File: mapm_exp.cpp

package info (click to toggle)
pgadmin3 1.20.0~beta2-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 73,704 kB
  • ctags: 18,591
  • sloc: cpp: 193,786; ansic: 18,736; sh: 5,154; pascal: 1,120; yacc: 927; makefile: 516; lex: 421; xml: 126; perl: 40
file content (294 lines) | stat: -rw-r--r-- 6,685 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

/*
 *  M_APM  -  mapm_exp.c
 *
 *  Copyright (C) 1999 - 2007   Michael C. Ring
 *
 *  Permission to use, copy, and distribute this software and its
 *  documentation for any purpose with or without fee is hereby granted,
 *  provided that the above copyright notice appear in all copies and
 *  that both that copyright notice and this permission notice appear
 *  in supporting documentation.
 *
 *  Permission to modify the software is granted. Permission to distribute
 *  the modified code is granted. Modifications are to be distributed by
 *  using the file 'license.txt' as a template to modify the file header.
 *  'license.txt' is available in the official MAPM distribution.
 *
 *  This software is provided "as is" without express or implied warranty.
 */

/*
 *
 *      This file contains the EXP function.
 *
 */

#include "pgAdmin3.h"
#include "pgscript/utilities/mapm-lib/m_apm_lc.h"

static  M_APM  MM_exp_log2R;
static  M_APM  MM_exp_512R;
static	int    MM_firsttime1 = TRUE;

/****************************************************************************/
void	M_free_all_exp()
{
	if (MM_firsttime1 == FALSE)
	{
		m_apm_free(MM_exp_log2R);
		m_apm_free(MM_exp_512R);

		MM_firsttime1 = TRUE;
	}
}
/****************************************************************************/
void	m_apm_exp(M_APM r, int places, M_APM x)
{
	M_APM   tmp7, tmp8, tmp9;
	int	dplaces, nn, ii;

	if (MM_firsttime1)
	{
		MM_firsttime1 = FALSE;

		MM_exp_log2R = m_apm_init();
		MM_exp_512R  = m_apm_init();

		m_apm_set_string(MM_exp_log2R, "1.44269504089");   /* ~ 1 / log(2) */
		m_apm_set_string(MM_exp_512R,  "1.953125E-3");     /*   1 / 512    */
	}

	tmp7 = M_get_stack_var();
	tmp8 = M_get_stack_var();
	tmp9 = M_get_stack_var();

	if (x->m_apm_sign == 0)		/* if input == 0, return '1' */
	{
		m_apm_copy(r, MM_One);
		M_restore_stack(3);
		return;
	}

	if (x->m_apm_exponent <= -3)  /* already small enough so call _raw directly */
	{
		M_raw_exp(tmp9, (places + 6), x);
		m_apm_round(r, places, tmp9);
		M_restore_stack(3);
		return;
	}

	/*
	    From David H. Bailey's MPFUN Fortran package :

	    exp (t) =  (1 + r + r^2 / 2! + r^3 / 3! + r^4 / 4! ...) ^ q * 2 ^ n

	    where q = 256, r = t' / q, t' = t - n Log(2) and where n is chosen so
	    that -0.5 Log(2) < t' <= 0.5 Log(2).  Reducing t mod Log(2) and
	    dividing by 256 insures that -0.001 < r <= 0.001, which accelerates
	    convergence in the above series.

	    I use q = 512 and also limit how small 'r' can become. The 'r' used
	    here is limited in magnitude from 1.95E-4 < |r| < 1.35E-3. Forcing
	    'r' into a narrow range keeps the algorithm 'well behaved'.

	    ( the range is [0.1 / 512] to [log(2) / 512] )
	*/

	if (M_exp_compute_nn(&nn, tmp7, x) != 0)
	{
		M_apm_log_error_msg(M_APM_RETURN,
		                    "\'m_apm_exp\', Input too large, Overflow");

		M_set_to_zero(r);
		M_restore_stack(3);
		return;
	}

	dplaces = places + 8;

	/* check to make sure our log(2) is accurate enough */

	M_check_log_places(dplaces);

	m_apm_multiply(tmp8, tmp7, MM_lc_log2);
	m_apm_subtract(tmp7, x, tmp8);

	/*
	 *     guarantee that |tmp7| is between 0.1 and 0.9999999....
	 *     (in practice, the upper limit only reaches log(2), 0.693... )
	 */

	while (TRUE)
	{
		if (tmp7->m_apm_sign != 0)
		{
			if (tmp7->m_apm_exponent == 0)
				break;
		}

		if (tmp7->m_apm_sign >= 0)
		{
			nn++;
			m_apm_subtract(tmp8, tmp7, MM_lc_log2);
			m_apm_copy(tmp7, tmp8);
		}
		else
		{
			nn--;
			m_apm_add(tmp8, tmp7, MM_lc_log2);
			m_apm_copy(tmp7, tmp8);
		}
	}

	m_apm_multiply(tmp9, tmp7, MM_exp_512R);

	/* perform the series expansion ... */

	M_raw_exp(tmp8, dplaces, tmp9);

	/*
	 *   raise result to the 512 power
	 *
	 *   note : x ^ 512  =  (((x ^ 2) ^ 2) ^ 2) ... 9 times
	 */

	ii = 9;

	while (TRUE)
	{
		m_apm_multiply(tmp9, tmp8, tmp8);
		m_apm_round(tmp8, dplaces, tmp9);

		if (--ii == 0)
			break;
	}

	/* now compute 2 ^ N */

	m_apm_integer_pow(tmp7, dplaces, MM_Two, nn);

	m_apm_multiply(tmp9, tmp7, tmp8);
	m_apm_round(r, places, tmp9);

	M_restore_stack(3);                    /* restore the 3 locals we used here */
}
/****************************************************************************/
/*
	compute  int *n  = round_to_nearest_int(a / log(2))
	         M_APM b = MAPM version of *n

        returns      0: OK
		 -1, 1: failure
*/
int	M_exp_compute_nn(int *n, M_APM b, M_APM a)
{
	M_APM	tmp0, tmp1;
	void	*vp;
	char    *cp, sbuf[48];
	int	kk;

	*n   = 0;
	vp   = NULL;
	cp   = sbuf;
	tmp0 = M_get_stack_var();
	tmp1 = M_get_stack_var();

	/* find 'n' and convert it to a normal C int            */
	/* we just need an approx 1/log(2) for this calculation */

	m_apm_multiply(tmp1, a, MM_exp_log2R);

	/* round to the nearest int */

	if (tmp1->m_apm_sign >= 0)
	{
		m_apm_add(tmp0, tmp1, MM_0_5);
		m_apm_floor(tmp1, tmp0);
	}
	else
	{
		m_apm_subtract(tmp0, tmp1, MM_0_5);
		m_apm_ceil(tmp1, tmp0);
	}

	kk = tmp1->m_apm_exponent;
	if (kk >= 42)
	{
		if ((vp = (void *)MAPM_MALLOC((kk + 16) * sizeof(char))) == NULL)
		{
			/* fatal, this does not return */

			M_apm_log_error_msg(M_APM_FATAL, "\'M_exp_compute_nn\', Out of memory");
		}

		cp = (char *)vp;
	}

	m_apm_to_integer_string(cp, tmp1);
	*n = atoi(cp);

	m_apm_set_long(b, (long)(*n));

	kk = m_apm_compare(b, tmp1);

	if (vp != NULL)
		MAPM_FREE(vp);

	M_restore_stack(2);
	return(kk);
}
/****************************************************************************/
/*
	calculate the exponential function using the following series :

                              x^2     x^3     x^4     x^5
	exp(x) == 1  +  x  +  ---  +  ---  +  ---  +  ---  ...
                               2!      3!      4!      5!

*/
void	M_raw_exp(M_APM rr, int places, M_APM xx)
{
	M_APM   tmp0, digit, term;
	int	tolerance,  local_precision, prev_exp;
	long    m1;

	tmp0  = M_get_stack_var();
	term  = M_get_stack_var();
	digit = M_get_stack_var();

	local_precision = places + 8;
	tolerance       = -(places + 4);
	prev_exp        = 0;

	m_apm_add(rr, MM_One, xx);
	m_apm_copy(term, xx);

	m1 = 2L;

	while (TRUE)
	{
		m_apm_set_long(digit, m1);
		m_apm_multiply(tmp0, term, xx);
		m_apm_divide(term, local_precision, tmp0, digit);
		m_apm_add(tmp0, rr, term);
		m_apm_copy(rr, tmp0);

		if ((term->m_apm_exponent < tolerance) || (term->m_apm_sign == 0))
			break;

		if (m1 != 2L)
		{
			local_precision = local_precision + term->m_apm_exponent - prev_exp;

			if (local_precision < 20)
				local_precision = 20;
		}

		prev_exp = term->m_apm_exponent;
		m1++;
	}

	M_restore_stack(3);                    /* restore the 3 locals we used here */
}
/****************************************************************************/