-5,-1,-4,-6,-7,-6,2,-3,-6,-6,18,-1;
MA /M: SY='K';M=-1,-7,0,0,-3,-2,0,-2,2,-3,-1,1,-1,1,2,0,-1,-3,-5,-5;
MA /M: SY='G';M=2,-3,0,-1,-6,3,-3,-2,-3,-4,-3,0,0,-2,-3,1,0,0,-10,-6;
MA /M: SY='Q';M=-2,-6,0,0,-3,-3,1,-2,0,-2,-1,0,-2,1,1,-1,-1,-3,-5,-3;
MA /I: MI=0; I=-2; MD=0; /M: SY='X'; M=0; D=-2;
MA /M: SY='T';M=0,-4,-1,-1,-4,0,-2,0,-1,-2,0,0,-1,-1,-1,0,1,0,-7,-5;
MA /M: SY='T';M=0,-5,0,0,-3,-1,-1,-1,1,-3,-1,1,-1,0,0,1,1,-1,-6,-4;
MA /M: SY='G';M=0,-5,0,-1,-5,3,-2,-3,-1,-5,-3,0,-1,-1,-1,1,0,-2,-7,-6;
MA /M: SY='K';M=0,-6,1,1,-5,-1,1,-2,2,-4,-1,1,-1,2,2,0,0,-3,-6,-6;
MA /M: SY='R';M=-1,-6,-1,-1,-5,-3,1,-1,1,-3,-1,0,-1,1,3,-1,-1,-2,-2,-6;
MA /M: SY='G';M=1,-5,0,0,-6,6,-3,-3,-3,-5,-4,0,-1,-2,-4,1,0,-2,-10,-6;
MA /M: SY='W';M=-5,-5,-5,-5,2,-6,-2,-2,-4,-1,-3,-3,-6,-5,-3,-3,-4,-4,4,3;
MA /M: SY='F';M=-3,-5,-6,-6,6,-5,-3,4,-1,3,2,-4,-4,-5,-4,-3,-2,2,-4,3;
MA /M: SY='P';M=2,-4,-1,-1,-7,-1,0,-3,-2,-4,-3,-1,8,0,0,1,0,-2,-8,-7;
MA /M: SY='G';M=1,-3,0,0,-4,2,-1,-2,0,-3,-2,0,0,-1,-1,1,1,-1,-6,-5;
MA /M: SY='N';M=1,-5,2,1,-5,0,1,-2,1,-4,-2,2,0,0,0,1,1,-2,-7,-4;
MA /M: SY='Y';M=-5,-1,-7,-7,10,-8,-1,-1,-5,-1,-3,-3,-7,-6,-6,-4,-4,-5,0,13;
MA /M: SY='V';M=0,-3,-3,-5,-2,-2,-3,5,-3,2,2,-2,-2,-3,-4,-1,0,5,-8,-5;
MA /M: SY='E';M=1,-6,2,3,-6,0,0,-2,1,-4,-2,1,0,2,0,0,0,-3,-8,-6;
MA /M: SY='P';M=0,-5,-1,-1,-2,-2,-1,-2,-1,-3,-2,0,1,-1,-2,0,-1,-2,-6,-3;
\end{verbatim}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Lulli part %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\renewcommand{\overrightarrow}{\boldsymbol}
\section{Generalized Profiles}
\subsection{Counts and weighted counts}
Having a multiple alignment of length $L$ of $N$ sequences $S_1 = (s_{11},s_{12},...,s_{1L})$, $S_2 = (s_{21},s_{22},...,s_{2L})$,..., $S_N = (s_{N1},s_{N2},...,s_{NL})$,
with $s_{ij}$ belonging to the alphabet $\mathcal{A}^{*}$, where $\mathcal{A}^{*} = \mathcal{A} \cup \{s_{del}\}$, the residues counts $C(j,\alpha)$ for each position
$j$ ($1 \le j \le L$) of the multiple alignment, and for each symbol $\alpha \in \mathcal{A}^{*}$ are derived with the following formula:
\begin{equation}
C(j,\alpha) = \sum_{a \in \mathcal{A}^{*}}\sum_{i=1}^{N}\delta(s_{ij},a)
\end{equation}
where $\delta(s_{ij},a)$ has value equal to 1 if $s_{ij} = a$, otherwise $0$.\\
If $w_i$ is the weight of sequence $S_i$, the weighted counts are calculated using the following formula:
\begin{equation}
C_w(j,\alpha) = \sum_{a \in \mathcal{A}^{*}}\sum_{i=1}^{N}w_i\delta(s_{ij},a)
\end{equation}
\subsection{Position Specific Scoring Matrix (PSSM)}
Having a multiple alignment as previously, the PSSM score is calculated for each position $j$ ($1 \le j \le L$) of the multiple alignment and for each symbol $\alpha \in \mathcal{A}$
using the following formula:
\begin{equation}
PSSM(j,\alpha) = \sum_{a \in \mathcal{A}}(\sum_{i=1}^{N}w_i\delta(s_{ij},a)) \times S(\alpha,a)
\end{equation}
where $S(\alpha,a)$ is the value in the amino acid substitution matrix for substitution $\alpha$ with $a$. Note that the alphabet used is $\mathcal{A}$.
\subsection{Multiple Alignment Labelling}
Having a multiple alignmet as described previously, and the weighted counts $C_w(j,\alpha)$, each column $j$ ($1 \le j \le L$) of the multiple alignment is labelled ad follows:
\begin{equation}
Label_j = \left\{ \begin{array}{ll}
MATCH& \mathrm{if } C_w(j,s_{del}) = 0\\
DEL& \mathrm{if } C_w(j,s_{del}) \leq 0.5\\
INS& \mathrm{if } C_w(j,s_{del}) > 0.5
\end{array} \right.
\end{equation}
\subsection{Gap Penalities}
\begin{table}[h]
\caption{Formulae for reduced gap costs at match position states}
\vspace{0.5em}
\centering
\begin{tabular}{lccc}
\hline
MSA column status (ASEQ)& \tiny{MATCH}& \tiny{DEL}& \tiny{INS}\\
\hline
Match position status (pfmake)& M& D& \\
\hline
\hline
Deletion extension score& $e$& $\frac{em}{1+li}$& n.a.\\
\hline
\hline
\end{tabular}
\end{table}
\begin{table}[h]
\caption{Formulae for reduced gap costs (default)}
\vspace{0.5em}
\centering
\begin{tabular}{lccccc}
\hline
MSA status between columns (ASEQ)& \tiny{MATCH$\rightarrow$MATCH}& \tiny{MATCH$\rightarrow$DEL}& \tiny{DEL$\rightarrow$DEL}& \tiny{DEL$\rightarrow$MATCH}&
\tiny{
\begin{tabular}{c}
\tiny{MATCH$\rightarrow$INS}\\
\tiny{INS$\rightarrow$MATCH}\\
\tiny{DEL$\rightarrow$INS}\\
\tiny{INS$\rightarrow$DEL}\\
\tiny{INS$\rightarrow$INS}
\end{tabular}
}\\
\hline
Insert positon status (pfmake)& M& L& C& R& X\\
\hline
\hline
Transition M $\rightarrow$ I& $\frac{g}{2}$& $\frac{gm}{2(1+li)}$& $\frac{gm}{2(1+li)}$& $\frac{gm}{2(1+li)}$& 0\\
Insertion extension score& $e$& $\frac{em}{1+li}$& $\frac{em}{1+li}$& $\frac{em}{1+li}$& $\frac{em}{1+li}$\\
Transition I $\rightarrow$ M& $\frac{g}{2}$& $\frac{gm}{2(1+li)}$& $\frac{gm}{2(1+li)}$& $\frac{gm}{2(1+li)}$& 0\\
Transition M $\rightarrow$ D& $\frac{g}{2}$& $\frac{gm}{2(1+li)}$& $\frac{gm}{2(1+li)}$& $\frac{g}{2}$& $\frac{gm}{2(1+li)}$\\
Transition D $\rightarrow$ M& $\frac{g}{2}$& $\frac{g}{2}$& $\frac{gm}{2(1+li)}$& $\frac{gm}{2(1+li)}$& $\frac{gm}{2(1+li)}$\\
\hline
\hline
\end{tabular}
\end{table}
\begin{table}[ht]
\caption{Formulae for reduced gap costs (block profile mode, -b)}
\vspace{0.5em}
\centering
\begin{tabular}{lccccc}
\hline
MSA status between columns (ASEQ)& \tiny{MATCH$\rightarrow$MATCH}& \tiny{MATCH$\rightarrow$DEL}& \tiny{DEL$\rightarrow$DEL}& \tiny{DEL$\rightarrow$MATCH}&
\tiny{
\begin{tabular}{c}
\tiny{MATCH$\rightarrow$INS}\\
\tiny{INS$\rightarrow$MATCH}\\
\tiny{DEL$\rightarrow$INS}\\
\tiny{INS$\rightarrow$DEL}\\
\tiny{INS$\rightarrow$INS}
\end{tabular}}\\
\hline
Insert positon status& M& L& C& R& X\\
\hline
\hline
Transition M $\rightarrow$ I& $\frac{g}{2}$& $\frac{g}{2}$& $\frac{gm}{2(1+li)}$& $\frac{g}{2}$& 0\\
Insertion extension score& $e$& $\frac{em}{1+li}$& $\frac{em}{1+li}$& $\frac{em}{1+li}$& $\frac{em}{1+li}$\\
Transition I $\rightarrow$ M& $\frac{g}{2}$& $\frac{g}{2}$& $\frac{gm}{2(1+li)}$& $\frac{g}{2}$& 0\\
Transition M $\rightarrow$ D& $\frac{g}{2}$& $\frac{gm}{2(1+li)}$& $\frac{gm}{2(1+li)}$& $\frac{g}{2}$& $\frac{gm}{2(1+li)}$\\
Transition D $\rightarrow$ M& $\frac{g}{2}$& $\frac{g}{2}$& $\frac{gm}{2(1+li)}$& $\frac{gm}{2(1+li)}$& $\frac{gm}{2(1+li)}$\\
\hline
\hline
\end{tabular}
\end{table}
% \begin{singlespace}
\noindent $g$: gap penalty (2.1)\\
$e$: gap extension (0.2)\\
$m$: maximum gap penalty multiplier (1/3)\\
$i$: gap penalty multiplier increment (0.1)\\
$l$: gap region length
% \end{singlespace}
\section{APSImake profiles}
\subsection{Counts and weighted counts}
We define {\em pseudo-counts} as for PSI-BLAST:
\begin{equation}
g_{m,j,\alpha} = \sum_{\beta \in \mathcal{A}}\frac{C_w(j,\beta)}{P(j,\beta)} \times q_{m,\alpha,\beta}
\end{equation}
where $\alpha$ and $\beta$ $\in \mathcal{A}$, $C_w(j,\beta)$ are the weighted counts as in equation (2), $q_{m,\alpha,\beta}$ are the substitution
frqeuqncies for symbols $\alpha$ and $\beta$ in matrix $m$, $P(j,\beta)$ is the probability of symbol $\beta$ at position $j$. $P(j,\beta)$ can be
identical to $P(\beta)$, the {\em null-model}.
The mix between observed frequencies and {\em pseudo-counts} is
\begin{equation}
Q_{i,\alpha} = (1 - \sum_{m}\xi_{m,i})C_w(i,\alpha) + \sum_{m}(\xi_{m,i} \times g_{m,i,\alpha})
\end{equation}
with $\xi_{m,i} \ge 0$ $\forall m$ and $\forall i$, and $\sum_{m}\xi_{m,i} \le 1 \forall i$.\\
Having $P(\alpha)$ the probability of symbol $\alpha$, with $\sum_{\alpha}P(\alpha)=1$, the score $s_{i,\alpha}$ is computed with the formula
\begin{equation}
s_{i,\alpha} = \mathrm{log}\frac{Q_{i,\alpha}}{P(\alpha)}
\end{equation}
Normally, $s_{i,\alpha}$ is scaled by $\frac{3}{\mathrm{log}(2)}$ ($\frac{1}{3}$ bit score).
\subsection{$\xi$ \`a la PSI-BLAST}
Set $\xi_{m,i}$ uniformally to each position $i$ of the alignment of length $n$ to
\begin{equation}
\xi_m = \frac{1}{n}\sum_{i=1}^{n}\sum_{\alpha \in \mathcal{A^*}}\delta(\alpha,i)
\end{equation}
where
\begin{equation}
\delta(\alpha,i) = \left\{ \begin{array}{ll}
1& \mathrm{if}\ \alpha\ \in \mathrm{column}\ i\\
0& \mathrm{if}\ \alpha\ \notin \mathrm{column}\ i
\end{array} \right.
\end{equation}
See details in Altschul original paper \cite{Altschul97}\\
The $xi$ uniform estimation is implemented in {\bf amsa} using the switch {\bf -nc}.
\subsection{Esimating $\xi$ using entropy}
Use column entropy estimation in the multiple alignment to produce a {\em position specific} esimation of $\xi$.
\subsubsection{Shannon entropy}
The Shannon entropy for each residue ($\alpha$) in column ($i$) of the multiple alignment is estimated as
\begin{equation}
H_i(\alpha) = -\sum_\alpha p_i(\alpha)\mathrm{ln}p_i(\alpha)
\end{equation}
where $\alpha \in \mathcal{A}^{*}$, $p_i(\alpha)$, is estimated by $f_i(\alpha)$, the frequency of the appearance of residue type within the alignment column $i$:
\begin{equation}
p_i(\alpha) \approx f_i(\alpha) = \frac{N_i(\alpha)}{L},
\end{equation}
where $N_i(\alpha)$ is the number of observed symbols $\alpha$ at position $i$, and $L$ the total number of observations at column $i$.
The Shannon entropy is based only in the observed residues and treats indiferentially each residue and can't distinguish between residues types, i.e.
a conserved isoleucine residue (easily mutated) is less conservative than a conserved proline. Shannon's entropy mutation rate is residue type-independent.
The $xi$ position specific estimations using Shannon entropy is implemented in {\bf amsa} using the switch {\bf -shannon}.
\subsubsection{Corollary to Shannon entropy: background frequencies and mutual entropy}
Wang and Samudrala \cite{Wang06} suggested to incorporate the background frequency from protein sequence databases to capture the the functional importance of amino
acid residues using the formula to calculate the relative entropy
\begin{equation}
H_i(\alpha) = -\sum_\alpha p_i(\alpha)\mathrm{ln}\frac{p_i(\alpha)}{b_i(\alpha)}
\end{equation}
where $b_i(\alpha)$ represents the background symbol frequency expected at position $i$, i.e. aa frequencies occouring in protein databases.\\
The $xi$ position specific estimations using background frequencies based entropy is implemented in {\bf amsa} using the switch {\bf -ws}.
A slightly different formulation resulting in the same result as Wang and Samudrala has been developed using joint entropy \cite{Mihalek07}.
The joint entropy allows consideration of mutual events in terms of residue pairs (mutation from $x_1$ to $x_2$). This can be read by a substitution matrix
(frequency/probability based). The formulation is
\begin{equation}
H_i(\alpha,\beta) = -\sum_\alpha \sum_\beta p_i(\alpha,\beta)\mathrm(ln)\frac{p_i(\alpha,\beta)}{b_i(\alpha,\beta)}
\end{equation}
where $p_i(\alpha,\beta) \approx \frac{N_i(\alpha,\beta)}{L(L-1)/2}$ and $b_i(\alpha,\beta)$ is read from a table of background substitution frequencies.\\
The $xi$ position specific estimations using mutual entropy is implemented in {\bf amsa} using the switch {\bf -mrl}.
\begin{notes}
This should result in identical results as the switch {\bf -ws} if residue frequency distribution and frequency substitution matrices are derived from the same substitution matrix.
\end{notes}
\subsubsection{Z-scores for entropy}
The entropy values are tranformed in Z-scores to have comaprable values. Z-scores are calculated as
\begin{equation}
Z_x = \frac{x-\mu_x}{\sigma_x}
\end{equation}
where $\mu_x$ is the mean and $\sigma_x$ the standard deviation ($\sqrt{\frac{\sum(x-\mu)^2}{N}}$).
\subsection{Dirichlet mixtures}
The following is derived from the the paper of Sj\"olander et al. \cite{Sjolander96}. For a single Dirichlet mixture we have
\begin{equation}
p_{i,j} = \frac{n_{i,j}+\alpha_i}{\sum_{k}n_{k,j} + \sum_{k}\alpha_k}
\end{equation}
where $p_{i,j}$ is the probability of residue $i$ at position $j$ of the multiple alignment, $n_{i,j}$ is the number (counts) of the observed
residue $i$ at position $j$, and $alpha_i$ is the pseudo-count readed from the Dirichlet mixture. The denominator is a normalization factor.
\noindent In the case of a multicomponent mixture we have
\begin{equation}
p_{i,j} = \sum_{m=1}^{l}P(\overrightarrow{\alpha}_m | \overrightarrow{n}_j,\Theta)\frac{n_{i,j}+\alpha_{i,m}}{\sum_k n_{k,j} + \sum_k \alpha_{k,m}}
\label{dmixt}
\end{equation}
where $P(\overrightarrow{\alpha}_{m,j} | \overrightarrow{n}_j,\Theta)$ is the probability of mixture $m$ out of $l$ mixtures at position
$j$ given the observation $\overrightarrow{n}_j$ and the model $\Theta$.
The probability $P(\overrightarrow{\alpha}_{m,j} | \overrightarrow{n}_j,\Theta)$ is the probability for a component to have produced the observed counts.
It is estimated by (derived from Bayes' rule, see \cite{Sjolander96})
\begin{equation}
P(\overrightarrow{\alpha}_m | \overrightarrow{n}_j,\Theta) =
\frac{ q_m
\frac{B(\overrightarrow{n}_j+\overrightarrow{\alpha}_m)} {B(\overrightarrow{\alpha}_m)}
}{
\sum_{a=1}^l q_a
\frac{B(\overrightarrow{n}_j+\overrightarrow{\alpha}_a)} {B(\overrightarrow{\alpha}_a)}
}
\label{probmixt}
\end{equation}
with the mixture coefficient $q_m$.
Putting equation (\ref{probmixt}) in equation (\ref{dmixt}) we obtain
\begin{equation}
p_{i,j} =
\frac{
\sum_{m=1}^l q_m
\frac{
B(\overrightarrow{n}_j + \overrightarrow{\alpha}_m)
}
{
B(\overrightarrow{\alpha}_m)
}
\frac{
n_{i,j} + \alpha_{i,m}
}
{
\sum_k n_{k,j} + \alpha_{k,m}
}
}
{
\sum_{a=1}^l q_a
\frac{
B(\overrightarrow{n}_j + \overrightarrow{\alpha}_a)
}
{
B(\overrightarrow{\alpha}_a)
}
}
\end{equation}
Because denominator is independent of $i$, we can compute $p_{i,j}$ by normalizing
\begin{equation}
X_{i,j} =
\sum_{m=1}^l q_m
\frac{
B(\overrightarrow{n}_j + \overrightarrow{\alpha}_m)
}
{
B(\overrightarrow{\alpha}_m)
}
\frac{
n_{i,j} + \alpha_{i,m}
}
{
\sum_k (n_{k,j} + \alpha_{k,m})
}
\label{Xeq}
\end{equation}
to sum to 1. That is
\begin{equation}
p_{i,j} = \frac{X_{i,j}}{\sum_{k=1}^{20} X_{k,j}}
\label{Xnormeq}
\end{equation}
To make equation (\ref{Xeq}) more convinient for computation, we can use the log of the Beta functions:
\begin{equation}
X_{i,j} = \sum_{m=1}^l q_m e^{\mathsf{log }B(\overrightarrow{n}_j + \overrightarrow{\alpha}_m) - \mathsf{log }B(\overrightarrow{\alpha}_m)}
\frac{
n_{i,j} + \alpha_{i,m}
}
{
\sum_k (n_{k,j} + \alpha_{k,m})
}
\label{Xlogeq}
\end{equation}
We have implemented eq. (\ref{Xlogeq}) and eq. (\ref{Xnormeq}) in {\bf amsa} with option {\bf -dirichlet}.
\section*{Acknowledgements}
\addcontentsline{toc}{section}{Acknowledgements}
Philip Bucher thank Roland Luethy, Michael Gribskov, Stephen Altschul, David Haussler, Sean Eddy, Kevin Karplus, and Ewan Birney for valuable
comments and discussions. The text file format described in Section \ref{A machine-readable text file format} has been designed in collaboration with Amos Bairoch.
Ioannis Xenarios has contributed the SH3 profile shown with minor modifications in Section \ref{Examples}.
\addcontentsline{toc}{section}{References}
\begin{thebibliography}{9}
\bibitem{Gribskov90}
Gribskov M., Luethy R., Eisenberg D.
\emph{Profile analysis}.
Meth. Enzymol. 183:146-159(1990).
\bibitem{Staden90}
Staden R.
\emph{Searching for patterns in protein and nucleic acid sequences}.
Meth. Enzymol. 183:193-211(1990).
\bibitem{Barton90}
Barton G.J., Sternberg M.J.E.
\emph{Flexible protein sequence patterns: a sensitive method to detect weak
structural similarities}.
J. Mol. Biol. 212:389-402(1990).
\bibitem{Mulligan84}
Mulligan M.E., Hawley D.K., Entriken R., McClure W.R.
\emph{Escherichia coli promoter sequences predict in vitro RNA polymerase
selectivity}.
Nucleic Acids Res. 12:789-800(1984).
\bibitem{Krogh94}
Krogh A., Brown M., Mian I.S., Sjoelander K., Haussler D.
\emph{Hidden Markov models in computational biology}.
J. Mol. Biol. 235:1501-1531(1994).
\bibitem{Waterman87}
Waterman M.S., Eggert M.
\emph{A new algorithm for best subsequence alignments with application to
tRNA-rRNA comparisons}.
J. Mol. Biol. 197:723-728(1987).
\bibitem{Huang91}
Huang X., Miller W.
\emph{A time-efficient, linear-space local similarity algorithm}.
Adv. Appl. Math. 12:337-357(1991).
\bibitem{Luethy94}
Luethy R., Xenarios I., Bucher P.
\emph{Improving the sensitivity of the sequence profile method}.
Protein Sci. 3:139-146(1994).
\bibitem{Bucher96}
Bucher P., Karplus K., Moeri, N., Hofmann, K.
\emph{A flexible search technique based on generalized profiles}.
Comput. Chem. 20:3-24(1996).
\bibitem{Eddy96}
Eddy S.R.
\emph{Hidden Markov models}.
Curr. Opin. in Struct. Biol. 6:361-365(1996).
\bibitem{Altschul97}
Altschul, S., Madden, T., Sch¨affer, A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.
\emph{Gapped blast and psi-blast: a new generation of protein database search programs}.
Nucleic Acids Res, 25 (17), 3389–402 (1997).
\bibitem{Mihalek07}
Mihalek, I., Res, I. and Lichtarge, O.
\emph{Background frequencies for residue variability estimates: blosum revisited}.
BMC Bioinformatics, 8 (1), 488 (2007).
\bibitem{Sjolander96}
Sj\"{o}lander, K., Karplus, K., Brown, M., Hughey, R., Krogh, A., Mian, I. and Haussler, D.
\emph{Dirichlet mixtures: a method for improved detection of weak but significant protein sequence homology}.
Comput Appl Biosci, 12 (4), 327–45 (1996)
\bibitem{Wang06}
Wang, K. and Samudrala, R.
\emph{Incorporating background frequency improves entropybased residue conservation measures}.
BMC Bioinformatics, 7, 385(2006).
\end{thebibliography}
\addcontentsline{toc}{section}{Appendices}
\appendix
% \addtocounter{section}{1}
\section{Disjointness definitions} \label{Disjointness definitions}
The following notions of disjointness of two alignments between the same profile and the same sequence are currently defined:
\begin{center}
\begin{tabular}{rcp{12cm}}
Name & Parameters & Description\\
\hline \\
\textbf{UNIQUE} & - & Multiple profile-sequence alignment between the same
profile and the same sequence are not permitted. The
result of a profile search consists of a single best
alignment. \\
\textbf{PROTECT} & $N_1, \, N_2 \in \mathbb{Z}$ & Two profile-sequence alignments are disjoint if the
two sequence segments associated with the \emph{protected}
profile area do not overlap. The protected profile
area extends from match position $N_1$ to match position
$N_2$ inclusive.\\
\hline\\
\end{tabular}
\end{center}
\section{Normalization functions} \label{Normalization functions}
The following score normalisation functions are currently defined.
\begin{description}
\item[LINEAR] \begin{equation} Y = R_1 + R_2 X \end{equation}
\item[GLE\_ZSCORE] \begin{equation} Y = \frac{1}{R_5} \frac{X}{R_1 \left [ 1 - e^{(R_2*SeqLen-R_3)} \right ] - R_4} \end{equation}
\end{description}
where $X$ and $Y$ are the raw and normalized score, respectively, $R_i \in \mathbb{R}$ and length of the sequence $SeqLen \in \mathbb{N}$.
\begin{notes}
The score normalisation function named GLE\_ZSCORE has been described by Gribskov, Luethy, and Eisenberg in \cite{Gribskov90}.
\end{notes}
\section{Frequently used logarithmic bases} \label{Frequently used logarithmic bases}
\begin{center}
\begin{tabular}{rll}
Logarithmic base & Name of units & Used e.g. in: \\
\hline \\
$10.000000000$ & $Log_{10}$ units & PROSITE profile -log P-values \\
$2.718281828$ & nats & SAM HMM log-odds scores \\
$2.000000000$ & bits & BLAST, HMMER HMM log-odds scores \\
$1.414213562$ & 1/2 bit units & BLAST blosum62 matrix \\
$1.259921050$ & 1/3 bit units & BLAST blosum45, pam250 matrices \\
$1.258925412$ & 1/10 $Log_{10}$ units & Dayhoff MDM78 matrix \\
$1.189207115$ & 1/4 bit units & BLAST blosum35, blosum40 matrices \\
$1.148698355$ & 1/5 bit units & BLAST blosum30 matrix \\
$1.000693387$ & 1/1000 bit units & HMMER integer arithmetics \\
$1.023292992$ & 1/100 $Log_{10}$ units & Bowie 3D-profile \\
\hline
\end{tabular}
\end{center}
\section{Alignment test} \label{Tests}
\begin{centering}
\includegraphics[trim = 0mm 0mm 0mm 15mm, clip, width=\textwidth]{Presentation/forward_seq0_quiz.pdf}
\end{centering}
See next page for solution. \newpage
\begin{centering}
\includegraphics[width=\textwidth]{Presentation/forward_seq0.pdf}
\end{centering}
\end{document}
|