File: mapm_lg4.cpp

package info (click to toggle)
pgadmin3 1.20.0~beta2-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 73,704 kB
  • ctags: 18,591
  • sloc: cpp: 193,786; ansic: 18,736; sh: 5,154; pascal: 1,120; yacc: 927; makefile: 516; lex: 421; xml: 126; perl: 40
file content (93 lines) | stat: -rw-r--r-- 2,513 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

/*
 *  M_APM  -  mapm_lg4.c
 *
 *  Copyright (C) 2003 - 2007   Michael C. Ring
 *
 *  Permission to use, copy, and distribute this software and its
 *  documentation for any purpose with or without fee is hereby granted,
 *  provided that the above copyright notice appear in all copies and
 *  that both that copyright notice and this permission notice appear
 *  in supporting documentation.
 *
 *  Permission to modify the software is granted. Permission to distribute
 *  the modified code is granted. Modifications are to be distributed by
 *  using the file 'license.txt' as a template to modify the file header.
 *  'license.txt' is available in the official MAPM distribution.
 *
 *  This software is provided "as is" without express or implied warranty.
 */

/*
 *
 *      This file contains the LOG_NEAR_1 function.
 *
 */

#include "pgAdmin3.h"
#include "pgscript/utilities/mapm-lib/m_apm_lc.h"

/****************************************************************************/
/*
	calculate log (1 + x) with the following series:

              x
	y = -----      ( |y| < 1 )
	    x + 2


            [ 1 + y ]                 y^3     y^5     y^7
	log [-------]  =  2 * [ y  +  ---  +  ---  +  ---  ... ]
            [ 1 - y ]                  3       5       7

*/
void	M_log_near_1(M_APM rr, int places, M_APM xx)
{
	M_APM   tmp0, tmp1, tmp2, tmpS, term;
	int	tolerance, dplaces, local_precision;
	long    m1;

	tmp0 = M_get_stack_var();
	tmp1 = M_get_stack_var();
	tmp2 = M_get_stack_var();
	tmpS = M_get_stack_var();
	term = M_get_stack_var();

	tolerance = xx->m_apm_exponent - (places + 6);
	dplaces   = (places + 12) - xx->m_apm_exponent;

	m_apm_add(tmp0, xx, MM_Two);
	m_apm_divide(tmpS, (dplaces + 6), xx, tmp0);

	m_apm_copy(term, tmpS);
	m_apm_multiply(tmp0, tmpS, tmpS);
	m_apm_round(tmp2, (dplaces + 6), tmp0);

	m1 = 3L;

	while (TRUE)
	{
		m_apm_multiply(tmp0, term, tmp2);

		if ((tmp0->m_apm_exponent < tolerance) || (tmp0->m_apm_sign == 0))
			break;

		local_precision = dplaces + tmp0->m_apm_exponent;

		if (local_precision < 20)
			local_precision = 20;

		m_apm_set_long(tmp1, m1);
		m_apm_round(term, local_precision, tmp0);
		m_apm_divide(tmp0, local_precision, term, tmp1);
		m_apm_add(tmp1, tmpS, tmp0);
		m_apm_copy(tmpS, tmp1);
		m1 += 2;
	}

	m_apm_multiply(tmp0, MM_Two, tmpS);
	m_apm_round(rr, places, tmp0);

	M_restore_stack(5);                    /* restore the 5 locals we used here */
}
/****************************************************************************/