File: mapm_lg2.cpp

package info (click to toggle)
pgadmin3 1.20.0~beta2-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 73,704 kB
  • ctags: 18,591
  • sloc: cpp: 193,786; ansic: 18,736; sh: 5,154; pascal: 1,120; yacc: 927; makefile: 516; lex: 421; xml: 126; perl: 40
file content (152 lines) | stat: -rw-r--r-- 3,693 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

/*
 *  M_APM  -  mapm_lg2.c
 *
 *  Copyright (C) 2003 - 2007   Michael C. Ring
 *
 *  Permission to use, copy, and distribute this software and its
 *  documentation for any purpose with or without fee is hereby granted,
 *  provided that the above copyright notice appear in all copies and
 *  that both that copyright notice and this permission notice appear
 *  in supporting documentation.
 *
 *  Permission to modify the software is granted. Permission to distribute
 *  the modified code is granted. Modifications are to be distributed by
 *  using the file 'license.txt' as a template to modify the file header.
 *  'license.txt' is available in the official MAPM distribution.
 *
 *  This software is provided "as is" without express or implied warranty.
 */

/*
 *
 *      This file contains the iterative function to compute the LOG
 *	This is an internal function to the library and is not intended
 *	to be called directly by the user.
 *
 */

#include "pgAdmin3.h"
#include "pgscript/utilities/mapm-lib/m_apm_lc.h"

/****************************************************************************/

/*
 *      compute rr = log(nn)
 *
 *	input is assumed to not exceed the exponent range of a normal
 *	'C' double ( |exponent| must be < 308)
 */

/****************************************************************************/
void	M_log_solve_cubic(M_APM rr, int places, M_APM nn)
{
	M_APM   tmp0, tmp1, tmp2, tmp3, guess;
	int	ii, maxp, tolerance, local_precision;

	guess = M_get_stack_var();
	tmp0  = M_get_stack_var();
	tmp1  = M_get_stack_var();
	tmp2  = M_get_stack_var();
	tmp3  = M_get_stack_var();

	M_get_log_guess(guess, nn);

	tolerance       = -(places + 4);
	maxp            = places + 16;
	local_precision = 18;

	/*    Use the following iteration to solve for log :

	                        exp(X) - N
	      X     =  X - 2 * ------------
	       n+1              exp(X) + N


	      this is a cubically convergent algorithm
	      (each iteration yields 3X more digits)
	*/

	ii = 0;

	while (TRUE)
	{
		m_apm_exp(tmp1, local_precision, guess);

		m_apm_subtract(tmp3, tmp1, nn);
		m_apm_add(tmp2, tmp1, nn);

		m_apm_divide(tmp1, local_precision, tmp3, tmp2);
		m_apm_multiply(tmp0, MM_Two, tmp1);
		m_apm_subtract(tmp3, guess, tmp0);

		if (ii != 0)
		{
			if (((3 * tmp0->m_apm_exponent) < tolerance) || (tmp0->m_apm_sign == 0))
				break;
		}

		m_apm_round(guess, local_precision, tmp3);

		local_precision *= 3;

		if (local_precision > maxp)
			local_precision = maxp;

		ii = 1;
	}

	m_apm_round(rr, places, tmp3);
	M_restore_stack(5);
}
/****************************************************************************/
/*
 *      find log(N)
 *
 *      if places < 360
 *         solve with cubically convergent algorithm above
 *
 *      else
 *
 *      let 'X' be 'close' to the solution   (we use ~110 decimal places)
 *
 *      let Y = N * exp(-X) - 1
 *
 *	then
 *
 *	log(N) = X + log(1 + Y)
 *
 *      since 'Y' will be small, we can use the efficient log_near_1 algorithm.
 *
 */
void	M_log_basic_iteration(M_APM rr, int places, M_APM nn)
{
	M_APM   tmp0, tmp1, tmp2, tmpX;

	if (places < 360)
	{
		M_log_solve_cubic(rr, places, nn);
	}
	else
	{
		tmp0 = M_get_stack_var();
		tmp1 = M_get_stack_var();
		tmp2 = M_get_stack_var();
		tmpX = M_get_stack_var();

		M_log_solve_cubic(tmpX, 110, nn);

		m_apm_negate(tmp0, tmpX);
		m_apm_exp(tmp1, (places + 8), tmp0);
		m_apm_multiply(tmp2, tmp1, nn);
		m_apm_subtract(tmp1, tmp2, MM_One);

		M_log_near_1(tmp0, (places - 104), tmp1);

		m_apm_add(tmp1, tmpX, tmp0);
		m_apm_round(rr, places, tmp1);

		M_restore_stack(4);
	}
}
/****************************************************************************/