1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
/*
* M_APM - mapm_lg2.c
*
* Copyright (C) 2003 - 2007 Michael C. Ring
*
* Permission to use, copy, and distribute this software and its
* documentation for any purpose with or without fee is hereby granted,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation.
*
* Permission to modify the software is granted. Permission to distribute
* the modified code is granted. Modifications are to be distributed by
* using the file 'license.txt' as a template to modify the file header.
* 'license.txt' is available in the official MAPM distribution.
*
* This software is provided "as is" without express or implied warranty.
*/
/*
*
* This file contains the iterative function to compute the LOG
* This is an internal function to the library and is not intended
* to be called directly by the user.
*
*/
#include "pgAdmin3.h"
#include "pgscript/utilities/mapm-lib/m_apm_lc.h"
/****************************************************************************/
/*
* compute rr = log(nn)
*
* input is assumed to not exceed the exponent range of a normal
* 'C' double ( |exponent| must be < 308)
*/
/****************************************************************************/
void M_log_solve_cubic(M_APM rr, int places, M_APM nn)
{
M_APM tmp0, tmp1, tmp2, tmp3, guess;
int ii, maxp, tolerance, local_precision;
guess = M_get_stack_var();
tmp0 = M_get_stack_var();
tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();
tmp3 = M_get_stack_var();
M_get_log_guess(guess, nn);
tolerance = -(places + 4);
maxp = places + 16;
local_precision = 18;
/* Use the following iteration to solve for log :
exp(X) - N
X = X - 2 * ------------
n+1 exp(X) + N
this is a cubically convergent algorithm
(each iteration yields 3X more digits)
*/
ii = 0;
while (TRUE)
{
m_apm_exp(tmp1, local_precision, guess);
m_apm_subtract(tmp3, tmp1, nn);
m_apm_add(tmp2, tmp1, nn);
m_apm_divide(tmp1, local_precision, tmp3, tmp2);
m_apm_multiply(tmp0, MM_Two, tmp1);
m_apm_subtract(tmp3, guess, tmp0);
if (ii != 0)
{
if (((3 * tmp0->m_apm_exponent) < tolerance) || (tmp0->m_apm_sign == 0))
break;
}
m_apm_round(guess, local_precision, tmp3);
local_precision *= 3;
if (local_precision > maxp)
local_precision = maxp;
ii = 1;
}
m_apm_round(rr, places, tmp3);
M_restore_stack(5);
}
/****************************************************************************/
/*
* find log(N)
*
* if places < 360
* solve with cubically convergent algorithm above
*
* else
*
* let 'X' be 'close' to the solution (we use ~110 decimal places)
*
* let Y = N * exp(-X) - 1
*
* then
*
* log(N) = X + log(1 + Y)
*
* since 'Y' will be small, we can use the efficient log_near_1 algorithm.
*
*/
void M_log_basic_iteration(M_APM rr, int places, M_APM nn)
{
M_APM tmp0, tmp1, tmp2, tmpX;
if (places < 360)
{
M_log_solve_cubic(rr, places, nn);
}
else
{
tmp0 = M_get_stack_var();
tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();
tmpX = M_get_stack_var();
M_log_solve_cubic(tmpX, 110, nn);
m_apm_negate(tmp0, tmpX);
m_apm_exp(tmp1, (places + 8), tmp0);
m_apm_multiply(tmp2, tmp1, nn);
m_apm_subtract(tmp1, tmp2, MM_One);
M_log_near_1(tmp0, (places - 104), tmp1);
m_apm_add(tmp1, tmpX, tmp0);
m_apm_round(rr, places, tmp1);
M_restore_stack(4);
}
}
/****************************************************************************/
|