1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
|
/**
* 64-bit roaring buffer reader, leveraging 32-bit roaring buffer reader for leaf bitmaps.
*/
#include "roaring64_buffer_reader.h"
static inline uint32_t rb64_get_key_at_index(const roaring64_buffer_t *rb, uint32_t i) {
return rb->keys[i];
}
static inline const roaring_buffer_t *rb64_get_reader_at_index(const roaring64_buffer_t *rb, uint32_t i) {
return rb->rb_readers[i];
}
/**
* Good old binary search.
* Assumes that array is sorted, has logarithmic complexity.
* if the result is x, then:
* if ( x>0 ) you have array[x] = ikey
* if ( x<0 ) then inserting ikey at position -x-1 in array (insuring that array[-x-1]=ikey)
* keeps the array sorted.
*/
static inline int32_t rb64_keys_binary_search(const uint32_t *array, int32_t size, uint32_t key) {
int32_t low = 0;
int32_t high = size - 1;
while (low <= high) {
int32_t middleIndex = (low + high) >> 1;
uint32_t middleValue = array[middleIndex];
if (middleValue < key) {
low = middleIndex + 1;
} else if (middleValue > key) {
high = middleIndex - 1;
} else {
return middleIndex;
}
}
return -(low + 1);
}
/**
* Galloping search
* Assumes that array is sorted, has logarithmic complexity.
* if the result is x, then if x = length, you have that all values in array between pos and length
* are smaller than min.
* otherwise returns the first index x such that array[x] >= min.
*/
static inline int32_t rb64_keys_advance_until(const uint32_t *array, int32_t pos, int32_t length, uint32_t min) {
int32_t lower = pos + 1;
if ((lower >= length) || (array[lower] >= min)) {
return lower;
}
int32_t spansize = 1;
while ((lower + spansize < length) && (array[lower + spansize] < min)) {
spansize <<= 1;
}
int32_t upper = (lower + spansize < length) ? lower + spansize : length - 1;
if (array[upper] == min) {
return upper;
}
if (array[upper] < min) {
return length;
}
lower += (spansize >> 1);
int32_t mid = 0;
while (lower + 1 != upper) {
mid = (lower + upper) >> 1;
if (array[mid] == min) {
return mid;
} else if (array[mid] < min) {
lower = mid;
} else {
upper = mid;
}
}
return upper;
}
/**
* Creates a new 64-bit roaring buffer reader (from a portable serialized 64-bit roaringbitmap buffer).
* The caller is responsible for freeing the result.
* Returns NULL if error occurred.
*/
roaring64_buffer_t *roaring64_buffer_create(const char *buf, size_t buf_len){
// https://github.com/RoaringBitmap/RoaringFormatSpec#extension-for-64-bit-implementations
if (buf == NULL) {
return NULL;
}
size_t read_bytes = 0;
const char *cur = buf;
// Read as uint64 the distinct number of "buckets", where a bucket is
// defined as the most significant 32 bits of an element.
uint64_t num_buckets;
if (read_bytes + sizeof(num_buckets) > buf_len) {
return NULL;
}
memcpy(&num_buckets, cur, sizeof(num_buckets));
cur += sizeof(num_buckets);
read_bytes += sizeof(num_buckets);
// Buckets should be 32 bits with 4 bits of zero padding.
if (num_buckets > UINT32_MAX) {
return NULL;
}
if(num_buckets == 0) {
roaring64_buffer_t *ans = (roaring64_buffer_t *)roaring_malloc(sizeof(roaring64_buffer_t));
if(ans == NULL)
return NULL;
ans->buf = buf;
ans->buf_len = read_bytes;
ans->size = 0;
ans->keys = NULL;
ans->rb_readers = NULL;
return ans;
}
uint32_t *keys = (uint32_t *)roaring_malloc(sizeof(uint32_t) * num_buckets);
const roaring_buffer_t **rb_readers = (const roaring_buffer_t **)roaring_malloc(sizeof(roaring_buffer_t *) * num_buckets);
if(keys == NULL || rb_readers == NULL){
if(keys) roaring_free(keys);
if(rb_readers) roaring_free((void *)rb_readers);
return NULL;
}
// Iterate through buckets ordered by increasing keys.
int64_t previous_key = -1;
for(uint64_t i = 0; i < num_buckets; ++i){
// Read as uint32 the most significant 32 bits of the bucket.
if(read_bytes + sizeof(uint32_t) > buf_len){
roaring_free(keys);
roaring_free((void *)rb_readers);
return NULL;
}
uint32_t key;
memcpy(&key, cur, sizeof(uint32_t));
cur += sizeof(uint32_t);
read_bytes += sizeof(uint32_t);
// High 32 bits must be strictly increasing.
if (key <= previous_key) {
roaring_free(keys);
roaring_free((void *)rb_readers);
return NULL;
}
previous_key = key;
// Read the 32-bit Roaring bitmaps representing the least
// significant bits of a set of elements.
size_t remain = (size_t)(buf_len - read_bytes);
roaring_buffer_t *rb_reader = roaring_buffer_create(cur, remain);
if(rb_reader == NULL){
// Free previously created rb_readers before returning
for(uint64_t j = 0; j < i; ++j){
if(rb_readers[j]) roaring_buffer_free(rb_readers[j]);
}
roaring_free(keys);
roaring_free((void *)rb_readers);
return NULL;
}
size_t rb_size = rb_reader->buf_len;
// Check if the buffer size is valid
if(rb_size > remain){
roaring_buffer_free(rb_reader);
// Free previously created rb_readers before returning
for(uint64_t j = 0; j < i; ++j){
if(rb_readers[j]) roaring_buffer_free(rb_readers[j]);
}
roaring_free(keys);
roaring_free((void *)rb_readers);
return NULL;
}
cur += rb_size;
read_bytes += rb_size;
keys[i] = key;
rb_readers[i] = rb_reader;
}
roaring64_buffer_t *ans = (roaring64_buffer_t *)roaring_malloc(sizeof(roaring64_buffer_t));
if(ans == NULL){
// Free all created rb_readers before returning
for(uint64_t i = 0; i < num_buckets; ++i){
if(rb_readers[i]) roaring_buffer_free(rb_readers[i]);
}
roaring_free(keys);
roaring_free((void *)rb_readers);
return NULL;
}
ans->buf = buf;
ans->buf_len = read_bytes;
ans->size = num_buckets;
ans->keys = keys;
ans->rb_readers = rb_readers;
return ans;
}
/**
* free 64-bit roaring buffer reader
*/
void roaring64_buffer_free(const roaring64_buffer_t *rb) {
if(!rb) return;
if(rb->rb_readers){
for(int i = 0; i < rb->size; ++i){
if(rb->rb_readers[i]) roaring_buffer_free(rb->rb_readers[i]);
}
roaring_free((void *)rb->rb_readers);
}
if(rb->keys) roaring_free((void *)rb->keys);
roaring_free((void *)rb);
}
/**
* Get the cardinality of the bitmap (number of elements).
*/
uint64_t roaring64_buffer_get_cardinality(const roaring64_buffer_t *rb) {
uint64_t total = 0;
for (int i = 0; i < rb->size; ++i) {
total += roaring_buffer_get_cardinality(rb->rb_readers[i]);
}
return total;
}
/**
* Check if value x is present
* Return false if error occurred.
*/
bool roaring64_buffer_contains(const roaring64_buffer_t *rb,
uint64_t val,
bool *result) {
uint32_t high = (uint32_t)(val >> 32);
int32_t idx = rb64_keys_binary_search(rb->keys, rb->size, high);
if(idx < 0){
*result = false;
return true;
}
bool ans = false;
bool ok = roaring_buffer_contains(rb64_get_reader_at_index(rb, idx), (uint32_t)(val & 0xFFFFFFFFu), &ans);
if(!ok)
return false;
*result = ans;
return true;
}
/**
* Check if all the elements of ra1 are also in ra2.
* Return false if error occurred.
*/
bool roaring64_buffer_is_subset(const roaring64_buffer_t *ra1,
const roaring64_buffer_t *ra2,
bool *result) {
const int length1 = ra1->size,
length2 = ra2->size;
int pos1 = 0, pos2 = 0;
while (pos1 < length1 && pos2 < length2) {
const uint32_t s1 = rb64_get_key_at_index(ra1, pos1);
const uint32_t s2 = rb64_get_key_at_index(ra2, pos2);
if (s1 == s2) {
const roaring_buffer_t *c1 = rb64_get_reader_at_index(ra1, pos1);
if(c1 == NULL)
return false;
const roaring_buffer_t *c2 = rb64_get_reader_at_index(ra2, pos2);
if(c2 == NULL)
return false;
bool subset = false;
bool ok = roaring_buffer_is_subset(c1, c2, &subset);
if(!ok)
return false;
if(!subset){
*result = false;
return true;
}
++pos1; ++pos2;
} else if (s1 < s2) {
*result = false;
return true;
} else {
pos2 = rb64_keys_advance_until(ra2->keys, pos2, length2, s1);
}
}
*result = (pos1 == length1);
return true;
}
/**
* Computes the intersection between two bitmaps.
* Return false if error occurred.
*/
bool roaring64_buffer_and_cardinality(const roaring64_buffer_t *x1,
const roaring64_buffer_t *x2,
uint64_t *result) {
const int length1 = x1->size,
length2 = x2->size;
uint64_t cardinality = 0;
int pos1 = 0, pos2 = 0;
while (pos1 < length1 && pos2 < length2) {
const uint32_t s1 = rb64_get_key_at_index(x1, pos1);
const uint32_t s2 = rb64_get_key_at_index(x2, pos2);
if (s1 == s2) {
const roaring_buffer_t *c1 = rb64_get_reader_at_index(x1, pos1);
if(c1 == NULL)
return false;
const roaring_buffer_t *c2 = rb64_get_reader_at_index(x2, pos2);
if(c2 == NULL)
return false;
uint64_t card = 0;
bool ok = roaring_buffer_and_cardinality(c1, c2, &card);
if(!ok)
return false;
cardinality += card;
++pos1; ++pos2;
} else if (s1 < s2) {
pos1 = rb64_keys_advance_until(x1->keys, pos1, length1, s2);
} else {
pos2 = rb64_keys_advance_until(x2->keys, pos2, length2, s1);
}
}
*result = cardinality;
return true;
}
/**
* Computes the size of the union between two bitmaps.
* Return false if error occurred.
*/
bool roaring64_buffer_or_cardinality(const roaring64_buffer_t *x1,
const roaring64_buffer_t *x2,
uint64_t *result) {
bool ok;
uint64_t inter;
const uint64_t c1 = roaring64_buffer_get_cardinality(x1);
const uint64_t c2 = roaring64_buffer_get_cardinality(x2);
ok = roaring64_buffer_and_cardinality(x1, x2, &inter);
if(!ok)
return false;
*result = c1 + c2 - inter;
return true;
}
/**
* Computes the size of the difference (andnot) between two bitmaps.
* Return false if error occurred.
*/
bool roaring64_buffer_andnot_cardinality(const roaring64_buffer_t *x1,
const roaring64_buffer_t *x2,
uint64_t *result) {
bool ok;
uint64_t inter;
const uint64_t c1 = roaring64_buffer_get_cardinality(x1);
ok = roaring64_buffer_and_cardinality(x1, x2, &inter);
if(!ok)
return false;
*result = c1 - inter;
return true;
}
/**
* Computes the size of the symmetric difference between two bitmaps.
* Return false if error occurred.
*/
bool roaring64_buffer_xor_cardinality(const roaring64_buffer_t *x1,
const roaring64_buffer_t *x2,
uint64_t *result) {
bool ok;
uint64_t inter;
const uint64_t c1 = roaring64_buffer_get_cardinality(x1);
const uint64_t c2 = roaring64_buffer_get_cardinality(x2);
ok = roaring64_buffer_and_cardinality(x1, x2, &inter);
if(!ok)
return false;
*result = c1 + c2 - 2 * inter;
return true;
}
/**
* Computes the Jaccard index between two bitmaps.
* Return false if error occurred.
*/
bool roaring64_buffer_jaccard_index(const roaring64_buffer_t *x1,
const roaring64_buffer_t *x2,
double *result) {
bool ok;
uint64_t inter;
const uint64_t c1 = roaring64_buffer_get_cardinality(x1);
const uint64_t c2 = roaring64_buffer_get_cardinality(x2);
ok = roaring64_buffer_and_cardinality(x1, x2, &inter);
if(!ok)
return false;
*result = (double)inter / (double)(c1 + c2 - inter);
return true;
}
/**
* Check whether two bitmaps intersect.
* Return false if error occurred.
*/
bool roaring64_buffer_intersect(const roaring64_buffer_t *x1,
const roaring64_buffer_t *x2,
bool *result) {
const int length1 = x1->size,
length2 = x2->size;
int pos1 = 0, pos2 = 0;
while (pos1 < length1 && pos2 < length2) {
const uint32_t s1 = rb64_get_key_at_index(x1, pos1);
const uint32_t s2 = rb64_get_key_at_index(x2, pos2);
if (s1 == s2) {
const roaring_buffer_t *c1 = rb64_get_reader_at_index(x1, pos1);
if(c1 == NULL)
return false;
const roaring_buffer_t *c2 = rb64_get_reader_at_index(x2, pos2);
if(c2 == NULL)
return false;
bool intersect = false;
bool ok = roaring_buffer_intersect(c1, c2, &intersect);
if(!ok)
return false;
if(intersect){
*result = true;
return true;
}
++pos1; ++pos2;
} else if (s1 < s2) {
pos1 = rb64_keys_advance_until(x1->keys, pos1, length1, s2);
} else {
pos2 = rb64_keys_advance_until(x2->keys, pos2, length2, s1);
}
}
*result = false;
return true;
}
/**
* Returns true if the bitmap is empty (cardinality is zero).
*/
bool roaring64_buffer_is_empty(const roaring64_buffer_t *rb) {
return rb->size == 0;
}
/**
* Check if the two bitmaps contain the same elements.
* Return false if error occurred.
*/
bool roaring64_buffer_equals(const roaring64_buffer_t *rb1,
const roaring64_buffer_t *rb2,
bool *result) {
if (rb1->size != rb2->size) { *result = false; return true; }
for (int i = 0; i < rb1->size; ++i) {
if (rb64_get_key_at_index(rb1, i) != rb64_get_key_at_index(rb2, i)) {
*result = false;
return true;
}
}
for (int i = 0; i < rb1->size; ++i) {
const roaring_buffer_t *c1 = rb64_get_reader_at_index(rb1, i);
if(c1 == NULL)
return false;
const roaring_buffer_t *c2 = rb64_get_reader_at_index(rb2, i);
if(c2 == NULL)
return false;
bool areequal = false;
bool ok = roaring_buffer_equals(c1, c2, &areequal);
if(!ok)
return false;
if (!areequal) {
*result = false;
return true;
}
}
*result = true;
return true;
}
/**
* Count the number of integers that are smaller or equal to x.
* Return false if error occurred.
*/
bool roaring64_buffer_rank(const roaring64_buffer_t *rb,
uint64_t x,
uint64_t *result) {
uint32_t xhigh = (uint32_t)(x >> 32);
*result = 0;
for (int i = 0; i < rb->size; i++) {
uint32_t key = rb64_get_key_at_index(rb, i);
if (xhigh < key)
return true;
const roaring_buffer_t *c = rb64_get_reader_at_index(rb, (uint32_t)i);
if(c == NULL)
return false;
if (xhigh == key) {
uint64_t r = 0;
bool ok = roaring_buffer_rank(c, (uint32_t)(x & 0xFFFFFFFFu), &r);
if(!ok)
return false;
*result += r;
return true;
} else {
*result += roaring_buffer_get_cardinality(c);
}
}
return true;
}
/**
* Get the smallest value in the set, or UINT64_MAX if the set is empty.
* Return false if error occurred.
*/
bool roaring64_buffer_minimum(const roaring64_buffer_t *rb,
uint64_t *result) {
if (rb->size > 0) {
const roaring_buffer_t *c = rb64_get_reader_at_index(rb, 0);
if(c == NULL)
return false;
uint32_t low = 0;
bool ok = roaring_buffer_minimum(c, &low);
if(!ok)
return false;
*result = (((uint64_t)rb64_get_key_at_index(rb, 0)) << 32) | (uint64_t)low;
} else {
*result = UINT64_MAX;
}
return true;
}
/**
* Get the greatest value in the set, or 0 if the set is empty.
* Return false if error occurred.
*/
bool roaring64_buffer_maximum(const roaring64_buffer_t *rb,
uint64_t *result) {
if (rb->size > 0) {
int i = rb->size - 1;
const roaring_buffer_t *c = rb64_get_reader_at_index(rb, (uint32_t)i);
if(c == NULL)
return false;
uint32_t low = 0;
bool ok = roaring_buffer_maximum(c, &low);
if(!ok)
return false;
*result = (((uint64_t)rb64_get_key_at_index(rb, i)) << 32) | (uint64_t)low;
} else {
*result = 0;
}
return true;
}
|