1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
/*
* M_APM - mapm_div.c
*
* Copyright (C) 1999 - 2007 Michael C. Ring
*
* Permission to use, copy, and distribute this software and its
* documentation for any purpose with or without fee is hereby granted,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation.
*
* Permission to modify the software is granted. Permission to distribute
* the modified code is granted. Modifications are to be distributed by
* using the file 'license.txt' as a template to modify the file header.
* 'license.txt' is available in the official MAPM distribution.
*
* This software is provided "as is" without express or implied warranty.
*/
/*
*
* This file contains the basic division functions
*
*/
#include "pgAdmin3.h"
#include "pgscript/utilities/mapm-lib/m_apm_lc.h"
static M_APM M_div_worka;
static M_APM M_div_workb;
static M_APM M_div_tmp7;
static M_APM M_div_tmp8;
static M_APM M_div_tmp9;
static int M_div_firsttime = TRUE;
/****************************************************************************/
void M_free_all_div()
{
if (M_div_firsttime == FALSE)
{
m_apm_free(M_div_worka);
m_apm_free(M_div_workb);
m_apm_free(M_div_tmp7);
m_apm_free(M_div_tmp8);
m_apm_free(M_div_tmp9);
M_div_firsttime = TRUE;
}
}
/****************************************************************************/
void m_apm_integer_div_rem(M_APM qq, M_APM rr, M_APM aa, M_APM bb)
{
m_apm_integer_divide(qq, aa, bb);
m_apm_multiply(M_div_tmp7, qq, bb);
m_apm_subtract(rr, aa, M_div_tmp7);
}
/****************************************************************************/
void m_apm_integer_divide(M_APM rr, M_APM aa, M_APM bb)
{
/*
* we must use this divide function since the
* faster divide function using the reciprocal
* will round the result (possibly changing
* nnm.999999... --> nn(m+1).0000 which would
* invalidate the 'integer_divide' goal).
*/
M_apm_sdivide(rr, 4, aa, bb);
if (rr->m_apm_exponent <= 0) /* result is 0 */
{
M_set_to_zero(rr);
}
else
{
if (rr->m_apm_datalength > rr->m_apm_exponent)
{
rr->m_apm_datalength = rr->m_apm_exponent;
M_apm_normalize(rr);
}
}
}
/****************************************************************************/
void M_apm_sdivide(M_APM r, int places, M_APM a, M_APM b)
{
int j, k, m, b0, sign, nexp, indexr, icompare, iterations;
long trial_numer;
void *vp;
if (M_div_firsttime)
{
M_div_firsttime = FALSE;
M_div_worka = m_apm_init();
M_div_workb = m_apm_init();
M_div_tmp7 = m_apm_init();
M_div_tmp8 = m_apm_init();
M_div_tmp9 = m_apm_init();
}
sign = a->m_apm_sign * b->m_apm_sign;
if (sign == 0) /* one number is zero, result is zero */
{
if (b->m_apm_sign == 0)
{
M_apm_log_error_msg(M_APM_RETURN, "\'M_apm_sdivide\', Divide by 0");
}
M_set_to_zero(r);
return;
}
/*
* Knuth step D1. Since base = 100, base / 2 = 50.
* (also make the working copies positive)
*/
if (b->m_apm_data[0] >= 50)
{
m_apm_absolute_value(M_div_worka, a);
m_apm_absolute_value(M_div_workb, b);
}
else /* 'normal' step D1 */
{
k = 100 / (b->m_apm_data[0] + 1);
m_apm_set_long(M_div_tmp9, (long)k);
m_apm_multiply(M_div_worka, M_div_tmp9, a);
m_apm_multiply(M_div_workb, M_div_tmp9, b);
M_div_worka->m_apm_sign = 1;
M_div_workb->m_apm_sign = 1;
}
/* setup trial denominator for step D3 */
b0 = 100 * (int)M_div_workb->m_apm_data[0];
if (M_div_workb->m_apm_datalength >= 3)
b0 += M_div_workb->m_apm_data[1];
nexp = M_div_worka->m_apm_exponent - M_div_workb->m_apm_exponent;
if (nexp > 0)
iterations = nexp + places + 1;
else
iterations = places + 1;
k = (iterations + 1) >> 1; /* required size of result, in bytes */
if (k > r->m_apm_malloclength)
{
if ((vp = MAPM_REALLOC(r->m_apm_data, (k + 32))) == NULL)
{
/* fatal, this does not return */
M_apm_log_error_msg(M_APM_FATAL, "\'M_apm_sdivide\', Out of memory");
}
r->m_apm_malloclength = k + 28;
r->m_apm_data = (UCHAR *)vp;
}
/* clear the exponent in the working copies */
M_div_worka->m_apm_exponent = 0;
M_div_workb->m_apm_exponent = 0;
/* if numbers are equal, ratio == 1.00000... */
if ((icompare = m_apm_compare(M_div_worka, M_div_workb)) == 0)
{
iterations = 1;
r->m_apm_data[0] = 10;
nexp++;
}
else /* ratio not 1, do the real division */
{
if (icompare == 1) /* numerator > denominator */
{
nexp++; /* to adjust the final exponent */
M_div_worka->m_apm_exponent += 1; /* multiply numerator by 10 */
}
else /* numerator < denominator */
{
M_div_worka->m_apm_exponent += 2; /* multiply numerator by 100 */
}
indexr = 0;
m = 0;
while (TRUE)
{
/*
* Knuth step D3. Only use the 3rd -> 6th digits if the number
* actually has that many digits.
*/
trial_numer = 10000L * (long)M_div_worka->m_apm_data[0];
if (M_div_worka->m_apm_datalength >= 5)
{
trial_numer += 100 * M_div_worka->m_apm_data[1]
+ M_div_worka->m_apm_data[2];
}
else
{
if (M_div_worka->m_apm_datalength >= 3)
trial_numer += 100 * M_div_worka->m_apm_data[1];
}
j = (int)(trial_numer / b0);
/*
* Since the library 'normalizes' all the results, we need
* to look at the exponent of the number to decide if we
* have a lead in 0n or 00.
*/
if ((k = 2 - M_div_worka->m_apm_exponent) > 0)
{
while (TRUE)
{
j /= 10;
if (--k == 0)
break;
}
}
if (j == 100) /* qhat == base ?? */
j = 99; /* if so, decrease by 1 */
m_apm_set_long(M_div_tmp8, (long)j);
m_apm_multiply(M_div_tmp7, M_div_tmp8, M_div_workb);
/*
* Compare our q-hat (j) against the desired number.
* j is either correct, 1 too large, or 2 too large
* per Theorem B on pg 272 of Art of Compter Programming,
* Volume 2, 3rd Edition.
*
* The above statement is only true if using the 2 leading
* digits of the numerator and the leading digit of the
* denominator. Since we are using the (3) leading digits
* of the numerator and the (2) leading digits of the
* denominator, we eliminate the case where our q-hat is
* 2 too large, (and q-hat being 1 too large is quite remote).
*/
if (m_apm_compare(M_div_tmp7, M_div_worka) == 1)
{
j--;
m_apm_subtract(M_div_tmp8, M_div_tmp7, M_div_workb);
m_apm_copy(M_div_tmp7, M_div_tmp8);
}
/*
* Since we know q-hat is correct, step D6 is unnecessary.
*
* Store q-hat, step D5. Since D6 is unnecessary, we can
* do D5 before D4 and decide if we are done.
*/
r->m_apm_data[indexr++] = (UCHAR)j; /* j == 'qhat' */
m += 2;
if (m >= iterations)
break;
/* step D4 */
m_apm_subtract(M_div_tmp9, M_div_worka, M_div_tmp7);
/*
* if the subtraction yields zero, the division is exact
* and we are done early.
*/
if (M_div_tmp9->m_apm_sign == 0)
{
iterations = m;
break;
}
/* multiply by 100 and re-save */
M_div_tmp9->m_apm_exponent += 2;
m_apm_copy(M_div_worka, M_div_tmp9);
}
}
r->m_apm_sign = sign;
r->m_apm_exponent = nexp;
r->m_apm_datalength = iterations;
M_apm_normalize(r);
}
/****************************************************************************/
|