File: hdGeometry.cpp

package info (click to toggle)
pgadmin3 1.20.0~beta2-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 73,704 kB
  • ctags: 18,591
  • sloc: cpp: 193,786; ansic: 18,736; sh: 5,154; pascal: 1,120; yacc: 927; makefile: 516; lex: 421; xml: 126; perl: 40
file content (190 lines) | stat: -rw-r--r-- 4,330 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
//////////////////////////////////////////////////////////////////////////
//
// pgAdmin III - PostgreSQL Tools
//
// Copyright (C) 2002 - 2014, The pgAdmin Development Team
// This software is released under the PostgreSQL Licence
//
// hdGeometry.cpp - Utility Geometric Functions Shared between classes
//
//////////////////////////////////////////////////////////////////////////

#include "pgAdmin3.h"

// wxWindows headers
#include <wx/wx.h>

// App headers
#include "hotdraw/utilities/hdGeometry.h"
#include "hotdraw/utilities/hdMultiPosRect.h"
#include "hotdraw/utilities/hdPoint.h"

//
// Warning when using it:  typecasting to avoid miscalculations functions need double values not int
//

bool hdGeometry::lineContainsPoint(double x1, double y1, double x2, double y2, double px, double py)
{
	hdPoint p = hdPoint(x1, y1);
	hdRect r = hdRect(p);
	r.add(x2, y2);
	r.Inflate(2, 2);
	if(!r.Contains(px, py))
	{
		return false;
	}

	double a, b, x, y;
	double val1, val2;

	val1 = px - x1;
	if( x1 == x2 )
	{
		return (ddabs(val1) < 3);
	}

	val2 = py - y1;
	if( y1 == y2 )
	{
		return (ddabs(val2) < 3);
	}

	a = (y1 - y2) / (x1 - x2);
	b = y1 - a * x1;
	x = (py - b) / a;
	y = a * px + b;

	val1 = x - px;
	val2 = y - py;
	bool out = (min( ddabs(val1), ddabs(val2)) < 4);
	return out;
}

int hdGeometry::min(double a, double b)
{
	return(a <= b) ? a : b;
}

int hdGeometry::max(double a, double b)
{
	return(a >= b) ? a : b;
}


int hdGeometry::min(int a, int b)
{
	return(a <= b) ? a : b;
}

int hdGeometry::max(int a, int b)
{
	return(a >= b) ? a : b;
}

//Gets the angle of a point relative to a rectangle.
double hdGeometry::angleFromPoint(int posIdx, hdMultiPosRect r, hdPoint point)
{
	return angleFromPoint(r.gethdRect(posIdx), point);
}

double hdGeometry::angleFromPoint(hdRect r, hdPoint point)
{
	double rx = point.x - r.center().x;
	double ry = point.y - r.center().y;
	return atan2 (ry * r.width, rx * r.height);
}

hdPoint hdGeometry::edgePointFromAngle(int posIdx, hdMultiPosRect r, double angle)
{
	return edgePointFromAngle(r.gethdRect(posIdx), angle);
}

//Gets the point on a rectangle that corresponds to the given angle.
hdPoint hdGeometry::edgePointFromAngle(hdRect r, double angle)
{
	static hdPoint locationPoint; //Hack to allow bug in linux & ddabs
	double sinv = sin(angle);
	double cosv = cos(angle);
	double e = 0.0001;
	double x = 0.0;
	double y = 0.0;
	double width = r.width;
	double height = r.height;


	if( ddabs(sinv) > e )
	{
		x = (1.0 + cosv / ddabs (sinv)) / 2.0 * width;
		x = range(0.0, width, x);
	}
	else if ( cosv >= 0.0 )
	{
		x = width;
	}

	if ( ddabs(cosv) > e )
	{
		y = (1.0 + sinv / ddabs (cosv)) / 2.0 * height;
		y = range (0.0, height, y);
	}
	else if ( sinv >= 0.0 )
	{
		y = height;
	}
	int xx = r.x + x;
	int yy = r.y + y;
	locationPoint = hdPoint(xx, yy);
	return locationPoint;
}

double hdGeometry::range(double min, double max, double num)
{
	return num < min ? min : (num > max ? max : num);
}

double hdGeometry::ddabs(double value)
{
	return value < 0 ? (value * -1) : value;
}

int hdGeometry::ddabs(int value)
{
	return value < 0 ? (value * -1) : value;
}

double hdGeometry::lineSize (hdPoint p1, hdPoint p2)
{
	int w = p1.x - p2.x;
	int h = p1.y - p2.y;

	double perimeter = w * w + h * h;
	return sqrt (perimeter);
}

// source: http://vision.dai.ed.ac.uk/andrewfg/c-g-a-faq.html
// Standard line intersection algorithm, Return true intersection if it exists, else false.
bool hdGeometry::intersection(hdPoint p1, hdPoint p2, hdPoint p3, hdPoint p4)
{
	// Store the values for fast access and easy
	// equations-to-code conversion
	float x1 = p1.x, x2 = p2.x, x3 = p3.x, x4 = p4.x;
	float y1 = p1.y, y2 = p2.y, y3 = p3.y, y4 = p4.y;

	float d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
	// If d is zero, there is no intersection
	if (d == 0) return false;

	// Get the x and y
	float pre = (x1 * y2 - y1 * x2), post = (x3 * y4 - y3 * x4);
	// point of intersection
	float x = ( pre * (x3 - x4) - (x1 - x2) * post ) / d;
	float y = ( pre * (y3 - y4) - (y1 - y2) * post ) / d;

	// Check if the x and y coordinates are within both lines
	if ( x < min(x1, x2) || x > max(x1, x2) || x < min(x3, x4) || x > max(x3, x4) )
		return false;
	if ( y < min(y1, y2) || y > max(y1, y2) || y < min(y3, y4) || y > max(y3, y4) )
		return false;

	return true;
}