1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
/*
* M_APM - mapm_exp.c
*
* Copyright (C) 1999 - 2007 Michael C. Ring
*
* Permission to use, copy, and distribute this software and its
* documentation for any purpose with or without fee is hereby granted,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation.
*
* Permission to modify the software is granted. Permission to distribute
* the modified code is granted. Modifications are to be distributed by
* using the file 'license.txt' as a template to modify the file header.
* 'license.txt' is available in the official MAPM distribution.
*
* This software is provided "as is" without express or implied warranty.
*/
/*
*
* This file contains the EXP function.
*
*/
#include "pgAdmin3.h"
#include "pgscript/utilities/mapm-lib/m_apm_lc.h"
static M_APM MM_exp_log2R;
static M_APM MM_exp_512R;
static int MM_firsttime1 = TRUE;
/****************************************************************************/
void M_free_all_exp()
{
if (MM_firsttime1 == FALSE)
{
m_apm_free(MM_exp_log2R);
m_apm_free(MM_exp_512R);
MM_firsttime1 = TRUE;
}
}
/****************************************************************************/
void m_apm_exp(M_APM r, int places, M_APM x)
{
M_APM tmp7, tmp8, tmp9;
int dplaces, nn, ii;
if (MM_firsttime1)
{
MM_firsttime1 = FALSE;
MM_exp_log2R = m_apm_init();
MM_exp_512R = m_apm_init();
m_apm_set_string(MM_exp_log2R, "1.44269504089"); /* ~ 1 / log(2) */
m_apm_set_string(MM_exp_512R, "1.953125E-3"); /* 1 / 512 */
}
tmp7 = M_get_stack_var();
tmp8 = M_get_stack_var();
tmp9 = M_get_stack_var();
if (x->m_apm_sign == 0) /* if input == 0, return '1' */
{
m_apm_copy(r, MM_One);
M_restore_stack(3);
return;
}
if (x->m_apm_exponent <= -3) /* already small enough so call _raw directly */
{
M_raw_exp(tmp9, (places + 6), x);
m_apm_round(r, places, tmp9);
M_restore_stack(3);
return;
}
/*
From David H. Bailey's MPFUN Fortran package :
exp (t) = (1 + r + r^2 / 2! + r^3 / 3! + r^4 / 4! ...) ^ q * 2 ^ n
where q = 256, r = t' / q, t' = t - n Log(2) and where n is chosen so
that -0.5 Log(2) < t' <= 0.5 Log(2). Reducing t mod Log(2) and
dividing by 256 insures that -0.001 < r <= 0.001, which accelerates
convergence in the above series.
I use q = 512 and also limit how small 'r' can become. The 'r' used
here is limited in magnitude from 1.95E-4 < |r| < 1.35E-3. Forcing
'r' into a narrow range keeps the algorithm 'well behaved'.
( the range is [0.1 / 512] to [log(2) / 512] )
*/
if (M_exp_compute_nn(&nn, tmp7, x) != 0)
{
M_apm_log_error_msg(M_APM_RETURN,
"\'m_apm_exp\', Input too large, Overflow");
M_set_to_zero(r);
M_restore_stack(3);
return;
}
dplaces = places + 8;
/* check to make sure our log(2) is accurate enough */
M_check_log_places(dplaces);
m_apm_multiply(tmp8, tmp7, MM_lc_log2);
m_apm_subtract(tmp7, x, tmp8);
/*
* guarantee that |tmp7| is between 0.1 and 0.9999999....
* (in practice, the upper limit only reaches log(2), 0.693... )
*/
while (TRUE)
{
if (tmp7->m_apm_sign != 0)
{
if (tmp7->m_apm_exponent == 0)
break;
}
if (tmp7->m_apm_sign >= 0)
{
nn++;
m_apm_subtract(tmp8, tmp7, MM_lc_log2);
m_apm_copy(tmp7, tmp8);
}
else
{
nn--;
m_apm_add(tmp8, tmp7, MM_lc_log2);
m_apm_copy(tmp7, tmp8);
}
}
m_apm_multiply(tmp9, tmp7, MM_exp_512R);
/* perform the series expansion ... */
M_raw_exp(tmp8, dplaces, tmp9);
/*
* raise result to the 512 power
*
* note : x ^ 512 = (((x ^ 2) ^ 2) ^ 2) ... 9 times
*/
ii = 9;
while (TRUE)
{
m_apm_multiply(tmp9, tmp8, tmp8);
m_apm_round(tmp8, dplaces, tmp9);
if (--ii == 0)
break;
}
/* now compute 2 ^ N */
m_apm_integer_pow(tmp7, dplaces, MM_Two, nn);
m_apm_multiply(tmp9, tmp7, tmp8);
m_apm_round(r, places, tmp9);
M_restore_stack(3); /* restore the 3 locals we used here */
}
/****************************************************************************/
/*
compute int *n = round_to_nearest_int(a / log(2))
M_APM b = MAPM version of *n
returns 0: OK
-1, 1: failure
*/
int M_exp_compute_nn(int *n, M_APM b, M_APM a)
{
M_APM tmp0, tmp1;
void *vp;
char *cp, sbuf[48];
int kk;
*n = 0;
vp = NULL;
cp = sbuf;
tmp0 = M_get_stack_var();
tmp1 = M_get_stack_var();
/* find 'n' and convert it to a normal C int */
/* we just need an approx 1/log(2) for this calculation */
m_apm_multiply(tmp1, a, MM_exp_log2R);
/* round to the nearest int */
if (tmp1->m_apm_sign >= 0)
{
m_apm_add(tmp0, tmp1, MM_0_5);
m_apm_floor(tmp1, tmp0);
}
else
{
m_apm_subtract(tmp0, tmp1, MM_0_5);
m_apm_ceil(tmp1, tmp0);
}
kk = tmp1->m_apm_exponent;
if (kk >= 42)
{
if ((vp = (void *)MAPM_MALLOC((kk + 16) * sizeof(char))) == NULL)
{
/* fatal, this does not return */
M_apm_log_error_msg(M_APM_FATAL, "\'M_exp_compute_nn\', Out of memory");
}
cp = (char *)vp;
}
m_apm_to_integer_string(cp, tmp1);
*n = atoi(cp);
m_apm_set_long(b, (long)(*n));
kk = m_apm_compare(b, tmp1);
if (vp != NULL)
MAPM_FREE(vp);
M_restore_stack(2);
return(kk);
}
/****************************************************************************/
/*
calculate the exponential function using the following series :
x^2 x^3 x^4 x^5
exp(x) == 1 + x + --- + --- + --- + --- ...
2! 3! 4! 5!
*/
void M_raw_exp(M_APM rr, int places, M_APM xx)
{
M_APM tmp0, digit, term;
int tolerance, local_precision, prev_exp;
long m1;
tmp0 = M_get_stack_var();
term = M_get_stack_var();
digit = M_get_stack_var();
local_precision = places + 8;
tolerance = -(places + 4);
prev_exp = 0;
m_apm_add(rr, MM_One, xx);
m_apm_copy(term, xx);
m1 = 2L;
while (TRUE)
{
m_apm_set_long(digit, m1);
m_apm_multiply(tmp0, term, xx);
m_apm_divide(term, local_precision, tmp0, digit);
m_apm_add(tmp0, rr, term);
m_apm_copy(rr, tmp0);
if ((term->m_apm_exponent < tolerance) || (term->m_apm_sign == 0))
break;
if (m1 != 2L)
{
local_precision = local_precision + term->m_apm_exponent - prev_exp;
if (local_precision < 20)
local_precision = 20;
}
prev_exp = term->m_apm_exponent;
m1++;
}
M_restore_stack(3); /* restore the 3 locals we used here */
}
/****************************************************************************/
|