1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
/*
* M_APM - mapm_lg3.c
*
* Copyright (C) 2003 - 2007 Michael C. Ring
*
* Permission to use, copy, and distribute this software and its
* documentation for any purpose with or without fee is hereby granted,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation.
*
* Permission to modify the software is granted. Permission to distribute
* the modified code is granted. Modifications are to be distributed by
* using the file 'license.txt' as a template to modify the file header.
* 'license.txt' is available in the official MAPM distribution.
*
* This software is provided "as is" without express or implied warranty.
*/
/*
*
* This file contains the function to compute log(2), log(10),
* and 1/log(10) to the desired precision using an AGM algorithm.
*
*/
#include "pgAdmin3.h"
#include "pgscript/utilities/mapm-lib/m_apm_lc.h"
/*
* using the 'R' function (defined below) for 'N' decimal places :
*
*
* -N -N
* log(2) = R(1, 0.5 * 10 ) - R(1, 10 )
*
*
* -N -N
* log(10) = R(1, 0.1 * 10 ) - R(1, 10 )
*
*
* In general:
*
* -N -N
* log(x) = R(1, 10 / x) - R(1, 10 )
*
*
* I found this on a web site which went into considerable detail
* on the history of log(2). This formula is algebraically identical
* to the formula specified in J. Borwein and P. Borwein's book
* "PI and the AGM". (reference algorithm 7.2)
*/
/****************************************************************************/
/*
* check if our local copy of log(2) & log(10) is precise
* enough for our purpose. if not, calculate them so it's
* as precise as desired, accurate to at least 'places'.
*/
void M_check_log_places(int places)
{
M_APM tmp6, tmp7, tmp8, tmp9;
int dplaces;
dplaces = places + 4;
if (dplaces > MM_lc_log_digits)
{
MM_lc_log_digits = dplaces + 4;
tmp6 = M_get_stack_var();
tmp7 = M_get_stack_var();
tmp8 = M_get_stack_var();
tmp9 = M_get_stack_var();
dplaces += 6 + (int)log10((double)places);
m_apm_copy(tmp7, MM_One);
tmp7->m_apm_exponent = -places;
M_log_AGM_R_func(tmp8, dplaces, MM_One, tmp7);
m_apm_multiply(tmp6, tmp7, MM_0_5);
M_log_AGM_R_func(tmp9, dplaces, MM_One, tmp6);
m_apm_subtract(MM_lc_log2, tmp9, tmp8); /* log(2) */
tmp7->m_apm_exponent -= 1; /* divide by 10 */
M_log_AGM_R_func(tmp9, dplaces, MM_One, tmp7);
m_apm_subtract(MM_lc_log10, tmp9, tmp8); /* log(10) */
m_apm_reciprocal(MM_lc_log10R, dplaces, MM_lc_log10); /* 1 / log(10) */
M_restore_stack(4);
}
}
/****************************************************************************/
/*
* define a notation for a function 'R' :
*
*
*
* 1
* R (a0, b0) = ------------------------------
*
* ----
* \
* \ n-1 2 2
* 1 - | 2 * (a - b )
* / n n
* /
* ----
* n >= 0
*
*
* where a, b are the classic AGM iteration :
*
*
* a = 0.5 * (a + b )
* n+1 n n
*
*
* b = sqrt(a * b )
* n+1 n n
*
*
*
* define a variable 'c' for more efficient computation :
*
* 2 2 2
* c = 0.5 * (a - b ) , c = a - b
* n+1 n n n n n
*
*/
/****************************************************************************/
void M_log_AGM_R_func(M_APM rr, int places, M_APM aa, M_APM bb)
{
M_APM tmp1, tmp2, tmp3, tmp4, tmpC2, sum, pow_2, tmpA0, tmpB0;
int tolerance, dplaces;
tmpA0 = M_get_stack_var();
tmpB0 = M_get_stack_var();
tmpC2 = M_get_stack_var();
tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();
tmp3 = M_get_stack_var();
tmp4 = M_get_stack_var();
sum = M_get_stack_var();
pow_2 = M_get_stack_var();
tolerance = places + 8;
dplaces = places + 16;
m_apm_copy(tmpA0, aa);
m_apm_copy(tmpB0, bb);
m_apm_copy(pow_2, MM_0_5);
m_apm_multiply(tmp1, aa, aa); /* 0.5 * [ a ^ 2 - b ^ 2 ] */
m_apm_multiply(tmp2, bb, bb);
m_apm_subtract(tmp3, tmp1, tmp2);
m_apm_multiply(sum, MM_0_5, tmp3);
while (TRUE)
{
m_apm_subtract(tmp1, tmpA0, tmpB0); /* C n+1 = 0.5 * [ An - Bn ] */
m_apm_multiply(tmp4, MM_0_5, tmp1); /* C n+1 */
m_apm_multiply(tmpC2, tmp4, tmp4); /* C n+1 ^ 2 */
/* do the AGM */
m_apm_add(tmp1, tmpA0, tmpB0);
m_apm_multiply(tmp3, MM_0_5, tmp1);
m_apm_multiply(tmp2, tmpA0, tmpB0);
m_apm_sqrt(tmpB0, dplaces, tmp2);
m_apm_round(tmpA0, dplaces, tmp3);
/* end AGM */
m_apm_multiply(tmp2, MM_Two, pow_2);
m_apm_copy(pow_2, tmp2);
m_apm_multiply(tmp1, tmpC2, pow_2);
m_apm_add(tmp3, sum, tmp1);
if ((tmp1->m_apm_sign == 0) ||
((-2 * tmp1->m_apm_exponent) > tolerance))
break;
m_apm_round(sum, dplaces, tmp3);
}
m_apm_subtract(tmp4, MM_One, tmp3);
m_apm_reciprocal(rr, places, tmp4);
M_restore_stack(9);
}
/****************************************************************************/
|