1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
/*
* M_APM - mapm_log.c
*
* Copyright (C) 1999 - 2007 Michael C. Ring
*
* Permission to use, copy, and distribute this software and its
* documentation for any purpose with or without fee is hereby granted,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation.
*
* Permission to modify the software is granted. Permission to distribute
* the modified code is granted. Modifications are to be distributed by
* using the file 'license.txt' as a template to modify the file header.
* 'license.txt' is available in the official MAPM distribution.
*
* This software is provided "as is" without express or implied warranty.
*/
/*
*
* This file contains the LOG and LOG10 functions.
*
*/
#include "pgAdmin3.h"
#include "pgscript/utilities/mapm-lib/m_apm_lc.h"
/****************************************************************************/
/*
Calls the LOG function. The formula used is :
log10(x) = A * log(x) where A = log (e) [0.43429448190325...]
10
*/
void m_apm_log10(M_APM rr, int places, M_APM aa)
{
int dplaces;
M_APM tmp8, tmp9;
tmp8 = M_get_stack_var();
tmp9 = M_get_stack_var();
dplaces = places + 4;
M_check_log_places(dplaces + 45);
m_apm_log(tmp9, dplaces, aa);
m_apm_multiply(tmp8, tmp9, MM_lc_log10R);
m_apm_round(rr, places, tmp8);
M_restore_stack(2); /* restore the 2 locals we used here */
}
/****************************************************************************/
void m_apm_log(M_APM r, int places, M_APM a)
{
M_APM tmp0, tmp1, tmp2;
int mexp, dplaces;
if (a->m_apm_sign <= 0)
{
M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_log\', Negative argument");
M_set_to_zero(r);
return;
}
tmp0 = M_get_stack_var();
tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();
dplaces = places + 8;
/*
* if the input is real close to 1, use the series expansion
* to compute the log.
*
* 0.9999 < a < 1.0001
*/
mexp = a->m_apm_exponent;
if (mexp == 0 || mexp == 1)
{
m_apm_subtract(tmp0, a, MM_One);
if (tmp0->m_apm_sign == 0) /* is input exactly 1 ?? */
{
/* if so, result is 0 */
M_set_to_zero(r);
M_restore_stack(3);
return;
}
if (tmp0->m_apm_exponent <= -4)
{
M_log_near_1(r, places, tmp0);
M_restore_stack(3);
return;
}
}
/* make sure our log(10) is accurate enough for this calculation */
/* (and log(2) which is called from M_log_basic_iteration) */
M_check_log_places(dplaces + 25);
if (abs(mexp) <= 3)
{
M_log_basic_iteration(r, places, a);
}
else
{
/*
* use log (x * y) = log(x) + log(y)
*
* here we use y = exponent of our base 10 number.
*
* let 'C' = log(10) = 2.3025850929940....
*
* then log(x * y) = log(x) + ( C * base_10_exponent )
*/
m_apm_copy(tmp2, a);
mexp = tmp2->m_apm_exponent - 2;
tmp2->m_apm_exponent = 2; /* force number between 10 & 100 */
M_log_basic_iteration(tmp0, dplaces, tmp2);
m_apm_set_long(tmp1, (long)mexp);
m_apm_multiply(tmp2, tmp1, MM_lc_log10);
m_apm_add(tmp1, tmp2, tmp0);
m_apm_round(r, places, tmp1);
}
M_restore_stack(3); /* restore the 3 locals we used here */
}
/****************************************************************************/
|